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Abstract—We show how real and complex Fourier transforms
are extended to W.R. Hamiltons algebra of quaternions and to
W.K. Clifford’s geometric algebras. This was initially motivated by
applications in nuclear magnetic resonance and electric engineering.
Followed by an ever wider range of applications in color image and
signal processing. Cliffords geometric algebras are complete algebras,
algebraically encoding a vector space and all its subspace elements.
Applications include electromagnetism, and the processing of images,
color images, vector field and climate data. Further developments of
Clifford Fourier Transforms include operator exponential represen-
tations, and extensions to wider classes of integral transforms, like
Clifford algebra versions of linear canonical transforms and wavelets.
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I. INTRODUCTION

We begin by introducing Clifford Fourier transforms, in-
cluding the important class of quaternion Fourier transforms
mainly along the lines of [31] and [5], adding further detail,
emphasize and new developments.

There is the alternative operator exponential Clifford Fourier
transform (CFT) approach, mainly pursued by the Clifford
Analysis Group at the university of Ghent (Belgium) [5].
New work in this direction closely related to the roots of −1
approach explained below is in preparation [11].

We mainly provide an overview of research based on the
holistic investigation [28] of real geometric square roots of
−1 in Clifford algebras Cl(p, q) over real vector spaces Rp,q .
These algebras include real and complex numbers, quater-
nions, Pauli- and Dirac algebra, space time algebra, spinor
algebra, Lie algebras, conformal geometric algebra and many
more. The resulting CFTs are therefore perfectly tailored to
work on functions valued in these algebras. In general the
continuous manifolds of

√
−1 in Cl(p, q) consist of several

conjugacy classes and their connected components. Simple
examples are shown in Fig. 1.

A CFT analyzes scalar, vector and multivector signals in
terms of sine and cosine waves with multivector coefficients.
Basically, the imaginary unit i ∈ C in the transformation
kernel eiφ = cosφ+ i sinφ is replaced by a

√
−1 in Cl(p, q).

This produces a host of CFTs, an incomplete brief overview
is sketched in Fig. 2, see also the historical overview in [5].
Additionally the

√
−1 in Cl(p, q) allow to construct further

types of integral transformations, notably Clifford wavelets
[21], [37].
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II. CLIFFORD’S GEOMETRIC ALGEBRA

Definition 1 (Clifford’s geometric algebra [15], [36]). Let
{e1, e2, . . . , ep, ep+1, . . ., en}, with n = p + q, e2k = εk,
εk = +1 for k = 1, . . . , p, εk = −1 for k = p+ 1, . . . , n, be
an orthonormal base of the inner product vector space Rp,q
with a geometric product according to the multiplication rules

ekel + elek = 2εkδk,l, k, l = 1, . . . n, (1)

where δk,l is the Kronecker symbol with δk,l = 1 for k = l,
and δk,l = 0 for k 6= l. This non-commutative product and the
additional axiom of associativity generate the 2n-dimensional
Clifford geometric algebra Cl(p, q) = Cl(Rp,q) = Clp,q =
Gp,q = Rp,q over R. The set {eA : A ⊆ {1, . . . , n}}
with eA = eh1eh2 . . . ehk

, 1 ≤ h1 < . . . < hk ≤ n,
e∅ = 1, forms a graded (blade) basis of Cl(p, q). The grades
k range from 0 for scalars, 1 for vectors, 2 for bivectors, s
for s-vectors, up to n for pseudoscalars. The vector space
Rp,q is included in Cl(p, q) as the subset of 1-vectors. The
general elements of Cl(p, q) are real linear combinations
of basis blades eA, called Clifford numbers, multivectors or
hypercomplex numbers.

