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Abstract. In this article, the Cauchy theory is applied and extended to
n dimensional functions in (Clifford) algebras.
I already touched on this in [3] for path integration of classical fields,
which might not be evident. So, I publish the details here as a celebration
of Cauchy’s outstanding lecture ”Sur les intégrales définies”, held on the
22nd of August 1814, so 200 years ago, which has been re/published in
1825, and is publicly accessible online in [2].

1. Introduction

At the end of the 19th century, Henri Poincaré discovered as was then to be
known as Poincaré’s Lemma; it states that on star-shaped open regions closed
differential forms are necessarily exact (see [1]). This triggered the beginning
of algebraic geometry, which became one of the most important branches of
mathematics, especially in France.
It is often overlooked that Poincaré’s intention at that time was not the
abstract development of a theory of cohomologies, but he wanted to unravel
the curious nature of electromagnetic fields. With the help of this lemma, he
could show that (in 3 dimensions) an electromagnetic field of zero divergence
is the curl of a vector potential A, which in turn is fundamental to derive
gauge invariance and the Lorentz representation of Maxwell’s equations.

In 1895 Volterra showed that Poincaré’s Lemma extends as the equiv-
alence of closed and exact differential forms, and Elie Cartan independently
rediscovered this a decade or two later. As can be seen from [1], for 1-forms
that means that an n-tuple of continuously differential function (f1, . . . , fn)
on an open, star-shaped region U ⊂ Rn is integrable (i.e. defines an exact
1-form) in that region, if and only if its derivative (the Jacobi matrix) is
symmetric.
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Obviously, that is not what Cauchy understood as what an integrable
function should look like: Cauchy examined a pair of differentable real-valued
functions (u, v) on R2, and then he came to a remarkable solution: He defined
u(x+iy) := u(x, y), v(x+iy) := v(x, y), and then he defined a complex-valued
function f on U ⊂ C as f : U 3 x + iy 7→ u(x + iy) + iv(x + iy) ∈ C. He
then proved that f is integrable in U if it is complex differentiable, that
complex differentiability is equivalent to analyticity, and more over, this is
equivalent to the Jacobi matrix of (u(x, y), v(x, y)) to be anti-symmetric in
its off-diagonal elements, namely to follow the Cauchy-Riemann equations
∂u/∂x = ∂v/∂y, and ∂u/∂y = −∂v/∂x!

This not only antedates Poincaré’s differential geometric results 80 years
later, even then, Cauchy’s work appears to be ahead of that time:
Let’s examine the reason for the seemingly controversial results of the condi-
tions of integrability:
The answer is that Poincaré is integrating within Euclidean geometry, whereas
Cauchy is integrating in the complex plane. There are two reasons in favour
of Cauchy’s technique: Firstly, one cannot divide by a vector of two or more
dimensions, but one can divide by complex numbers. It is this clever substi-
tution (x, y) 7→ x + iy that allowed Cauchy to rigorously define (complex)
differentiability. Secondly, by doing so, Cauchy instantaneously carried out
the path integration in a vector space C with its intrinsic hyperbolic metric,
and not in the Euclidean metric: Whereas Poincaré used (a1, a2) · (b1, b2) :=
a1b1 +a2b2 as inner product, for Cauchy it is (a1, ia2) ·(b1, ib2) := a1b1−a2b2.
That explains, why Cauchy’s results lead to the unsymmetric Jacobi matrix,
whereas Poincaré’s Jacobi matrix is to be symmetric. So, Cauchy was also
the first one to carry integration out in hyperbolic vector spaces, something
that Poincaré himself never thought of, even after he and H.A. Lorentz de-
rived the covariant Maxwell equations, which A. Einstein and H. Minkowski
then proved to be a consequence of space-time being hyperbolic, rather than
Euclidean!

2. Preliminaries: Clifford Algebras

I want to deal with 2 or more dimensions of complex numbers. Then, accord-
ing to Cauchy, I have to represent these vectors as numbers, in order to be
able to divide by these. Because only then, I’ll be able to go with his strong
notion of differentiability.

