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LED

Miroslav Pardy
Department of Physical Electronics

Masaryk University
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Abstract

We derive by the Schwinger source theory method, the power spectrum
of photons, generated by charged particle moving within 2D sheet, with
index of refraction n. Some graphene-like structures, for instance graphene
with implanted ions, or, also 2D-glasses, are dielectric media, enabling the
experimental realization of the Vavilov-Čerenkov radiation. The relation of
the Vavilov-Čerenkov radiation to LED, where the 2D the additional dielectric
sheet is the integral part of LED, is discussed. It is not excluded that LEDs
with the 2D dielectric sheets will be the crucial components of detectors in
experimental particle physics.

1 Introduction

The fast moving charged particle in a medium when its speed is faster than the speed

of light in this medium produces electromagnetic radiation which is called the Vavilov-

Čerenkov radiation.

The prediction of Cerenkov radiation came long ago. Heaviside in 1889 [1] investigated

the possibility of a charged object moving in a medium faster than electromagnetic waves
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in the same medium becomes a source of directed electromagnetic radiation. Kelvin in

1901 [2] presented an idea that the emission of particles is possible at a speed greater

than that of light. Somewhat later, Sommerfeld in 1904 [3] proposed the hypothetical

radiation with a sharp angular distribution. However, in fact, from experimental point

of view, the electromagnetic Čerenkov radiation was first observed in the early 1900’s by

experiments developed by Marie and Pierre Curie when studying radioactivity emission.

In essence they observed the emission of a bluish-white light from transparent substances

in the neighborhood of strong radioactive source. But the first attempt to understand the

origin of this was made by Mallet [4] who observed that the light emitted by a variety

of transparent bodies placed close to a radioactive source always had the same bluish-

white quality, and that the spectrum was continuous, with no line or band structure

characteristic of fluorescence.

Unfortunately, these investigations were forgotten for many years. Čerenkov exper-

iments [5] was performed at the suggestion of Vavilov who opened a door to the true

physical nature of this effect1 [6].

This radiation was first theoretically interpreted by Tamm and Frank in 1937 [7] in

the framework of the classical electrodynamics. The source theoretical description of this

effect was given by Schwinger et al. [8] at the zero temperature regime and the classical

spectral formula was generalized to the finite temperature situation and for the massive

photons by autor [9, 10]. The Vavilov-Čerenkov effect was also used by author [11] to

possible measurement of the Lorentz contraction.

2 Source theory of the Vavilov-Čerenkov effect

Let us start with the three dimensional source theory formulation of the problem.

Source theory [8] is the theoretical construction which uses quantum-mechanical particle

language. Initially it was constructed for description of the particle physics situations

occurring in the high-energy physics experiments. However, it was found that the original

formulation simplifies the calculations in the electrodynamics and gravity where the

interactions are mediated by photon or graviton respectively.

The basic formula in the source theory is the vacuum to vacuum amplitude:

< 0+|0− >= e
i
h̄
W (S), (1)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any

time before and after space-time region where sources are manipulated. The exponential

form is introduced with regard to the existence of the physically independent experimental

arrangements which has a simple consequence that the associated probability amplitudes

multiply and corresponding W expressions add.

1So, the adequate name of this effect is the Vavilov-Čerenkov effect. In the English literature, however, it is
usually called the Čerenkov effect.
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The electromagnetic field is described by the amplitude (1) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (2)

where the dimensionality ofW (J) is the same as the dimensionality of the Planck constant

h̄. Jµ is the charge and current densities, where quantity Jµ is conserved. The symbol

D+µν(x− x′), is the photon propagator and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by

the following formula [8]:

| < 0+|0− > |2 = exp{−2

h̄
ImW} d

= exp{−
∫

dtdω
P (ω, t)

h̄ω
}, (3)

where we have introduced the so called power spectral function P (ω, t) [8]. In order to

extract this spectral function from ImW , it is necessary to know the explicit form of the

photon propagator D+µν(x− x′).

The electromagnetic field is described by the four-potentials Aµ(φ,A) and it is

generated, including a particular choice of gauge, by the four-current Jµ(cϱ,J) according

to the differential equation, [8]:(
∆− µε

c2
∂2

∂t2

)
Aµ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
Jν (4)

with the corresponding Green function D+µν :

Dµν
+ =

µ

c
(gµν +

n2 − 1

n2
ηµην)D+(x− x′), (5)

where ηµ ≡ (1,0), µ (in the fraction µ/c)is the magnetic permeability of the dielectric

medium with the dielectric constant ε, c is the velocity of light in vacuum, n is the index

of refraction of this medium, and D+(x− x′) was derived by [8] in the following form:

D+(x− x′) =
i

4π2c

∫ ∞

0
dω

sin nω
c
|x− x′|

|x− x′|
e−iω|t−t′|. (6)

Using formulas (2), (3), (5) and (6), we get for the power spectral formula the following

expression [8]:

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (7)
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3 Spectral formula for the two-dimensional Vavilov-Čerenkov
effect

Now, we apply the last formula to the situations of the two-dimensional dielectric medium.