In general 〈A〉k denotes the grade k part of A ∈ Cl(p, q).
The parts of grade 0 and k+ s, respectively, of the geometric
product of a k-vector Ak ∈ Cl(p, q) with an s-vector Bs ∈
Cl(p, q)

Ak ∗Bs := 〈AkBs〉0, Ak ∧Bs := 〈AkBs〉k+s, (2)

are called scalar product and outer product, respectively.
For Euclidean vector spaces (n = p) we use Rn = Rn,0

and Cl(n) = Cl(n, 0). Every k-vector B that can be written
as the outer product B = b1 ∧ b2 ∧ . . . ∧ bk of k vectors
b1, b2, . . . , bk ∈ Rp,q is called a simple k-vector or blade.

Multivectors M ∈ Cl(p, q) have k-vector parts (0 ≤ k ≤
n): scalar part Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vector
part 〈M〉1 ∈ Rp,q , bi-vector part 〈M〉2, . . . , and pseudoscalar
part 〈M〉n ∈

∧n Rp,q
M =

∑
A

MAeA = 〈M〉+ 〈M〉1 + 〈M〉2 + . . .+ 〈M〉n . (3)

The principal reverse of M ∈ Cl(p, q) defined as

M̃ =

n∑
k=0

(−1)
k(k−1)

2 〈M〉k, (4)

often replaces complex conjugation and quaternion conjuga-
tion. Taking the reverse is equivalent to reversing the order
of products of basis vectors in the basis blades eA. The
operation M means to change in the basis decomposition
of M the sign of every vector of negative square eA =
εh1eh1εh2eh2 . . . εhk

ehk
, 1 ≤ h1 < . . . < hk ≤ n. Reversion,

M , and principal reversion are all involutions.
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For M,N ∈ Cl(p, q) we get M ∗ Ñ =
∑
AMANA. Two

multivectors M,N ∈ Cl(p, q) are orthogonal if and only if
M ∗ Ñ = 0. The modulus |M | of a multivector M ∈ Cl(p, q)
is defined as

|M |2 =M ∗ M̃ =
∑
A

M2
A. (5)

A. Multivector signal functions

A multivector valued function f : Rp,q → Cl(p, q), has 2n

blade components (fA : Rp,q → R)

f(x) =
∑
A

fA(x)eA. (6)

We define the inner product of two functions f, g : Rp,q →
Cl(p, q) by

(f, g) =

∫
Rp,q

f(x)g̃(x) dnx

=
∑
A,B

eAẽB
∫
Rp,q

fA(x)gB(x) dnx, (7)

with the symmetric scalar part

〈f, g〉 =
∫
Rp,q

f(x) ∗ g̃(x) dnx =
∑
A

∫
Rp,q

fA(x)gA(x) dnx,

(8)

and the L2(Rp,q;Cl(p, q))-norm

‖f‖2 = 〈(f, f)〉 =
∫
Rp,q

|f(x)|2dnx =
∑
A

∫
Rp,q

f2A(x) d
nx,

(9)

L2(Rp,q;Cl(p, q)) = {f : Rp,q → Cl(p, q) | ‖f‖ <∞}.
(10)

B. Square roots of −1 in Clifford algebras

Every Clifford algebra Cl(p, q), s8 = (p − q) mod 8, is
isomorphic to one of the following (square) matrix algebras1

M(2d,R), M(d,H), M(2d,R2), M(d,H2) or M(2d,C).
The first argument of M is the dimension, the second the
associated ring2 R for s8 = 0, 2, R2 for s8 = 1, C for
s8 = 3, 7, H for s8 = 4, 6, and H2 for s8 = 5. For even
n: d = 2(n−2)/2, for odd n: d = 2(n−3)/2.

It has been shown [27], [28] that Sc(f) = 0 for every
square root of −1 in every matrix algebra A isomorphic to
Cl(p, q). One can distinguish ordinary square roots of −1,
and exceptional ones. All square roots of −1 in Cl(p, q) can
be computed using the package CLIFFORD for Maple [1],
[3], [29], [38].

In all cases the ordinary square roots f of −1 constitute a
unique conjugacy class of dimension dim(A)/2, which has as
many connected components as the group G(A) of invertible
elements in A. Furthermore, we have Spec(f) = 0 (zero
pseudoscalar part) if the associated ring is R2, H2, or C. The
exceptional square roots of −1 only exist if A ∼=M(2d,C).