The technique to use have been readily exposed by Hermann Graßman
and William Kingdon Clifford:

Let X be an n-dimensional complex vector space with n ≥ 1, and let Q
be a non-degenerate quadratic form on X. This means that one can find a
linear basis a1, . . . , an ∈ X, w.r.t. which Q is defined through a symmetric,
invertable n × n-matrix A. Then there is an orthogonal transformation U
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on Cn, i.e.: U−1 = U t, where U tij := Ujt is the transpose of U , such that

UAU−1 is a diagonal matrix with real eigenvalues λ1, . . . λn ∈ Rn, and by
scaling the basis elements aj with a positive factor |λj |−1, we arrive at: every
non-degenerate quadratic form in n dimensions defines an orthonormal basis,
and it falls into one of n possible categories: (n, 0), (n−1, 1), . . . , (0, n), where
(p, n − p) signifies that the first p eigenvalues are +1, and the n − p others
are −1. This is termed the signature of the quadratic form.

Proposition 2.1. For each n ∈ N there is an m ∈ N and n m ×m-matrices
α1, . . . , αn, such that α2

1 = · · ·α2
n = 1m and is the m×m-unit matrix.

Proof. The statement is trivial for n = 1. So, let n > 1. Then suitable
matrices can be picked from the vector space of all endomorphisms on the
n× n-dimensional space of n× n-matrices. �

Remark 2.2. Actually, it can be shown that m = 2n/2 is the minimal m, if
n is even, and then m = 2(n+1)/2 will do for uneven n, but that is irrelevant
for now.

Definition 2.3. For a non-degenerate quadratic form of signature, (p, n− p),
the above matrices α1, . . . , αp, iαp+1, . . . , iαn are called the generators of the
Clifford algebra Clp,n−p(C). The n matrices α1, . . . , αn. Clp,n−p(C) is defined
as the (non-commutative) algebra of all complex linear combinations of the αk
and all products of these. Let X(n) be the (complex) vector space spanned
by the αk. Clp,n−p(C) becomes a (finite dimensional) Banach space, when
equipped with its natural supremum norm

‖·‖ : x 7→ sup
‖χ‖≤1

x(χ),

and X(n) then becomes a closed subspace of Clp,n−p(C).

The important point now is that
∑
λkαk is an invertible matrix, if

and only if (λk)1≤k≤n is unequal zero. Therefore x is invertible for all x ∈
X(n) \ {0}, and right as well as left division are well-defined on Clp,n−p(C)
for every x ∈ X(n) \ {0}. This allows

Definition 2.4. A continuous mapping f : X(n) ⊃ U → Clp,n−p(C) of an
open subset U ⊂ X(n) is said to be differentiable in x0 ∈ U if and only if
limx→x0(f(x)−f(x0))(x−x0)−1 and limx→x0(x−x0)−1(f(x)−f(x0)) both ex-

ist and are equal. For short, I’ll write this limit as f ′(x0) = limx→x0

f(x)−f(x0)
x−x0

.

Remark 2.5. An analytic function, which vanishes along any one of its n
complex axis, must be zero throughout.

Remark 2.6. Also, given two differentiable, Clp,n−p(C)-valued functions f, g
on an open U ⊂ X(n), then the product function fg : z 7→ f(z)g(z) ∈
Clp,n−p(C) is differentiable either, and (fg)′(z) = d(f(z)g(z))/dz = f ′(z)g(z)+
f(z)g′(z).

To get rid of the factors i for the following, let me write γk := αk,
whenever the metrics is positive for that component, and γk := iαk, when it
is negative.
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3. Proceeding with Cauchy’s theorems

We are now in the position to harvest the fruit from Cauchy’s work:

Definition 3.1. Let U ⊂ X(n) be an open subset of X(n) and z0 ∈ U . A
function f : U 3 z 7→ Clp,n−p(C) is called analytic in z0, if and only if there
is a neighbourhood V (z0) ⊂ U of z0, such that f(z) =

∑
k≥0 ak(z − z0)k for

all z ∈ V (z0), where a0, a1, · · · ∈ C.

Clearly, then: f is analytic in z0 if and only if there is an analytic func-
tion g : C ⊃ Ω 3 χ 7→ g(χ) ∈ C on an ε-environment Ω of some χ0 ∈ C, such
that f(z) =

∑
k≥0 ak(z− z0)k, where the ak are the coefficients of the Taylor

series expansion g(χ) =
∑
k≥0 ak(χ− χ0)k.