We derive here the power spectrum of photons generated by charged particle moving

within the plane of the graphene-like structure with index of refraction n. However, we

cannot immediately apply the formula (7) to the graphene-like 2D structures because

the index of refraction n is n(x, y, z) = 1, z > 0, n(x, y, z) = const > 1, z = 0 and

n(x, y, z) = 1, z < 0. It means that the situation is not the Vavilov-Čerenkov problem but

the problem with the transition radiation which was solved by Ginzburg and Tsytovič [12]

for thin dielectric film. The problem of the transition radiation when electron is moving

with the arbitrary angle with respect to the boundary is discussed by Bass et al. [13].

Our goal is to solve only the Vavilov-Čerenkov radiation of charge when moving within

the plane of dielectric sheet. So, it needs some modified approach.

While the graphene sheet is conductive, some graphene-like structures, for instance

graphene with implanted ions, or, also 2D-glasses, are dielectric media, and it means that

it enables the experimental realization of the Vavilov-Čerenkov radiation. Some graphene-

like structure can be represented by graphene-based polaritonic crystal sheet [14] which

can be used to study the Vavilov-Čerenkov effect. We calculate it from the viewpoint of

the Schwinger theory of sources.

The charge and current density of electron moving with the velocity v and charge e is

as it is well known:

ϱ = eδ(x− vt) (8)

J = evδ(x− vt). (9)

In case of the the two-dimensional Vavilov-Čerenkov radiation by source theory

formulation, the form of equations (2) and (3) is the same with the difference that

ηµ ≡ (1,0) has two space components, or ηµ ≡ (1, 0, 0), and the Green function D+

as the propagator must be determined by the two-dimensional procedure. In other words,

the Fourier form of this propagator is with (dk) = dk0dk = dk0dk1dk2 = dk0kdkdθ

D+(x− x′) =
∫ (dk)

(2π)3
1

k2 − n2(k)2
eik(x−x′), (10)

or, with R = |x− x′|

D+(x− x′) =
1

(2π)3

∫ 2π

0
dθ
∫ ∞

0
kdk

∫ ∞

−∞

dω

c

eikR cos θ−iω(t−t′)

k2 − n2ω2

c2
− iε

. (11)

Using exp(ikR cos θ) = cos(kR cos θ) + i sin(kR cos θ) and (z = kR)
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cos(z cos θ) = J0(z) + 2
∞∑
n=1

(−1)nJ2n(z) cos 2nθ (12)

and

sin(z cos θ) =
∞∑
n=1

(−1)nJ2n−1(z) cos(2n− 1)θ, (13)

where Jn(z) are the Bessel functions [15], we get after integration over θ:

D+(x− x′) =
1

(2π)2

∫ ∞

0
kdk

∫ ∞

−∞

dω

c

J0(kR)

k2 − n2ω2

c2
− iε

e−iω(t−t′). (14)

The ω-integral in (14) can be performed using the residuum theorem after integration

in the complex half ω-plane.

The result of such integration is the propagator D+ in the following form:

D+(x− x′) =
i

2πc

∫ ∞

0
dωJ0

(
nω

c
|x− x′|

)
e−iω|t−t′|. (15)

The spectral formula for the two-dimensional Vavilov-Čerenkov radiation is the

analogue of the formula (7), or,

P (ω, t) = − ω

2π

µ

n2

∫
dxdx′dt′J0

(
nω

c
|x− x′|

)
cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
, (16)

where the charge density and current involves only two-dimensional velocities and inte-

gration is also only two-dimensional.

The difference is in the replacing mathematical formulas as follows:

sin nω
c
|x− x′|

|x− x′|
−→ J0

(
nω

c
|x− x′|

)
. (17)

So, After insertion the quantities (8) and (9) into (16), we get:

P (ω, t) =
e2

2π

µωv

c2

(
1− 1

n2β2

)∫
dt′J0

(
nvω

c
|t− t′|

)
cos[ω(t− t′)], β = v/c, (18)

where the t′-integration must be performed. Putting τ = t′ − t, we get the final formula:

P (ω, t) =
e2

2π

µωv

c2

(
1− 1

n2β2

)∫ ∞

−∞
dτJ0 (nβωτ) cos(ωτ), β = v/c. (19)

The integral in formula (19) is involved in the tables of integrals [16] . Or,

J =
∫ ∞

0
dxJ0 (ax) cos(bx) =

1√
a2 − b2

, 0 < b < a,

5



J = ∞, a = b; J = 0, 0 < a < b, (20)

In our case we have a = nβω and b = ω. So, the power spectrum in eq. (19) is as

follows with J0(−z) = J0(z):

P =
e2

π

µv

c2

(
1− 1

n2β2

)
2√

n2β2 − 1
, nβ > 1, β = v/c. (21)

and

P = 0; nβ < 1, (22)

which means that the physical meaning of the quantity P is really the Vavilov-Čerenkov

radiation. And it is in our case the two-dimensional form of this radiation.