1Compare chapter 16 on matrix representations and periodicity of 8, as
well as Table 1 on p. 217 of [36].

2Associated ring means, that the matrix elements are from the respective
ring R, R2, C, H or H2.

For A = M(2d,R), the centralizer (set of all elements
in Cl(p, q) commuting with f ) and the conjugacy class of a
square root f of −1 both have R-dimension 2d2 with two
connected components. For the simplest case d = 1 we have
the algebra Cl(2, 0) isomorphic to M(2,R).

For A =M(2d,R2) =M(2d,R)×M(2d,R), the square
roots of (−1,−1) are pairs of two square roots of −1 in
M(2d,R). They constitute a unique conjugacy class with four
connected components, each of dimension 4d2. Regarding the
four connected components, the group of inner automorphisms
Inn(A) induces the permutations of the Klein group, whereas
the quotient group Aut(A)/Inn(A) is isomorphic to the group
of isometries of a Euclidean square in 2D. The simplest
example with d = 1 is Cl(2, 1) isomorphic to M(2,R2) =
M(2,R)×M(2,R).

For A =M(d,H), the submanifold of the square roots f
of −1 is a single connected conjugacy class of R-dimension
2d2 equal to the R-dimension of the centralizer of every f .
The easiest example is H itself for d = 1.

For A = M(d,H2) = M(d,H) × M(d,H), the square
roots of (−1,−1) are pairs of two square roots (f, f ′) of −1
inM(d,H) and constitute a unique connected conjugacy class
of R-dimension 4d2. The group Aut(A) has two connected
components: the neutral component Inn(A) connected to
the identity and the second component containing the swap
automorphism (f, f ′) 7→ (f ′, f). The simplest case for d = 1
is H2 isomorphic to Cl(0, 3).

For A =M(2d,C), the square roots of −1 are in bijection
to the idempotents [2]. First, the ordinary square roots of −1
(with k = 0) constitute a conjugacy class of R-dimension
4d2 of a single connected component which is invariant under
Aut(A). Second, there are 2d conjugacy classes of exceptional
square roots of −1, each composed of a single connected
component, characterized by the equality Spec(f) = k/d (the
pseudoscalar coefficient) with ±k ∈ {1, 2, . . . , d}, and their
R-dimensions are 4(d2 − k2). The group Aut(A) includes
conjugation of the pseudoscalar ω 7→ −ω which maps the
conjugacy class associated with k to the class associated with
−k. The simplest case for d = 1 is the Pauli matrix algebra
isomorphic to the geometric algebra Cl(3, 0) of 3D Euclidean
space R3, and to complex biquaternions [42].

C. Quaternions

Quaternions are a special Clifford algebra, because the
algebra of quaternions H is isomorphic to Cl(0, 2), and to
the even grade subalgebra of the Clifford algebra of three-
dimensional Euclidean space Cl+(3, 0). But quaternions were
initially known independently of Clifford algebras and have
their own specific notation, which we briefly introduce here.

Gauss, Rodrigues and Hamilton’s four-dimensional (4D)
quaternion algebra H is defined over R with three imaginary
units:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (11)



Every quaternion can be written explicitly as

q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj , qk ∈ R, (12)

and has a quaternion conjugate (equivalent3 to Clifford con-
jugation in Cl+(3, 0) and Cl(0, 2))

q = qr − qii− qjj − qkk, pq = q p, (13)

which leaves the scalar part qr unchanged. This leads to the
norm of q ∈ H

|q| =
√
qq =

√
q2r + q2i + q2j + q2k, |pq| = |p||q|. (14)

The part V (q) = q − qr = 1
2 (q − q) = qii + qjj + qkk is

called a pure quaternion, and it squares to the negative number
−(q2i + q2j + q2k). Every unit quaternion (i.e. |q| = 1) can be
written as:

q = qr + qii+ qjj + qkk = qr +
√
q2i + q2j + q2k µ(q)

= cosα+ µ(q) sinα = eαµ(q), (15)

where

cosα = qr, sinα =
√
q2i + q2j + q2k,

µ(q) =
V (q)

|q|
=
qii+ qjj + qkk√
q2i + q2j + q2k

, and µ(q)
2
= −1.

