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ABSTRACT
Markov Chain Monte Carlo (MCMC) methods are well-known Monte Carlo methodologies, widely used in different
fields for statistical inference and stochastic optimization. The Multiple Try Metropolis (MTM) algorithm is an
extension of the standard Metropolis-Hastings (MH) algorithm in which the next state of the chain is chosen among
a set of candidates, according to certain weights. The Particle MH (PMH) algorithm is other advanced MCMC
technique specifically designed for scenarios where the multidimensional target density can be easily factorized as
multiplication of (lower - dimensional) conditional densities. Both are widely studied and applied in literature. In
this note, we investigate similarities and differences among the MTM schemes and the PMH method.
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1. INTRODUCTION

Monte Carlo statistical methods are powerful tools for numerical inference and stochastic optimization [15]. Markov
chain Monte Carlo (MCMC) methods are classical Monte Carlo techniques that generate samples from a target
probability density function (pdf) by drawing from a simpler proposed pdf, usually to approximate an otherwise-
incalculable (analytically) integral [7, 6]. MCMC algorithms produce a Markov chain with a stationary distribution
that coincides with the target pdf.

The Metropolis-Hastings (MH) algorithm [12, 4] is the most famous MCMC technique. It can be applied to
almost any target distribution but, in practice, the performance dependence crucially on the choice of the proposal
pdf. In some cases, the Markov chain generated by the MH algorithm can remain trapped almost indefinitely in a
local mode meaning that, in practice, convergence can be very slow.

The Multiple-Try Metropolis (MTM) method of [8], [7, Chapter 5] is an extension of the MH algorithm in which
the next state of the chain is selected among a set of independent and identically distributed (i.i.d.) samples. This
enables the MCMC sampler to make large step-size jumps without a lowering the acceptance rate; and thus MTM is
can explore a larger portion of the sample space in fewer iterations. A famous special case of MTM, well-known in
molecular simulation field, is the orientational bias Monte Carlo technique [3].

Several generalizations of the basic MTM scheme [8] can be found in literature: with correlated candidates
[10, 14], more general form of the weights and different frameworks [5, 11, 13, 18], with adaptive and interacting
proposal pdfs [2, 9]. Interesting and related considerations about the use of multiple auxiliary variables for building
acceptance probabilities within a MH approach can be found in [17].

Independently from the MTM schemes, Particle MCMC methods have been proposed [1] in literature. They are
specially designed to solve inference problem in state space model applications. Here, we focus on the so-called
Particle (Independent) Metropolis-Hastings (PMH) algorithm.
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Table 1. Batch Importance Sampling.

1. Draw N samples, x(1), ...,x(N), from a (normalized) proposal pdf q(x).

2. Compute the importance weights

w(x(i)) =
π(x(i))

q(x(i))
, i = 1, ..., N.

3. Normalize them

w̄(x(i)) =
w(x(i))PN
j=1 w(x(j))

, i = 1, ..., N.

4. Output: A weighted distribution

bπ(dx) =

NX
i=1

w̄(x(i))δ(dx− x(i)), (3)

is provided, where δ(dx−x(i)) denotes the Dirac mass at point x(i). Under mild assumptions, bπ is a consistent approximation
of π, so that we can write bI =

NX
i=1

w̄(x(i))f(x(i)) ≈ I, (4)

converges to I for N → +∞. Moreover, the normalizing constant Z can be also estimated as

bZ =
1

N

NX
i=1

w(x(i)) ≈ Z. (5)

The authors in [1] also provide a short description of the relationships with other existing techniques. They
mention and describe precisely the relationship with the so-called configurational bias Monte Carlo method [16],[7,
Chapter 5], technique that is also strictly connected to the MTM scheme. They also allude quickly to the MTM
method [8].

The relationship between MTM and PMH deserves a more careful look. This the aim of this work. We introduce
a slight variant of a MTM technique with an independent proposal density. The structure of this algorithm coincides
exactly with the PMH method although the mechanism of generation of the candidates is different, as discussed in
the sequel.

2. BASIC BACKGROUND

In this section, we recall quickly basic material. Let π̄(x) = 1
Zπ(x) be the target density and q(x) the proposal pdf,

with x ∈ X ⊆ RD. Without loss of generality, for sake of simplicity, we assume the proposal q(x) be normalized.
Consider we are interested in computing efficiently the integral

I =
∫
X
f(x)π̄(x)dx =

1
Z

∫
X
f(x)π(x)dx, (1)

where
Z =

∫
X
π(x)dx. (2)

A classical Monte Carlo strategy is to apply the IS method, directly on the space X ⊆ RD. See Table 1.

