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Quantum Electrodynamics (QED) is built on the original Dirac equation [1, 2], an equation that
exhibits perfect symmetry in that it is symmetric under charge conjugation (C), space (P) and time
(T ) reversal and any combination of these discrete symmetries. We demonstrate herein that the
proposed Lorentz invariant Curved Spacetime Dirac Equations (CSTD-Equations) [3], while they
obey CPT and PT -Symmetries, these equations readily violate C, P , T , CP and CT -Symmetries.
Realising this violation, namely the C-Violation, we take this golden opportunity to suggest that
the Curved Spacetime Dirac Equations may help in solving the long standing riddle and mystery
of the preponderance of matter over antimatter. We come to the tentative conclusion that if these
CSTD-Equations are to explain the preponderance of matter over antimatter, then, photons are
to be thought of as described by the flat version of this set of equations, while ordinary matter is
to be explained by the positive and negatively curved spacetime versions of this same set of equations.
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“I think that the discovery of antimatter was perhaps
the biggest jump of all the big jumps in physics in our century [20].”

– Werner Karl Heisenberg (1901− 1976)

INTRODUCTION

T
HE Dirac equation is a relativistic quantum me-
chanical wave equation serendipitously discovered

by the eminent British physicist, Professor Paul Adrien
Maurice Dirac in 1928 [1, 2]. This equation possess per-
fect symmetry in that it is invariant under charge con-
jugation (C), space (P), time (T ) reversal and any com-
bination of these discrete symmetries. The fact that it
is symmetric under C-Symmetry implies that the Uni-
verse must constitute matter and antimatter in equal
proportion, the resultant meaning of which is that the
Universe must be a radiation bath since matter and an-
timatter annihilate to form photons. The fact that this
prediction of the successful Dirac equation is at odds with
physical and natural reality has worried scientists ever-
since this dearth came to notice. This reading works-out
the symmetries of the proposed curved spacetime Dirac
equation [3] and uses them to make a suggestion on this
riddle of why the Dirac equation’s prediction on matter-
antimatter proportions are at odds with physical and nat-
ural reality.
The Dirac equation was discovered as part of an ef-

fort (by Professor Dirac) to overcome the criticism lev-

elled against the Klein-Gordon equation [4]. The Klein-
Gordon equation [4] gave negative probabilities and this
is considered to be physically meaningless. Despite this
fact, this equation [the Klein-Gordon equation] accounts
very well for spin-zero Bosons. Though this criticism
levelled against the Klein-Gordon equation can be over-
come without the need for the Dirac equation [5], this
criticism motivated Professor Dirac to successfully seek
an equation devoid of negative probabilities, whereupon
he discovered the Dirac equation. By giving the correct
gyromagnetic ratio of the Electron which at the time was
a mystery, the Dirac equation gave an accurate descrip-
tion of the Electron and is thus largely believed to be an
equation for the Electron.

The Dirac equation applies to a flat Minkowski space-
time. Thus, it was born without the corresponding
curved spacetime version. Realising this gap to be filled,
several researchers proposed their own versions of the
curved spacetime versions of the Dirac equation [cf. 6–
14]. In our modest view; save for the introduction of
a seemingly mysterious four vector potential Aµ, what
makes the curved spacetime version of the Dirac equa-
tions presented in the reading [3] stands-out over other
attempts in that the method used in arriving at these
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curved spacetime Dirac equations [3] is exactly the same
as that used by Professor [1, 2]. As will be demonstrated
shortly, this method used in [3] appears to us as the most
straight forward and logical manner in which to arrive a
curved spacetime version of the Dirac equation. All that
has been done in [3] is to decompose the general metric
gµν in a manner that allows us to apply Professor Dirac
[1, 2]’s prescription at arriving at our proposed curved
spacetime Dirac equation.
Professor Dirac [1, 2]’s original equation is ar-

rived at from the Einstein momentum-energy equation
ηµνp

µpν = m0
2c4 where ηµν is the usual Minkowski

metric, (pµ,m0c) are the four momentum and rest mass
of the particle in question respectively and c is the usual
speed of light in a vacuum. In curved spacetime, we know
very well that the equation ηµνp