(16)

The inverse of a non-zero quaternion is

q−1 =
q

|q|2
=

q

qq
. (17)

The scalar part of a quaternion is defined as

Sc(q) = qr =
1

2
(q + q), (18)

with symmetries

Sc(pq) = Sc(qp) = prqr − piqi − pjqj − pkqk,
Sc(q) = Sc(q), ∀p, q ∈ H, (19)

and linearity

Sc(αp+ βq) = αSc(p) + βSc(q) = αpr + βqr,

∀p, q ∈ H, α, β ∈ R. (20)

The scalar part and the quaternion conjugate allow the defini-
tion of the R4 inner product4 of two quaternions p, q as

Sc(pq) = prqr + piqi + pjqj + pkqk ∈ R. (21)

Definition 2 (Orthogonality of quaternions). Two quaternions
p, q ∈ H are orthogonal p ⊥ q, if and only if the inner product
Sc(pq) = 0.

3This may be important in generalisations of the QFT, such as to a
space-time Fourier transform in [19], or a general two-sided Clifford Fourier
transform in [24].

4Note that we do not use the notation p · q, which is unconventional for
full quaternions.

III. INVENTORY OF CLIFFORD FOURIER TRANSFORMS

A. General geometric Fourier transform

Recently a rigorous effort was made in [8] to design a
general geometric Fourier transform, that incorporates most
of the previously known CFTs with the help of very general
sets of left and right kernel factor products

FGFT {h}(ω) =
∫
Rp′,q′

L(x, ω)h(x)R(x, ω)dn
′
x,

L(x, ω) =
∏
s∈FL

e−s(x,ω), (22)

with p′ + q′ = n′, FL = {s1(x, ω), . . . , sL(x, ω)} a set of
mappings Rp′,q′ × Rp′,q′ → Ip,q into the manifold of real
multiples of

√
−1 in Cl(p, q). R(x, ω) is defined similarly,

and h : Rp′,q′ → Cl(p, q) is the multivector signal function.

B. CFT due to Sommen and Buelow

This clearly subsumes the CFT due to Sommen and Buelow
[7]

FSB{h}(ω) =
∫
Rn

h(x)

n∏
k=1

e−2πxkωkekdnx, (23)

where x, ω ∈ Rn with components xk, ωk, and {e1, . . . ek} is
an orthonormal basis of R0,n, h : Rn → Cl(0, n).

C. Color image CFT

It is further possible [16] to only pick strictly mutually com-
muting sets of

√
−1 in Cl(p, q), e.g. e1e2, e3e4 ∈ Cl(4, 0)

and construct CFTs with therefore commuting kernel factors
in analogy to (23). Also contained in (22) is the color image
CFT of [40]

FCI{h}(ω) =
∫
R2

e
1
2ω·xI4Be

1
2ω·xBh(x)

e−
1
2ω·xBe−

1
2ω·xI4Bd2x, (24)

where B ∈ Cl(4, 0) is a bivector and I4B ∈ Cl(4, 0) its
dual complementary bivector. It is especially useful for the
introduction of efficient non-marginal generalized color image
Fourier descriptors.

D. Two-sided CFT

The main type of CFT, which we will review here is the
general two sided CFT [24] with only one kernel factor on
each side

Ff,g{h}(ω) =
∫
Rp′,q′

e−fu(x,ω)h(x)e−gv(x,ω)dn
′
x, (25)

with f, g two
√
−1 in Cl(p, q), u, v : Rp′,q′ × Rp′,q′ → R

and often Rp′,q′ = Rp,q . In the following we will discuss a
family of transforms, which belong to this class of CFTs, see
the lower half of Fig. 2.