2.1. Sequential Importance Sampling (SIS) and Sequential Monte Carlo (SMC)

It is nontrivial to find a “good” proposal pdf for doing importance sampling in an high dimensional space x ∈ RD.
A efficient and one of the most useful strategy is to draw sequentially the proposed samples. Given a variable of



interest
x = [x1, ..., xD]> = x1:D,

the corresponding target pdf π̄(x) can be always written as (using the chain rule)

π̄(x) ∝ π(x) = π1(x1)π2(x2|x1) · · ·πD−1(xD−1|x1:D−2)πD(xD|x1:D−1).

Note that, in some applications, the target is already decomposed, however in general one needs to marginalize
several times the target π̄(x). We can also consider a proposal density decomposed in the same way

q(x) = q1(x1)q2(x2|x1) · · · qD−1(xD−1|x1:D−2)qD(xD|x1:D−1).

By definition, the importance weight is given by

w(x) =
π(x)
q(x)

=
π1(x1)π2(x2|x1) · · ·πD(xD|x1:D−1)
q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1)

.

The previous expression suggests a recursive procedure of computing the importance weights:
w(x1) = u1 =

π(x1)
q(x1)

,

w(x1:d) = w(x1:d−1)ud = w(x1:d−1)
π(xd|x1:d−1)
q(xd|x1:d−1)

, d = 2, . . . , D,
(9)

where

ud =
π(xd|x1:d−1)
q(xd|x1:d−1)

. (10)

Thus, we can also write w(x1:d) =
∏d
j=1 uj . Then, we can easily calculate the sequence of weights

w(x1), w(x1:2), . . . , w(x1:D), and recalling that x = x1:D, at the end of the recursion we have

w(x) =
D∏
d=1

ud.

Table 2 summarises the complete SIS algorithm.

Remark. Note that, in this case, there are two possible estimators for approximating Z. The estimator Ẑ in Eq. (5)
coincides exactly with those in Eq. (7). The alternative estimator Z̃ in Eq. (8) is derived in this way Denoting as

Zd =
∫
Xd
πd(xd|x1:d−1) · π2(x2|x1)π1(x1)dx1:d,

then, for the basic arguments in Eq. (5), we can write

Ẑd
Zd−1

=
1
N

N∑
i=1

u
(i)
d . (11)

Therefore, finally we obtain (considering Ẑ0 = 1)

Z̃ = ẐD =
D∏
d=1

Ẑd
Zd−1

=
Ẑ1

Z0
· · · ẐD−1

ZD−2

ẐD
ZD−1

=
D∏
d=1

[
1
N

N∑
i=1

u
(i)
d

]
, (12)



Table 2. Sequential Importance Sampling (SIS).

1. Set w(x
(i)
1 ) = u1 =

π1(x
(i)
1 )

q1(x
(i)
1 )

for i = 1, ..., N .

2. For d = 2, . . . , D :

(a) Propagate: draw x
(i)
d from q(xd|x(i)

1:d−1), i = 1, . . . , N .

(b) Weigh: compute recursively the importance weights

w(x
(i)
1:d) = w(x

(i)
1:d−1)

πd(xd|x(i)
1:d−1)

qd(xd|x(i)
1:d−1)

, u
(i)
d =

πd(xd|x(i)
1:d−1)

qd(xd|x(i)
1:d−1)

. (6)

3. Finally, we have the complete importance weights

w(x(i)) = w(x
(i)
1:D) =

π(x(i))

q(x(i))
=

DY
d=1

u
(i)
d , i = 1, ..., N.

4. Normalize them

w̄(x(i)) =
w(x(i))PN
j=1 w(x(j))

, i = 1, ..., N.

5. Output: A weighted distribution

bπ(dx) =

NX
i=1

w̄(x(i))δ(dx− x(i)),

the estimator bI =

NX
i=1

w̄(x(i))f(x(i)) ≈ I,

and two possible estimators of the normalizing constant

bZ =
1

N

NX
i=1

w(x(i)) =
1

N

NX
i=1

"
DY
d=1

u
(i)
d

#
≈ Z. (7)

and eZ =

DY
d=1

"
1

N

NX
i=1

u
(i)
d

#
≈ Z. (8)

that is exactly the estimator in Eq. (8).
Sequential Monte Carlo (SMC) techniques [7, 15] combine this sequential construction of the importance

weights in a IS estimation scheme, with resampling steps. A well-known examples are the so-called particle filters
often used in state space model applications. Hence, a generic SMC technique is a SIS method using resampling
schemes in step 2 of SIS. We show an example of in Table 3. In general, the resampling could be applied only
in certain steps following some criterion. If the resampling is done every iteration then the method is often called
bootstrap filter.