It means that the k-th (right) derivatives of f in z0 exist as complex
number (times unit matrix), and that these are the k-th derivatives of an
analytic function g in χ0. I’ll say that f is generated by g.

For a strictly positive, real valued r > 0, let us define the r-ball Br(0) :=

{z = (z1, . . . , zn) ∈ Xn :
∑

1≤k≤n
∣∣zj∣∣2 ≤ r2}, and let Sn(r) be its boundary.

Because each zk = (xk + iyk)γk, where xk and yk are the real and imaginary
part of zk, B1(0) is a 2n-dimensional ball, and Sn its 2n − 1-dimensional
boundary.

Then the Bε(0), ε > 0, are base of zero neighbourhoods of X(n), which
means that for every open neighbourhood U of 0 there is some ε > 0 such
that Bε(0) ⊂ U .

Definition 3.2. Although with z =
∑
k zkγk with zk ∈ C the derivative f ′(z)

is well-defined, the partial derivatives ∂f(z)/∂zk are not : Generally, when
f is differentiable in z, right and left partial derivatives will be unequal! In
order to deal with partial derivatives, we need to confine to partial derivatives
to the right, which will be denoted by ∂r/∂xk, (1 ≤ k ≤ n).

A function If : Xn ⊃ U → Clp,n−p(C) will be called integral of f : U →
Cln,n−p(C), if (If)′(z) = f(z) for all z ∈ U . More generally, for k ∈ N, the

k-th integral of f is a function I(k)f : U → Clp,np
(C), auch that dkf(z)/dzk =

f(z) for all z ∈ U .

Remark 3.3. Once again, be warned: The notion of partial differentiation
∂r/∂xk is inadequate: It tacitly introduces an Euclidean metrics, which is
not given. The clean notion would be the directional derivative ∂/∂(γkxk),
which however is just d/dz!

Proposition 3.4. Let f : U → Clp,n−p(C) be differentiable. Then, writing
z = z1γ1 + · · ·+ znγn for z ∈ U ,

1. ∂rf(z)/∂zk = ∂rf(z)/∂zlγ
−1
l γk, (1 ≤ k 6= l ≤ n).



Analytic Functions 5

2. If f is twice differentiable, then
∂2
rf(z)/∂zk∂zl = −∂2

rf(z)/∂zl∂zk, (1 ≤ k 6= l ≤ n).

Proof. We have ∂f(z)/∂zk = f ′(z)∂z/∂zk = f ′(z)γk for all k, from which
the statement 1 follows. Taking a second partial derivative, delivers 2. �

Remark 3.5. Let f(z) =
∑

1≤k≤n γkfk(z) with fk(z) ∈ C for all k = 1, . . . , n

and z = γ1z1 + · · ·+γnzninX(n). The (ordinary) Cauchy-Riemann equations
here appear for each component k, if we write zk = xk + iyk and split fk =
gk + ihk into the sum of its real and imaginary part. We can then define
real-valued functions uk, vk on open subsets Ω1,Ω2 ⊂ Rn by uk(x1, . . . , xn)+
ivk(y1, . . . , yn) := fk(z) = gk(z) + ihk(z). The Cauchy-Riemann equations
then hold for uk and vk as functions of x and y, resp.. Consequently, the
functions uk and vk will be called harmonic functions.

Remark 3.6. An analytic function f : Xn ⊃ Br(z0)→ Clp,n−p(C) for z0 ∈ Xn

is evidently integrable in that region. Therefore its real and imaginary parts
also are. These, however are not differentiable in the above defined sense:
These functions contradict the Cauchy-Riemann conditions. For f analytic in
Br(z0) as above, let fk := ∂f(γ1z1, . . . γnzn)/∂zk, (1 ≤ k ≤ n) be the gradient
of f . Because of the preceeding proposition, ∂lfk = −∂kfl, (1 ≤ k 6= l ≤ n)
follows. Conversely, given ∂lfk = −∂kfl, (1 ≤ k 6= l ≤ n) for continously
differentiable fk : Br(z0) → Clp,n−p(C), integrating fk along γldzl followed
by integration along γkdzk commute, which means that (fk)1≤k≤n integrable
within Br(z0) to some function f : Br(z0) → Clr(C), which again is differ-
entiable, since it obeys the Cauchy-Riemann conditions.
The takeaway is: The integrability of functions is independent of the signature
of the Clifford algebra.