µpν = m0
2c4 is given by

gµνp
µpν = m0

2c4 where gµν is the general metric of a
curved spacetime manifold. If a curved spacetime version
of the Dirac equation is to be derived, it must be derived
from the fundamental equation gµνp

µpν = m0
2c4 in the

same way the flat spacetime Dirac equation is derived
from the fundamental equation ηµνp

µpν = m0
2c4. Pro-

fessor Dirac derived his equation by taking the ‘square-
root ’ of the equation ηµνp

µpν = m0
2c4. It is a funda-

mental mathematical fact that a two rank tensor (such
as the metric tensor gµν) can be written as a sum of the
product of a vector Aµ, i.e.:

g
(a)
µν = 1

2

{

Aµγ
(a)
µ , Aνγ

(a)
ν

}

= 1
2

{

γ
(a)
µ , γ

(a)
ν

}

AµAν

= σ
(a)
µν AµAν ,

(1)

where σ
(a)
µν are 4 × 4 matrices such that

σ
(a)
µν = 1

2

{

γ
(a)
µ , γ

(a)
ν

}

and γ(a)-matrices [21] are

defines such that:

γ
(a)
0 =





I2 0

0 −I2



 ,

γ
(a)
k = 1

2





2λI2 iλ
√
1 + λ2σk

−iλ
√
1 + λ2σk −2λI2



 ,

(2)

where I2 is the 2×2 identity matrix, σk is the usual 2×2
Pauli matrices and the 0’s are 2 × 2 null matrices and
a = (1, 2, 3) such that for:

a =







1, then (λ = 0) : Flat Spacetime.
2, then (λ = +1) : PositivelyCurved Spacetime.
3, then (λ = −1) : NegativelyCurved Spacetime.

(3)

The index “a” is not an active index as are the Greek
indices – its an index which labels a particular repre-
sentation of the metric – it labels a particular curvature
of spacetime i.e. whether spacetime is flat [22], positive
or negatively curved. Written in full, the three metric

tensors g
(1)
µν , g

(2)
µν and g

(3)
µν are given by:

[

g(a)µν

]

=









A0A0 λA0A1 λA0A2 λA0A3

λA1A0 −A1A1 λA1A2 λA1A3

λA2A0 λA2A1 −λA2A2 λA2A3

λA3A0 λA3A1 λA3A2 −A3A3









, (4)

Especially for a scientist and/or mathematician, there is
little if anything they can do but accept facts as they
stand and present them-self thus the writing of gµν as

gµν = 1
2

{

Aµγ
(a)
µ , Aνγ

(a)
ν

}

is to be accepted as a le-

gitimate mathematical fact for as long as gµν is a ten-
sor. Since Aµ is a vector and the γ(a)-matrices are
all constant matrices, gµν is a tensor. Therefore, it
follows that the equation gµνp

µpν = m0
2c4 can now

be written as 1
2

{

Aµγ
(a)
µ , Aνγ

(a)
ν

}

pµpν = m0
2c4. As

clearly demonstrated in [3], if we are to have the equa-
tion gµνp

µpν = m0
2c4 written in the decomposed form

1
2

{

Aµγ
(a)
µ , Aνγ

(a)
ν

}

pµpν = m0
2c4, and one where to fol-

low Professor [1, 2]’s original derivation method, they
will arrive at the three curved spacetime Dirac equations,
namely:

[

i~Aµγµ(a)∂µ −m0c
]

ψ = 0. (5)

It is not a difficult exercise to show that multiplica-
tion of (5) from the left hand-side by the conjugate

operator
[

i~Aµγµ†(a)∂µ −m0c
]†

leads us to the Klein-

Gordon equation gµν∂
µ∂νψ = (m0c

2/~)2ψ provided
∂µA

µ = ∂µAµ = κ where κ is a constant. The
condition ∂µA

µ = ∂µAµ = κ, should be taken as a
gauge condition restricting this four vector. For the case
(a = 1), if Aµ = 1, we have the original Dirac equation.

