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In 1966 Moser posed his moving sofa problem [1]. What is the shape of largest area that can be 

manoeuvred round a right angle turn in a corridor of width one? A shape that obviously works is a 

semi-circle of radius one, but Hammersley [2] extended the shape using a rectangular mid-section 

with a semi-circle cut out of one side. By Thales theorem the semi-circle can slide round the corner 

touching the inner side in three places while the remaining arcs of the original semi-circle each touch 

the outer sides of the corridor in two further places. The maximum area of such a shape is given 

when the radius of the removed semi-circle is equal to 
2

𝜋
 making the area  

𝐴𝐻 =
𝜋

2
+

2

𝜋
= 2.207416099 … 

However, this shape known as Hammersley’s sofa is not the optimal solution. 

In 1991 Gerver [3] defined a shape of larger area 𝐴𝐺 = 2.21953166777197 … [4] which he proved 

can move round the corner as required. Gerver did not prove that his shape is the optimal solution 

but he showed that it satisfies an optimisation condition that the optimal solution must satisfy and 

conjectured that it is indeed the best possible. In this study a computational approach is used and is 

found to agree with Gerver’s area to about eight significant figures. This provides good empirical 

evidence that Gerver is right  

 

Figure 1      Gerver's Sofa 

Gerver’s sofa is bounded by 18 smooth sections as shown in figure 1. Each section is given an 

analytic definition such that V, XIII and XVIII are straight lines, I, VI, XII and XVII are circular arcs of 

radius a half, II, III, VII, XI, XV and XVI are involutes of circles (i.e. shapes formed by the ends of a cord 

winding round a circle), and IV and XIV are involutes of involutes of circles. 

The motion round the corner during which the orientation of the sofa changes from an angle 𝛼 of 0 

through to 90o proceeds in five stages. At the beginning of this journey it will be touching the walls 

of the corridor along the lengths of the straight sections XVIII and XIII and can slide to the right until 

it touches at the point F. In the first stage of rotation for 0 < 𝛼 ≤ 𝜑 = 2.24469765 …o the sofa 



touches the corridor in the arcs XII and XVII. For a fixed angle in this range it is free to move 

horizontally by a small amount until it touches the corridor either at the corner F or in the section 

VII. At the end of this stage when 𝛼 = 𝜑 it will touch the corner of the corridor at G and the outer 

wall tangentially at F. In the second stage for 0 < 𝛼 ≤ 𝜃 = 39.03570106 …o the sofa touches the 

corridor in four places in sections XI, VIII, IV and XVI. The point G where the shape has a slope 

discontinuity does not touch the wall during this stage but is separated from it by a very small 

distance of less than 0.0012. At the end of stage two point G’ is touching the corridor. In the third 

stage of rotation from 𝜃 < 𝛼 < 90𝑜 − 𝜃 the sofa touches the wall in only three places in sections 

XV, III and IX. Stage four is a mirror image of stage two in reverse and stage five is the mirror image 

of stage one in reverse. 

Our goal is to attack the problem numerically and compare with Gerver’s solution. A direct trial and 

error method might consist of constructing different shapes numerically and an algorithm to try and 

move them round the corner. In practice this would be very difficult to implement. Fortunately a 

much easier method can be found using a simple change of perspective. Instead of moving the sofa 

round the corner just imagine moving the corridor while the position of the sofa remains fixed. The 

sofa must be inside the corridor at all times which means it must be contained in the intersection of 

the corridor shape at each step of the journey. Indeed, for any given path of motion the corridor can 

take around the sofa the intersection of the set of corridor positions is a shape at least as large as 

any sofa it could have passed.  

During its passage the corridor shape 𝐿 will be turned through the angle 𝛼, for 0 ≤ 𝛼 ≤ 90𝑜 to and 

the inside corner point of the corridor follows a path 𝑃(𝛼) = (𝑥(𝛼), 𝑦(𝛼)) to form a parameterise 

set of shapes {𝐿𝑃(𝛼), 0 ≤ 𝛼 ≤ 90𝑜}. The shape of a sofa is given by the maximum area over all 

possible continuous paths 𝑃 of the intersection of this set 

𝑆 = 𝑠𝑢𝑝𝑃 ⋂ 𝐿𝑃(𝛼)

0≤𝛼≤90𝑜

 

It is worth noting that in this form the moving sofa problem can be seen to fall into a general class of 

problems that require finding the maximum intersection or minimum (convex) union of a set of 

shapes under some allowed sets of transformation. For example Lebsgue’s universal covering 

problem seeks the minimum convex union of all shapes of diameter one allowing them to be 

rotated, translated or reflected.  