We want to extend the Cauchy integral theorem from 1 to n ∈ N dimen-
sions. So, we need to have a notion of surface integration over the unit ball.
One might think that should be trivial, given that Xn is isomorphic to Cn, so
one could rely on differential 2n− 1-forms. But that is not true, because the
Clp,n−q(C)-valued functions on open subsets of Xn do not locally map ε-balls
with n complex dimensions in Xn into regions, that by themselves would be
homeomorphic to δ-balls of n complex dimensions, again. So, the embedding
Ω : Xn → Clp,n−q(C) impedes the definition of surface integrals, and with it
a direct approach to extend Cauchy integration.

Definition 3.7. Let L(Cn) be the (non-commutative) algebra of linear map-
pings T : Cn → Cn. Because each z = γ1z1 + · · · γnzn ∈ Xn defines a linear
operator Ξz : Cn 3 (a1, . . . , an) 7→ (z1a1, . . . , znan) ∈ Cn, Ξ is a vector space
isomorphism Ξ : Xn → An ⊂ L(Cn) onto a (commutative) subalgebra An of
L(Cn). In short, An is the algebra Cn, where the multiplication is given by
(λ1, . . . , λn) · (η1, . . . , ηn) := (λ1η1, . . . λnηn). Giving An the canonical norm
of Cn, a function f : V → An on an open subset V ⊂ An will be called
analytic in in z0 ∈ V , if there is a sequence (ak)k∈N of complex numbers
ak ∈ C, such that

∑
k∈N ak(z− z0)k exists and converges to f(z) in an ε-ball
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around z0. Clearly then, f 7→ ΞfΞ−1 is an isomorphism I of the vector space
of analytic functions f : Xn ⊃ U → Clp,n−p(C) onto the space of analytic
functions g : Cn ⊃ V → An. Since k-dimensional manifolds in Xn map 1-1
into k-dimensional manifolds in An and since the integral

∫
M(f)dω ∈ C is

well-defined in An, whenever M is a smooth and bounded manifold of An
and f is sufficiently smooth in a neighbourhood ofM, we can use this to de-
fine the integral of f : Xn ⊃ U → Clp,n−p(Cn) over a (smooth and bounded)
manifold M⊂ Xn as:∫

M
fdω :=

∫
ΞM

(ΞfΞ−1)d(Ξω).

Remark 3.8. Note that An supplements Clp,n−p(C), but does not replace it:
within An we gain the notion of surface integrals, but we loose the notion of
differentiability: In An, 1/z is undefined not only for z = 0, but also whenever
one of its components vanishes. (In line with this, care must be taken not to
integrate 1/z along a manifold on which 1/z is not defined, unless the set of
these points is of measure zero.)

Lemma 3.9 (Cauchy Theorem). Let f : U → Clp,n−p(C) be analytic on an
open subset U ⊂ Xn, r > 0, Br(z0) ⊂ U be the closed r-ball around z0 ∈ U ,
and let Sr(z0) be its 2n− 1-dimensional boundary. Then the surface integral
of f over Sr(z0) vanishes, i.e.:

∫
Sr(z0)

fd2n−1a = 0.

Proof. Suppose, there exist r > 0 and z0 ∈ U , such that Br(z0) ⊂ U and∫
Sr(z0)

fd2n−1a 6= 0, where Br(z0) is the closed r-ball around z0. Then, Br(z0)

is compact, and we can find an ε > 0, and a finite covering of Br(z0) by ε-
balls, for which the sum of surface integrals of f over the ε-spheres is unequal
zero. So, there exists an ε-ball Bε(ζ1) around some ζ1 ∈ Br(z0), for which
the surface integral of f over its sphere is unequal zero. By induction we get
a sequence (ζk)k∈N converging to some ζ0 ∈ Br(z0). So, for each ε > 0 there
exists an r > 0 with r < ε, such that

∫
Sr(ζ0)

fd2n−1a 6= 0. The proof will be

complete, when it will be shown that f then cannot be analytic in ζ0.
If f is analytic in ζ0, there is an r-ball around ζ0 for some r > 0, such that
f(z) =