As it stands, equation (5) would be a horrible equation
insofar as its solutions are concerned because the vector
Aµ is expected to be a function of space and time i.e.
Aµ = Aµ(r, t). Other than a numerical solution, there is
no foreseeable way to obtain an exact solution is if that
is the case. However, we found a way round the problem;
we fortunately realised that this vector can actually be
used to arrive at a general spin Dirac equation thereby
drastically simplifying the equation so that it now is given
by:

[

i~γ(a)µ ∂µ(s) −m0c
]

ψ = 0, (6)
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where now ∂0(s) = ∂0 and ∂k(s) = s∂k: where k =

(1, 2, 3) and s = 0,±1,±2,±3, . . . etc [15, 16]. In equa-
tion (6), the vector Aµ has completely disappeared from
our midst thus drastically simplifying the resultant equa-
tion in the process. For the purposes of the present read-
ing, we will consider (5) and not (6). The vector Aµ

appearing in (5) will be taken as presenting this electro-
magnetic of the particle. This idea finds support from
out on-going work on an all-encompassing Unified Field
Theory of all the Forces of Nature [See Ref. 17].

SYMMETRIES

Now, on the main business of the day: we shall workout
the symmetries of the curved spacetime Dirac equations
for the case (a = 2, 3). We shall assume as is the case
with the Dirac equation that the electromagnetic four
potential Aµ is a real function and that the components
of this vector are zero-rank objects.

C-Symmetry Violation

To demonstrate the symmetric of the CSTD-Equations
under charge conjugation, we proceed as usual, that is,
we bring the Dirac particle under the influence of an am-
bient electromagnetic magnetic field Aex

µ (which is a real
function). Having done this, the normal procedure of in-
corporating this ambient electromagnetic magnetic field
into the Dirac equation is by making the transformation
∂µ 7−→ Dµ = ∂µ + iAex

µ , hence equation (5) will now be
given by:

[

i~Aµγµ(a)
(

∂µ + iAex
µ

)

−m0c
]

ψ = 0. (7)

Equation (7) represents the curved spacetime Dirac par-
ticle ψ which is immersed in an ambient electromagnetic
magnetic field. If we are to reverse the particle’s electro-
magnetic field and that of the ambient electromagnetic
magnetic field i.e. (Aµ, Aex

µ ) 7−→ (−Aµ,−Aex
µ ), then, (7)

becomes:

[

−i~Aµγµ(a)
(

∂µ − iAex
µ

)

−m0c
]

ψ = 0. (8)

If the CSTD-Equation is symmetric under charge conju-
gation, then, there must exist some mathematical trans-
formation, which if applied to (8) would lead us back to
an equation that is equivalent to (7).

Starting from (8), in-order to revert back to (7), the
first mathematical operation to be applied to (8) the com-
plex conjugate operation on the entire equation. So do-
ing, we will have:

[

i~Aµγµ∗(a)

(

∂µ + iAex
µ

)

−m0c
]

ψ∗ = 0. (9)

If (7) is invariant under charge conjugation, then, there
must exist a matrix Ω1, such that:

Ω1γ
µ∗

(a) = γµ(a)Ω1. (10)

If such a matrix Ω1 where to exist, then, multiplying (9)
from the left by Ω1, will lead us to the equation:

[

i~Aµγµ(a)
(

∂µ + iAex
µ

)

−m0c
]

ψ′ = 0, (11)

where ψ′(pµ, xµ,m0, q) = Ω1ψ
∗(pµ, xµ,m0,−q). How-

ever, there does not exist such a matrix Ω1 that fullfils
the conditions (10). Therefore, the CSTD-Equations for
which (a = 2, 3) are not symmetric under charge conju-
gation.

P-Symmetry Violation

A parity transformation requires that we reverse the
space coordinates i.e. (xk 7−→ −xk) =⇒ (∂k 7−→ −∂k).
So doing, we will have (5) now being given by:

i~A0γ0(a)∂0ψ − i~Akγk(a)∂kψ = m0cψ. (12)

If (5) is invariant under a parity transformation, then,
there must exist a matrix Ω2, such that:

Ω2γ
0
(a) = ∓γ0(a)Ω2

Ω2γ
k
(a) = ±γk(a)Ω2

. (13)

There does not exist such a matrix Ω2 that fullfils the
conditions (13). Therefore, the CSTD-Equations for the
case (a = 2, 3) are not symmetric under space reversal.