The fundamental features of the 3D and 2D Vavilov-Čerenkov radiation are as follows:

1) The radiation arises only for particle velocity greater than the velocity of light in the

dielectric medium.

2) It depends only on the charge and not on mass of the moving particles

3) The radiation is produced in the visible interval of the light frequencies and partly in

the ultraviolet part of the frequency spectrum. The radiation does not exists for very

short waves, which follows from the dispersion theory of the index of refraction n, where

n < 1.

4) The spectral dependency on the frequency is linear for the 3D homogeneous medium.

5) The radiation generated in the 3D medium at given point of the trajectory spreads

on the surface of the Mach cone with the vertex at this point and with the axis identical

with the direction of motion of the particle. The vertex angle of the cone is given by the

relation cosΘ = c/nv.

6) There is no Mach cone in the 2D dielectric medium. There is only the Mach angle

in the 2D sheet. It follows from the fact that Vavilov-Čerenkov effect is the result of

the collective motion of the 2D dielectric medium and it also follows from the quantum

definition of the Vavilov-Čerenkov effect in the 2D structures. The conservation laws of

momentum and energy for the Vavilov-Čerenkov effect is as follows:

pi = pf + h̄k, (23)

Ei = Ef + h̄ω, (24)

where index i concerns the initial momentum and energy of an electron and index f

concerns the final momentum and energy of an electron. Symbol k is the wave vector of

emitted photon and h̄ω is its energy. With regard to the situation that the motion of an

electron is realized in the plane x−y, the 3D Mach cone cannot be realized (The existence

of Mach cone in our situation is the nonphysical escape of photons from 2D plane to the
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extra-dimension). So, the nonexistence of the Mach cone in the 2D structures is not

mysterious.

4 Discussion

While the formula for the three dimensional (3D) Vavilov-Čerenkov radiation is well

known the from textbooks and monographs, the two-dimensional (2D) form of the

Vavilov-Čerenkov radiation was derived here. Zuev [17] considers the Vavilov-Čerenkov

phenomenon in nanofilms from Au, Ag, Cu, where the Vavilov-Čerenkov phenomenon is

realized only as the surface plasmons which cannot escape the 2D medium.

The energy loss of a particle caused by the Vavilov-Čerenkov radiation are approxi-

mately equal to 1% of all energy losses in the condensed matter such as the bremsstrahlung

and so on. The fundamental importance of the Vavilov-Čerenkov radiation is in its use

for the modern detectors of very speed charged particles in the high energy physics. The

detection of the Vavilov-Čerenkov radiation enables to detect not only the existence of

the particle, however, also its direction of motion and its velocity and also its charge. The

two-dimensional Vavilov-Čerenkov radiation was still not applied in physics, nevertheless,

it is the promising application in LED, the light-emitting diode.

The light-emitting diode, LED, consists of several layers (sheets) of semiconducting

materials. Electrical voltage drives electrons (from the n-layer) and holes (from the p-

layer) to the active layer, where they recombine forming light. Anode, the p-electrode,

and cathode, the n-electrode are connected to the voltage element as a source. The LED

is no larger than a grain of sand. In case of the blue LED lamp, it consists of several

different layers of gallium nitride (GaN). By mixing in indium (In) and aluminium (Al),

the Nobel prize laureates, Isamu Akasaki (Nagoya University, Japan), Hiroshi Amano

(Nagoya University, Japan), Huji Nakamura (American citizen, University of California,

Santa Barbara, USA) succeeded in increasing the lamps efficiency [18]. White LEDs

currently reach more than 300 lm/W, representing more than 50% wallplug efficiency.

The Relation of Vavilov-Čerenkov effect to LED is based on the following arguments.

Namely, when LED (with additional dielectric sheet) is irradiated by high-energy electrons

with velocity greater than the velocity of light in the sheet, then LED produces the 2D

Vavilov-Čerenkov radiation if and only if the electrons moves within the dielectric sheet

inside the LED. The set of small grain-sand LED (fixed in adequate viscous gel emulsion)

forms then the new detector of elementary particle physics. The two-dimensional Vavilov-

Čerenkov radiation was still not applied, nevertheless, it is not excluded that it is the

crucial effect in LED.
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