∑
k≥0 ak(ζ0 − z)k is the uniformly and absolutely converging limit of

its Taylor series on Br(ζ0), and the surface integral over Sr(ζ0) commutes
with the summation. As elements of An, we may change from (complex)
Euclidean to the spherical coordinates, so, f(z) = f(r, φ1, . . . , φ2n−1), where
r > 0 is the radius of the ball around ζ0, 0 ≤ φ1 ≤ 2π is the azymuthal angle
of rotation in the x1x2-plane, and the other 2n− 2 angles range from 0 to π.
Then∫

Sr(ζ0)

f(z)d2n−1a =

∫ 2π

φ1=0

∫ π

φ2=0

· · ·
∫ π

φ2n−1=0

f(r, φ1, . . . , φ2n−1)

(2n/r)det(J(z, r, φ1, . . . ))dφ1 · · · dφ2n−1, (3.1)

where det(J) is the determinant of the Jacobi matrix, given by det(J) =
r2nsin2n−1(φ1)sin2n−2(φ2) · · · sin(φ2n−1).
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The function g(r) :=
∫
Sr(ζ0)

fd2n−1a therefore is the uniform limit of its

Taylor series g(r) =
∑
k≥0 ckr

k on a closed interval [0, r0] for some r > 0. It

uniquely extends as an analytic function g(λ) :=
∑
k≥0 ckλ

k onto {λ ∈ C :

|λ| ≤ r0}. Now, because the derivatives of f of all orders are bounded on
Br(ζ0), g(0) = dg(0)/dr = d2g(0)/dr2 = · · · = 0. So, g vanishes on Br(ζ0),
which completes the proof. �

As an immediate consequence, for an analytic function f on an (2n-
dimensional) r-ball, the surface integral of f over a smooth and closed 2n−1-
dimensional manifold contained in the r-ball is zero.

Remark 3.10. With the above extension of Cauchy’s theorem to An, it is
tempting to try to evaluate

∫
Sn(r)

f(z)(1/z)2n−1d2n−1a; however, that be-

comes unwieldy, because the integrand 1/z brings an additional phase fac-
tor e−i(φ1+···+φn); 1/r instead of 1/z would be more convenient, but z 7→
f(z)/r2n−1 is not analytic outside the origin {0}. That indicates that the
Euclidean topology might not be the best choice. So, let’s switch to a simpler
topology/geometry:

Definition 3.11. For r0 > 0 let Tr0(0) := {z ∈ An : zk = reiφk , 0 ≤ φk <
2π, r ≤ r0, 1 ≤ k ≤ n} define a base of neighbourhoods of 0 in An, which
make An and, via Ξ−1 above, Xn into a barreled, locally convex space. It is
metrizable and complete, its metrics being given byAn 3 z 7→ sup1≤k≤n|zk| ∈
[0,∞), it is topological equivalent to Cn, but it is not an Euclidean space.

With this, the above Cauchy theorem simplifies to:

Proposition 3.12. For r > 0 let Γr(0) be the (n-dimensional) surface of Tr(0).
Then

∫
Γr(0)

f(z)dna = 0 for every function f , which is analytic in an open

neighbourhood of Tr(0).

Proof.
∫

Γr(0)
f(z)dna =

∫ 2π

0
· · ·
∫ 2π

0
f(ei(φ1+···+φn))rneiφ1+···+φndφ1 · · · dφn is

analytic in r ≥ 0, if f is analytic, and for r = 0 that function vanishes with
all its derivatives.
We even get that

∫
Γr(0)

f(z)z−jdna vanishes for j = 1, . . . , n− 1. �

Likewise, in this topology, the rest becomes straightforward:

Lemma 3.13. 1.
∫

Γr(0)
1/zndna = (2πi)n.

2.
∫

Γr(0)
1/zkdna = 0 for k > n.