To construct the sofa numerically we can divide the path into 𝑁 angular steps of size 
1

𝑁
90𝑜  and form 

the intersection of 𝑁 shapes where the first and last shape is replaced with just a single long straight 

corridor whose position can be taken as fixed. The 𝑁 − 1 remaining positions are then varied 

iteratively to find the maximum area of the intersection shape. 𝑁 must then be taken sufficiently 

large to give the shape to the required accuracy. 

It should be noted that a number of assumptions are being made to conclude that this method gives 

the required solution including the following: 

 That the optimal shape must actually turn through a right angle while going round the 

corner (This is not a trivial assumption since for example a unit square can get round the 

corner without turning at all.) 



 That the limit of the discrete path as 𝑁 → ∞ is continuous. 

 That the shape of maximum area formed from the intersection in connected. 

 That the solution is unique. 

To make the computation faster we make the additional unnecessary assumption that the path and 

therefore also the shape have a bilateral reflection symmetry 

No attempt will be made to prove these assumptions but the result of the computation does support 

them.  

Implementation 
The computation was implemented in Java using the math.geom2d classes from sourceforge to 

perform the polygon transformations, intersections and area calculations. 

It was found that the area converged only very slowly to a maximum if points in the path 𝑃(𝛼) were 

varied individually. To improve convergence it was found much better to also vary Fourier 

components of the path, i.e. to make changes in the path of the form 

∆𝑃(𝛼) = (a cos 𝐾𝛼, 𝑏 sin 𝐾𝛼), 𝐾 = 1,3,5, … 

To find the maximum while varying each variable it was sufficient to calculate the area for three 

suitably chosen values of the variable and fit a parabola to the results, then select the minimum as 

the value for the next iteration. 

The error term in the convergence as a function of the number of steps along the path 𝑁 is of order 
1

𝑁
. It can be observed that the largest source of this error comes from the concave boundary of the 

shape where it touches the inner corner of the corridor. This error can be reduced by smoothing this 

part of the boundary leaving residual error of order 
1

𝑁2 . The coefficient of this error term appears to 

be stable so that it can be removed by extrapolation given the calculated area for two large values of 

𝑁. In this way the error is reduced to provide a much more rapid convergence. 

Results 
The figures below show some of the optimal shapes formed for low values of 𝑁 with and without 

the smoothing. The corridors have also been included to illustrate how it moves. The final shape is 

indistinguishable by eye from Gerver’s solution. 

 

Figure 2    maximal intersection for N = 3 



 

Figure 3     N = 9 

 

 

Figure 4       N = 9 with smoothing 

 

Figure 5         N = 45  smoothed 



For 𝑁 ≳ 45 the form of the sofa becomes visibly indistinguishable but we can continue to calculate 

the area as shown in table 1 

N Area of smoothed shape Extrapolated area 

25 2.221574880  

45 2.220276858 2.219697384 

101 2.219661926 2.219509622 

225 2.219557518 2.219531171 

501 2.219537021 2.219531843 

Table 1 

The best numerical estimate of the area therefore agrees with the computed area for Gerver’s sofa 

to nearly eight significant figures. 

Conclusions 
Given that the computed solution is so close to that of Gerver it seems very likely that Gerver’s 

conjecture of optimality is indeed correct. 

In his analysis Gerver also worked from the point of view where the sofa is fixed and the corridor 

moves round the shape in small steps. It is not hard to show that the shape of the intersection with 

maximal area for fixed 𝑁 is a balanced polygon, i.e. a polygon shape such all edges parallel to a given 

direction fall on two lines whose total lengths on each line are equal. Gerver proved that the optimal 

solution to the sofa problem must be the limit of a sequence of such shapes as 𝑁 → ∞ and that his 

shape is such a limit. This does not quite prove that his shape is the optimal solution since there are 

other shapes which satisfy this condition. For example a regular polygons with an even number of 

sides are also balanced polygons which converge to a circle of diameter one. 
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