T -Symmetry Violation

A time reversal transformation requires that we reverse
the time coordinate i.e. (t 7−→ − t) =⇒ (∂0 7−→ −∂0).
So doing, we will have (5) now being given by:

−i~A0γ0(a)∂0ψ + i~Akγk(a)∂kψ −m0cψ
′ = 0, (14)

If (5) is invariant under a time reversal transformation,
then, there must exist a matrix Ω3, such that:

Ω3γ
0
(a) = ±γ0(a)Ω3

Ω3γ
k
(a) = ∓γk(a)Ω3

. (15)

There does not exist such a matrix Ω3 that fullfils the
conditions (15). Therefore, the CSTD-Equations for the
case (a = 2, 3) are not symmetric under time reversal.
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CP-Symmetry Violation

A simultaneous charge conjugation and parity transfor-
mation requires that we reverse the particle’s electromag-
netic field and that of the ambient electromagnetic mag-
netic field i.e. (Aµ, Aex

µ ) 7−→ (−Aµ,−Aex
µ ) and aswell the

space coordinates i.e. (xk 7−→ −xk) =⇒ (∂k 7−→ −∂k).
So doing, (7) becomes:

i~A0γ0(a) (∂0 − iA0)ψ − i~Akγk(a) (∂k − iAk)ψ = m0cψ.
(16)

If (7) is invariant under a simultaneous charge conjuga-
tion and parity transformation, then, there must exist a
matrix Ω4, such that:

Ω4γ
0∗
(a) = ∓γ0(a)Ω4

Ω4γ
k∗
(a) = ±γk(a)Ω4

. (17)

There does not exist such a matrix Ω4 that fullfils
the conditions (17). Therefore, the CSTD-Equations
(a = 2, 3) is not symmetric under a simultaneous re-
versal of charge and space.

CT -Symmetry Violation

A simultaneous charge conjugation and time transforma-
tion requires that we reverse the particle’s electromag-
netic field and that of the ambient electromagnetic mag-
netic field i.e. (Aµ, Aex

µ ) 7−→ (−Aµ,−Aex
µ ) and aswell the

time coordinates i.e. (t 7−→ − t) =⇒ (∂0 7−→ −∂0). So
doing, (7) becomes:

−i~A0γ0(a) (∂0 − iA0)ψ+i~A
kγk(a) (∂k − iAk)ψ = m0cψ

′,
(18)

If (7) is invariant under a simultaneous charge conjuga-
tion and time transformation, then, there must exist a
matrix Ω6, such that:

Ω6γ
0∗
(a) = ±γ0(a)Ω6

Ω6γ
k∗
(a) = ∓γk(a)Ω6

. (19)

There does not exist such a matrix Ω6 that fullfils the
conditions (19). Therefore, the CSTD-Equations for the
case (a = 2, 3) are not symmetric under a simultaneous
reversal of charge and time.

PT -Symmetry Observance

If we are to reverse the spacetime coordinates, that is
(xµ 7−→ − xµ) =⇒ (∂µ 7−→ − ∂µ), and there-
after multiply the resulting equation by γ5 from the left

and then make use of the fact that γ5γµ(a) = −γµ(a)γ5,
it is seen that the resulting equation is equivalent to
the original. The wavefunction of the orginal particle
ψ is related to the wavefunction of the equivalent par-
ticle ψ′ by the relation ψ′ = γ5ψ. Thus, the CSTD-
Equations for the case (a = 2, 3) are symmetric un-
der PT -Transformations. The original wavefunction ψ
is related to the resulting particle ψ′ by the relation
ψ′(pµ, xµ,m0, q) = γ5ψ(−pµ,−xµ,m0, q).

CPT -Symmetry Observance

If we are to reverse the particle’s electromagnetic field
and that of the ambient electromagnetic magnetic field
i.e. (Aµ, Aex

µ ) 7−→ (−Aµ,−Aex
µ ) together with the space-

time coordinates (xµ 7−→ −xµ) =⇒ (∂µ 7−→ −∂µ), then,
inserting these transformations into (7), it is seen that
the resulting equation is exactly the same as the origi-
nal. Thus, the CSTD-Equations for the case (a = 2, 3)
are not only symmetric under CPT -Transformations,
but completely, wholly and totally invariant as no ex-
tra mathematical operations are required in-order to re-
vert to the original equation. The original wavefunction
ψ is related to the resulting particle ψ′ by the relation
ψ′(pµ, xµ,m0, q) = ψ(−pµ,−xµ,m0,−q).