3. MULTIPLE TRY METROPOLIS (MTM) SCHEMES

The Multiple Try Metropolis (MTM) algorithm [8] is an MCMC technique, where N candidates are generated each
iterations. According to certain weights, one candidate is chosen and accepted as new state with a certain probability
α. The MTM steps with a generic proposal q(x|xk−1), depending on the previous state, are summarized in Table
4. For N = 1, the MTM algorithm becomes the standard Metropolis-Hastings (MH) method. We have conisidered
importance weights for favouring the comparison with the other techniques in this work. However, different kind of



Table 3. Step 2 of SIS for a Sequential Monte Carlo (SMC) method.

2. For d = 2, . . . , D :

(a) Propagate: draw x
(i)
d from q(xd|x(i)

1:d−1), i = 1, . . . , N .

(b) Weigh: compute recursively the importance weights

w(x
(i)
1:d) = w(x

(i)
1:d−1)

πd(xd|x(i)
1:d−1)

qd(xd|x(i)
1:d−1)

, u
(i)
d =

πd(xd|x(i)
1:d−1)

qd(xd|x(i)
1:d−1)

. (13)

(c) Resample: draw N samples from

bπd(dx1:d) =
1PN

i=1 w(x
(i)
1:d)

NX
i=1

w(x
(i)
1:d)δ(dx1:d − x(i)

1:d),

Note that this is equivalent to sample N times a multinomial pmf with probabilities w(x
(i)
1:d)PN

i=1 w(x
(i)
1:d)

.

Table 4. General MTM algorithm.

1. Set k = 1, choose a initial state x0 and a value K.

2. Draw N samples from x(i) ∼ q(x|xk−1), i = 1, . . . , N .

3. Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w(x(i)) =
π(x(i))

q(x(i)|xk−1)
, i = 1, . . . , N.

4. Draw N − 1 “reference” samples z(j) ∼ q(x|x∗), j = 1, . . . , N − 1, and set z(N) = xk−1.

5. Compute the importance weights also for the reference points,

w(z(i)) =
π(z(i))

q(z(i)|x∗)
, i = 1, . . . , N.

6. Set xk = x∗ with probability

α = 1 ∧
PN
i=1 w(x(i))PN
i=1 w(z(i))

,

otherwise, with probability 1− α, set xk = xk−1.

7. If k < K, then set k = k + 1 and repeat from step 2.

weights could be applied [8, 11].We have denoted a∧ b = min[a, b]. The MTM method generates a reversible chain
that converges to π̄(x) [8, 11]. See Appendix A for the proof.

If the proposal pdf is independent from the previous state of the chain, i.e., q(x), the algorithm can be simplified.
indeed, the steps 4 and 5 can be removed in the MTM scheme. Namely, one does not need to generate the reference
samples at step 4. Indeed, in this case, we could directly set z(j) = x(j), j = 1, . . . , N −1. The simplified algorithm
(I-MTM) is given in Table 4.

3.1. Alternative version of the I-MTM method (I-MTM2)

In this work, we notice that the I-MTM method can be designed in an alternative way. With a proposal pdf
independent from the previous state, we have seen that we can set z(j) = x(j), j = 1, . . . , N − 1, because each



Table 5. MTM with independent proposal (I-MTM).

1. Set k = 1, choose a initial state x0 and a value K.

2. Draw N samples from x(i) ∼ q(x), i = 1, . . . , N .

3. Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w(x(i)) =
π(x(i))

q(x(i))
, i = 1, . . . , N.

4. Set xk = x∗ with probability

α = 1 ∧
PN
i=1 w(x(i))PN

i=1 w(x(i))− w(x∗) + w(xk−1)
= 1 ∧

PN
i=1 w(x(i))PN
i=1 w(z(i))

,

where {z(1), . . . , z(N)} = {x(1), . . . ,x(N)} \ {x∗} ∪ {xk−1}. Otherwise, with probability 1− α, set xk = xk−1.