Proof.
∫

Γr(0)
1/zndna = (2πi)n =

=
∫ 2π

0
· · ·
∫ 2π

0
r−ne−i(φ1+···+φn)(ir)nei(φ1+···+φn)dφ1 · · · dφn, from which the

first statement follows. Because of Cauchy theorem and the fact that the
integrand is analytic outside the origin, the surface Γr(0) can be deformed
diffeomorphically without affecting the integral, as long as the origin stays in
the interior of the encompassed region, i.e.:

∫
Γr(0)

(z − y)ndna = (2πi)n for y

such that y1 < r, . . . , yn < r. Now, for k > n: 1/zk = −(k−1)−1d(1/zk−1)/dz,
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so that by partial integration and the fact that the derivative of a constant
function is zero, the other statements follow. �

Then, the following holds:

Proposition 3.14 (Cauchy integral theorem). Let f : U → Clp,n−p(C) be
analytic in an open neighbourhood U ⊂ Xn of some z0 ∈ Xn. Then for f as
a function from U ⊂ An to An and Γr(z0) ⊂ U :∫

Γr(z0)
f(z)z−n = (2πi)nf(z0) and

dkf(z0)/dzk = (n+1)···(n+k)
(2πi)n

∫
Γr(z0)

1/zn+kdna for k = 1, 2, . . . .

Proof. Because of continuity of f in z0,

(2πi)nf(z0) = lim
r→0

∫
Γr(z0)

f(z)/(z − z0)ndna,

and because of the Cauchy theorem above, the integral is independent of
r > 0 (as long as r is sufficiently small).This proves the first statement. The
other statements follow analogously through integration by parts. �

Conversely, if f : Xn ⊃ U → Clp,n−p(C) is differentiable in some
z0 ∈ U , then (as a function from U ⊂ An to An), an r0 > 0 exists, such
that

∫
Γr(z0)

f(z)dna = f(z0) for 0 < r < r0, which means that (complex)

differentiability (as defined above) implies analyticity.

4. Conclusion

Let me come back to H. Poincaré’s motivation: He was wondering what the
Lorentz condition

∂0j0(x0, . . . , x3) + · · ·+ ∂3j3(x0, . . . , x3) = 0

meant to electrodynamics. The jµ represent charge density j0 and charge flux
(j1, j2, j3) on regions of R4, so are to be taken as real-valued (and smooth)
functions.
Therefore they can be extended to the complex by defining

jµ(z0, . . . , z3) := jµ(x+ iy) := jµ(x)− ijµ(y), (0 ≤ µ ≤ 3).

Poincaré knew that the Lorentz condition stated nothing but the charge
conservation law. But why is this not Lorentz invariant, when everything
else is? Therefore, that law has to be re-established by an operation called
”gauge” upon every Lorentz transformation of the inertial system.

Let us now accept that space-time is not Euclidean, but to be described
in Minkowski metrics, instead, so is of signature (1, 3). So, let’s rewrite:

fµ(z0γ0 + · · ·+ z3γ3)γµ := jµ(z0, . . . , z3), (0 ≤ µ ≤ 3).

Then the Lorentz condition becomes∑
0≤µ≤3

∂(fµ(z0γ0 + · · ·+ z3γ3)γµ)/∂(zµγµ) = 0.
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By the above, we know that (fµγµ)0≤µ≤3 is integrable to a function
F : Xn 3 z = z0γ0 + znγ3 7→ F (z) ∈ Cl1,3(C) if and only if ∂µjν = −∂νjµ
for 0 ≤ µ 6= ν ≤ 3. That means that dF (z)/dz =

∑
0≤µ≤3 fµ(z)γµ. So,

∂F (z)/∂(zµγµ) = fµ(z)γµ, hence the Lorentz condition enforces:

�F (z) := (∂2
0 − · · · − ∂2

3)F (z) = 0.

Note that integrability here means integrability in the Clifford algebra,
but not in the standard Euclidean space: it’s γµ∂µfνγν = γν∂νfµγµ, and it’s
not ∂µfν = ∂νfµ for 0 ≤ µ 6= ν ≤ 3!

In other words: the mapping

Ψ :
∑

0≤µ≤3

γµfµ(γ0z0 + · · ·+ γ3z3) 7→ (f0(z0, . . . , z3), . . . , f3(z0, . . . , z3))

maps spinor-functions that are integrable within the Clifford algebra into Eu-
clidean vector fields with a generally nontrivial rotation, which are therefore
not integrable within the Euclidean space - the electromagnetic fields just fall
into this class: see [3] for details.
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