Summary

In the table below, we give a summary of the symmetries
of all the three CSTD-Equations.

TABLE I: Symmetries of the CSTD-Equations

Case

(a = 1) (a = 2) (a = 3)
Symmetry (λ = 0) (λ = +1) (λ = −1)

C Y es No No
P Y es No No
T Y es No No
CP Y es No No
CT Y es No No

PT Y es Y es Y es
CPT Y es Y es Y es
Lorentz Y es Y es Y es

The flat CSTD-Equation (in which the Dirac equation
emerges on the condition Aµ = 1) is in complete obser-
vance of all the symmetries while the positive (a = 2) and
negatively (a = 3) curved spacetime components of this
set of equations only observe CPT and PT -Symmetries
and violate C, P , T , CP and CT -Symmetries.
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DISCUSSION AND CONCLUSION

The symmetries of the Lorentz invariant CSTD-
Equations have here been worked out and we have shown
that the positive (a = 2) and negatively (a = 3) curved
spacetime components of this set of equations, while they
are in complete and total observance of CPT and PT -
Symmetries, these same equations readily violate C, P ,
T , CP and CT -Symmetries. Of particular interest to us
here is the C-Violation. In the present discussion, we
would like to point out that these three equations com-
bined, may help in unlocking and solving the long stand-
ing riddle and mystery of the preponderance of matter
over antimatter.

Insofar as the preponderance of matter over antimatter
is concerned, one of the problems with the original Dirac
equation is that it was born solo, as an equation explain-
ing a Minkowski flat spacetime particle with no curved
spacetime version of it. Realising the clear evident gap,
over the years, researches proposed curved spacetime ver-
sions of the Dirac equation [cf. Refs.: 6–14]. The prob-
lem with most of these proposed curved spacetime Dirac
equations [6–14], is that they preserve the symmetries
of the original Dirac equation. This means that insofar
as the preponderance of matter over antimatter is con-
cerned, these equations [6–14] do no better job than the
original Dirac equation.

If the predictions of the original Dirac equations to-
gether with its descendants [6–14] are to hold, then, it
would mean that the Laws of Nature explaining the ex-
istence and production of matter point to the fact that
there must exist at the instant of creation of matter,
equal positions of matter and antimatter. This obviously
throws us into a conundrum because as far as experimen-
tal and observational evidence is concerned, we live in a
matter dominated Universe. Our manned and unmanned
exploration of the Solar system and the most distant por-
tions of the heavens (using radio astronomy and cosmic
ray detection), tell us that the Universe is made up of
the same stuff as the Earth. The currently accepted and
most favoured explanation as to how our Universe comes
to be dominated by matter is that handed down to us
by Professor Andrei Dimitriev Sakharov (1921−1989) in
1967.

In 1967, Professor Andrei Dimitriev Sakharov de-
scribed three minimum properties of Nature which are
required for any baryogenesis to occur, regardless of
the exact mechanism leading to the excess of baryonic
matter. In his seminal paper, Professor Sakharov
[18] did not list the conditions explicitly. Instead, he
described the evolution of a Universe which goes from
a Baryon-excess (B-excess) while contracting in a Big
Crunch to an anti-B-excess after the resultant Big Bang.
In summary, his three key assumptions are now known
as they Sakharov Conditions, and these are:

(1). At least one B-number violating process.
(2). C and CP-violating processes.
(3). Interactions outside of thermal equilibrium.