5. If k < K, then set k = k + 1 and repeat from step 2.

Table 6. Alternative I-MTM algorithm (I-MTM2).

1. Set k = 1, choose a initial vector x0, a value K and bZ0 = 1
N

.

2. Draw N samples from x(i) ∼ q(x), i = 1, . . . , N .

3. Choose one sample x∗ ∈ {x(1), . . . ,x(N)} with probability proportional to the importance weights

w(x(i)) =
π(x(i))

q(x(i))
, i = 1, . . . , N.

4. Set xk = x∗ and bZk = 1
N

PN
i=1 w(x(i)) with probability

α = 1 ∧
1
N

PN
i=1 w(x(i))bZk−1

= 1 ∧
PN
i=1 w(x(i))

N bZk−1

,

otherwise, with probability 1− α, set xk = xk−1 and bZk = bZk−1.

5. If k < K, then set k = k + 1 and repeat from step 2.

x(j) is itself drawn from q(x).
With the same arguments, we can also use the samples generated in the previous iteration of the algorithm

as reference points, since all the samples are generated independently from the same proposal pdf. Namely, the
alternative version of the I-MTM is summarized in Table 6.

4. PARTICLE METROPOLIS-HASTINGS (PMH) ALGORITHM

Consider again that the the target can be easily expressed in this form

π̄(x) ∝ π(x) = π1(x1)π2(x2|x1) · · ·πD(xD|x1:D−1).

The PMH method [1] is another MCMC technique proposed independently from the MTM algorithm, specifically
designed for this framework. The complete description is provided in Table 7.



Table 7. Particle Metropolis-Hastings (PMH) algorithm.

1. Set k = 1, choose a initial state x0, a value K and bZ0 = 1.

2. Using a proposal pdf
q(x) = q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1),

run a sequential Monte Carlo method (see Section ??) with N particles. Thus, finally we obtain a collection of N weighted
samples

{x(i)
1:D, w(x

(i)
1:D)}Ni=1 = {x(i), w(x(i))}Ni=1.

Namely, we have a weighted approximation of the target distribution

bπ(dx) =

NX
i=1

w̄(x(i))δ(dx− x(i)).

and, moreover we also obtain eZ =

DY
d=1

"
1

N

NX
i=1

u
(i)
d

#
≈ Z

as in Eq. (12).

3. Draw x∗ ∼ bπ, i.e., choose a particle x∗ = {x(1), . . . ,x(N)} with probability proportional to the weights w(i)
D , i = 1, ..., N .

4. Set xk = x∗ and bZk = bZ∗ with probability

α = 1 ∧
eZ∗eZk−1

,

otherwise set xk = xk−1 and eZk = eZk−1.

5. If k < K, set k = k + 1 repeat from step 2.

5. RELATIONSHIP BETWEEN MTM AND PMH

A simple look at the alternative version of the MTM technique with independent proposal (I-MTM2), introduced
in Section 3.1, and the PMH method, shows that are strictly related. Indeed, the structure of the two algorithms
coincides. The links and differences are listed below:

• The main difference lies that the candidates in PMH are generated sequentially, using a SMC procedure. If
the resampling steps in the SMC are not applied them I-MTM2 and PMH are exactly the same algorithm,
where the candidates are drawn in a batch setting or sequential way. Namely, I-MTM2 generates directly
x(i) = [x(i)

1 , . . . , x
(i)
D ] from q(x) whereas PMH draws sequentially each component x(i)

d from qd(xd|x
(i)
1:d−1).

• Therefore, the resampling steps is the real difference between the generation procedures of PMH and I-MTM2.
Owing to the use of the resampling, the candidates {x(1), . . . ,x(N)} proposed by PMH are not independent,
differently from the MTM schemes considered in this work. Without resampling, the generated samples
x(i) = x

(i)
1:D would be independent as in I-MTM2.

• I-MTM2 uses the estimator Ẑ in Eqs. (5)-(7) whereas PMH uses the estimator Z̃ in Eqs. (8)-(12). However,
they are both estimators of the same unknown parameter: the normalizing constant Z.

• The PMH approach is preferable in high dimension, when the target can be factorized, since the use of the
resampling steps provides a better proposal generation procedure.

Thus a novel possible version of PMH, equivalent to I-MTM, is given in Table 8.



Table 8. Alternative PMH.