E. Quaternion Fourier Transform (QFT)

One of the nowadays most widely applied CFTs is the
quaternion Fourier transform (QFT) [19], [26]

Ff,g{h}(ω) =
∫
R2

e−fx1ω1h(x)e−gx2ω2d2x, (26)

which also has variants were one of the left or right kernel
factors is dropped, or both are placed together at the right or
left side. It was first described by Ernst, et al, [14, pp. 307-
308] (with f = i, g = j) for spectral analysis in two-
dimensional nuclear magnetic resonance, suggesting to use
the QFT as a method to independently adjust phase angles
with respect to two frequency variables in two-dimensional
spectroscopy. Later Ell [12] independently formulated and
explored the QFT for the analysis of linear time-invariant
systems of PDEs. The QFT was further applied by Buelow,
et al [6] for image, video and texture analysis, by Sangwine
et al [43], [5] for color image analysis and analysis of non-
stationary improper complex signals, vector image processing,
and quaternion polar signal representations. It is possible to
split every quaternion-valued signal and its QFT into two
quasi-complex components [26], which allow the application
of complex discretization and fast FT methods. The split can
be generalized to the general CFT (25) [24] in the form

x± =
1

2
(x± fxg), x ∈ Cl(p, q). (27)

In the case of quaternions the quaternion coefficient space
R4 is thereby split into two steerable (by the choice of two
pure quaternions f, g) orthogonal two-dimensional planes [26].
The geometry of this split appears closely related to the
quaternion geometry of rotations [39]. For colors expressed
by quaternions, these two planes become chrominance and
luminance when f = g = gray line [13].

F. Quaternion Fourier Stieltjes transform

Georgiev and Morais have modified the QFT to a quaternion
Fourier Stieltjes transform [18].

FStj(σ1, σ2) =

∫
R2

e−fx1ω1dσ1(x1)dσ
2(x2)e

−gx2ω2 , (28)

with f = −i, g = −j, σk : R→ H, |σk| ≤ δk for real numbers
0 < δk <∞, k = 1, 2.

G. Quaternion Fourier Mellin transform, Clifford Fourier
Mellin transform

Introducing polar coordinates in R2 allows to establish a
quaternion Fourier Mellin transform (QFMT) [30]

FQM{h}(ν, k) =
1

2π

∫ ∞
0

∫ 2π

0

r−fνh(r, θ)e−gkθdθdr/r,

∀(ν, k) ∈ R× Z, (29)

which can characterize 2D shapes rotation, translation and
scale invariant, possibly including color encoded in the quater-
nion valued signal h : R2 → H such that |h| is summable over
R∗+ × S1 under the measure dθdr/r, R∗ the multiplicative
group of positive non-zero numbers, and f, g ∈ H two

√
−1. The QFMT can be generalized straightforward to a

Clifford Fourier Mellin transform applied to signals h : R2 →
Cl(p, q), p+ q = 2 [23], with f, g ∈ Cl(p, q), p+ q = 2.

H. Volume-time CFT and spacetime CFT

The spacetime algebra Cl(3, 1) of Minkowski space with or-
thonormal vector basis {et, e1, e2, e3}, −e2t = e21 = e22 = e33,
has three blades et, i3, ist of time vector, unit space volume
3-vector and unit hyperspace volume 4-vector, which are
isomorphic to Hamilton’s three quaternion units

e2t = −1, i3 = e1e2e3 = e∗t = eti
−1
3 , i23 = −1,

ist = eti3, i
2
st = −1. (30)

The Cl(3, 1) subalgebra with basis {1, et, i3, ist} is therefore
isomorphic to quaternions and allows to generalize the two-
sided QFT to a volume-time Fourier transform

FV T {h}(ω) =
∫
R3,1

e−etωth(x)e−~x·~ωd4x, (31)

with x = tet + ~x ∈ R3,1, ~x = x1e1 + x2e2 + x3e3, ω =
ωtet + ~ω ∈ R3,1, ~ω = ω1e1 + ω2e2 + ω3e3. The split (27)
with f = et, g = i3 = e∗t becomes the spacetime split of
special relativity

h± =
1

2
(1± ethe

∗
t ). (32)