These conditions must be met by any explanation in
which (B = 0) during the Big Bang but is very high
in the present day. They are necessary but not sufficient
– thus scientists seeking an explanation of the currently
obtaining matter asymmetry on this basis (Sakhorov con-
ditions) must describe the specific mechanism through
which baryogenesis happens. Much theoretical work in
cosmology and high-energy physics revolves around find-
ing physical processes and mechanism which fit the three
Sakhorov pre-conditions and correctly predicting the ob-
served baryon density.
Therefore, the current thrust in research especially at

CERN [23] is to search for physical processes in Nature
that violate CP-Symmetry. In 2011 during high-energy
Proton collisions in the LHCb experiment [19], scientists
working at CERN created B0

s mesons – i.e. hadronic
subatomic particles comprised of one quark and one an-
tiquark – inside the LHCb experiment [19] and this ex-
periment seems to have yeilded some very interesting re-
sults insofar as the Sakhorov conditions are concerned.
By observing the rapid decay of the B0

s , physicists of the
LHCb-Collaboration [19] were able to identify the neutral
particle’s decay products - i.e. the particles that it de-
cayed into. After a significantly large number of Proton
collisions and B0

s decay events, the LHCb-Collaboration
[19] concluded that more matter particles where gener-
ated than antimatter during neutral B0

s decays.
The first violations of CP-Symmetry was first doc-

umented in Brookhaven Laboratory in the US in the
1960s in the decay of neutral Kaon particles. Since then,
Japanese and US labs forty years later found similar be-
haviour in B0-mesons systems where they detected sim-
ilar CP-Symmetry Violations. LHCb-Collaboration [19]
results indicating that antimatter decays at a faster rate
than antimatter only come in as further supporting evi-
dence and from a Sakhorov [18] standpoint, these obser-
vations certainly provide key insights into the problem of
the preponderance of matter over antimatter.
This is not the case with the CSTD-Equations which

clearly predict C-Violation as a permissible Law of Na-
ture. That is to say, in as much as the Dirac equation
is taken as a Law of Nature, here we have (if we ac-
cept these equations) these CSTD-Equations standing as
candidate Laws of Nature in which case they predict C-
Violation. If we accept them as legitimate equations of
physics as is the case with the Dirac equation, then, we
can use them to explain the apparent preponderance of
matter without the need for the Sakhorov conditions.
The Sakhorov conditions assume that the Laws of Na-

ture are symmetric with respect to matter and antimat-
ter. According to these pre-conditions, the preponder-
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ance of matter will arise in a Universe whose laws are
perfectly symmetric with respect to matter and antimat-
ter if there exists physical mechanisms and processes sat-
isfying these conditions. If however the Laws of Nature
are asymmetric with respect to matter and antimatter,
there is no need for the Sakhorov conditions to explain
the preponderance of matter over antimatter.
If all the three CSTD-Equations are to operate simul-

taneously in the same Universe (there is nothing stopping
this occurrence), then, the flat spacetime version of the
CSTD-Equations, i.e., the case (a = 1) should lead to
the production of equal portions of matter and antimat-
ter. This matter-antimatter concoction should annihi-
late to form radiation i.e., to form a photon bath. The
positive and negatively curved spacetime version of the
CSTD-Equations, i.e., the case (a = 2, 3) will lead to
the exclusive production of matter with no production
of antimatter as the Laws of Nature leading to the pro-
duction of this matter are asymmetric with respect to
matter and antimatter. Clearly, there here is no need for
the Sakhorov conditions in-order for there to be a pre-
ponderance of matter over antimatter. We do not say
nor make the claim that this is “The Solution” to the
long-standing problem of the preponderance of matter
over antimatter, but that, it is (perhaps) a viable solu-
tion worthy of consideration.

Conclusion

The present work is to be taken as work in progress
toward a Unified Field Theory [See Ref. 17] that would
encompass all the Forces of Nature, thus the conclusions
we here make are only tentative. Be that it may, our
strong feeling is that when the entire work is finally
brought to its logical and final conclusion, the present
conclusion regarding the CSTD-Equations will still hold,
thus, assuming the correctness or acceptability of the
ideas presented herein, we hereby make the following
conclusion (tentative):

(1). The positive (a = 2) and negatively (a = 3) curved
spacetime components of Lorentz invariant CSTD-

Equations [3] uphold CPT and PT -Symmetries, and
these same equations readily violate C, P , T , CP and
CT -Symmetries.

(2). If the Lorentz invariant CSTD-Equations are to
explain the prepondarance of matter over antimatter,
then, photons are to be thought of as obeying the flat
CSTD-Equations i.e., the CSTD-Equations for which
(a = 1), while ordinary matter is to be explained by the
positive (a = 2) and negatively (a = 3) curved spacetime
versions of this set of equations.
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