1. Set k = 1, choose a initial state x0, a value K and bZ0 = 1.

2. Using a proposal pdf
q(x) = q1(x1)q2(x2|x1) · · · qD(xD|x1:D−1),

run a sequential Monte Carlo method (see Section ??) with N particles. Thus, finally we obtain a collection of N weighted
samples

{x(i)
1:D, w(x

(i)
1:D)}Ni=1 = {x(i), w(x(i))}Ni=1.

Namely, we have a weighted approximation of the target distribution

bπ(dx) =

NX
i=1

w̄(x(i))δ(dx− x(i)).

and, moreover we also obtain bZ =
1

N

NX
i=1

w̄(x(i)) ≈ Z.

as in Eq. (12).

3. Draw x∗ ∼ bπ, i.e., choose a particle x∗ = {x(1), . . . ,x(N)} with probability proportional to the weights w(i)
D , i = 1, ..., N .

4. Set xk = x∗ with probability

α = 1 ∧ N bZ
N bZ − w(x∗) + w(xk−1)

,

otherwise set xk = xk−1.

5. If k < K, set k = k + 1 repeat from step 2.
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A. BALANCE CONDITION FOR MTM

The detailed balance condition [7, 15] is a sufficient condition to guarantee that a Markov chain has as invariant
distribution exactly the pdf π̄(x) ∝ π(x). We have to prove that the kernel A(y|x) of the MTM method
corresponding algorithm (probability of accepting a generated sample y given the previous state value x) fulfills
the following equation

π(x)A(y|x) = π(y)A(x|y).

We will consider x 6= y, since the case x = y is trivial. The kernel (for x 6= y) can be expressed as

A(y = y(c)|x) =
N∑
i=1

h(y(c)|x, c = i),

where h(y(c)|x, c = i) is the probability of accepting the new state xk+1 = y(c) given the previous one xc = x, when
the chosen sample y = y(c) is the c-th candidate. However, since the y(i) are exchangeable (and also independent),
for symmetry we have h(y(i)|x, i) = h(y(j)|x, j) ∀i, j ∈ {1, ..., N}. Hence, we can also write

A(y(c)|x) = N · h(y(c)|x, c),

where c ∈ {1, ..., N} and we recall N is the total number of proposed candidates y(i). Then, we need to show that

π(x)h(y|x, c) = π(y)h(x|y, c),



for a generic c ∈ {1, ..., N}. Following each step of the algorithm above, we can write

π(x)h(y(c)|x, c) =

π(x)
∫
X
· · ·

∫
X

 N∏
j=1

q(y(j)|x)

 ω(y(c))∑N
i=1 ω(y(i))

N−1∏
j=1

q(z(j)|y(c))

 ·
min

[
1,

∑N
i=1 ω(y(i))∑N
i=1 ω(z(i))

]
dy1:c−1dyc+1:Ndz1:N−1,

where ω(y(i)) = π(y(i))

q(y(i))
, ω(z(i)) = π(z(i))

q(z(i))
and recall that z(N) = x. Note that each factor inside the integral

corresponds to a step of the method described in the previous section. The integral is over all auxiliary variables. We
can rearrange easily the previous expression as

π(x)h(y(c)|x, c) =

π(x)q(y(c)|x)ω(y(c))
∫
X
· · ·

∫
X

 N∏
j=1;j 6=c

q(y(j)|x)

 N−1∏
j=1

q(z(j)|y(c))

 ·
min

[
1∑N

i=1 ω(y(i))
,

1∑N
i=1 ω(z(i))

]
dy1:c−1dyc+1:Ndz1:N−1,

and recalling that ω(y(c)) = π(y(c))

q(y(c))
and replacing, we have

π(x)h(y(c)|x, c) =

π(x)π(y(c))
∫
X
· · ·

∫
X

 N∏
j=1;j 6=c

q(y(j)|x)

 N−1∏
j=1

q(z(j)|y(c))

 ·
min

[
1∑N

i=1 ω(y(i))
,

1∑N
i=1 ω(z(i))

]
dy1:c−1dyc+1:Ndz1:N−1.

(14)

Since z(N) = x, it is straightforward to observe that the expression in Eq.(14) is symmetric in x and y(c). Indeed, if
we exchange x with y(c), and all the z(i) with y(i), respectively, the expression does not vary. Thus we can write

π(x)h(y(c)|x, c) = π(y(c))h(x|y(c), c).

Since we have assumed a generic c, finally we have π(x)A(y(c)|x) = π(y(c))A(x|y(c)), that is the balance
condition.