It is most interesting to observe, that the volume-time Fourier
transform can indeed be applied to multivector signal functions
valued in the whole spacetime algebra h : R3,1 → Cl(3, 1)
without changing its form [19], [22]

FST {h}(ω) =
∫
R3,1

e−etωth(x)e−i3~x·~ωd4x. (33)

The split (32) applied to spacetime Fourier transform (33)
leads to a multivector wavepacket analysis

FST {h}(ω) =
∫
R3,1

h+(x)e
−i3(~x·~ω−tωt)d4x

+

∫
R3,1

h−(x)e
−i3(~x·~ω+tωt)d4x, (34)

in terms of right and left propagating spacetime multivector
wave packets.

I. One-sided CFTs

Finally, we turn to one-sided CFTs [25], which are obtained
by setting the phase function u = 0 in (25). A recent discrete
spinor CFT used for edge and texture detection is given in
[4], where the signal is represented as a spinor and the

√
−1

is a local tangent bivector B ∈ Cl(3, 0) to the image intensity
surface (e3 is the intensity axis).



J. Pseudoscalar kernel CFTs

The following class of one-sided CFTs which uses a single
pseudoscalar

√
−1 has been well studied and applied [20]

FPS{h}(ω) =
∫
Rn

h(x)e−inx·ωdnx,

in = e1e2 . . . en, n = 2, 3(mod 4), (35)

where h : Rn → Cl(n, 0), and {e1, e2, . . . , en} is the
orthonormal basis of Rn. Historically the special case of
(35), n = 3, was already introduced in 1990 [32] for the
processing of electromagnetic fields. This same transform was
later applied [17] to two-dimensional images embedded in
Cl(3, 0) to yield a two-dimensional analytic signal, and in
image structure processing. Moreover, the pseudoscalar CFT
(35), n = 3, was successfully applied to three-dimensional
vector field processing in [10], [9] with vector signal convo-
lution based on Clifford’s full geometric product of vectors.
The theory of the transform has been thoroughly studied in
[20].

For embedding one-dimensional signals in R2, [17] consid-
ered in (35) the special case of n = 2, and in [10], [9] this
was also applied to the processing of two-dimensional vector
fields.

Recent applications of (35) with n = 2, 3, to geographic
information systems and climate data can be found in [47],
[46], [35].

K. Quaternion and Clifford linear canonical transforms

Real and complex linear canonical transforms parametrize
a continuum of transforms, which include the Fourier, frac-
tional Fourier, Laplace, fractional Laplace, Gauss-Weierstrass,
Bargmann, Fresnel, and Lorentz transforms, as well as scaling
operations. A Fourier transform transforms multiplication with
the space argument x into differentiation with respect to the
frequency argument ω. In Schroedinger quantum mechancis
this constitutes a rotation in position-momentum phase space.
A linear canonical transform transforms the position and
momentum operators into linear combinations (with a two-
by-two real or complex parameter matrix), preserving the
fundamental position-momentum commutator relationship, at
the core of the uncertainty principle. The transform operator
can be made to act on appropriate spaces of functions, and can
be realized in the form of integral transforms, parametrized in
terms of the four real (or complex) matrix parameters [44].

KitIan Kou et al [34] introduce the quaternionic linear
canonical transform (QLCT). They consider a pair of unit
determinant two-by-two matrices

A1 =

(
a1 b1
c1 d1

)
, A2 =

(
a2 b2
c2 d2

)
, (36)

with entries a1, a2, b1, b2, c1, c2, d1, d2 ∈ R, a1d1 − c1b1 = 1,
a2d2 − c2b2 = 1, where they disregard the cases b1 = 0,
b2 = 0, for which the LCT is essentially a chirp multiplication.

We now generalize the definitions of [34] using the fol-
lowing two kernel functions with two pure unit quaternions

f, g ∈ H, f2 = g2 = −1, including the cases f = ±g,

Kf
A1

(x1, ω1) =
1√
f2πb1

ef(a1x
2
1−2x1ω1+d1ω

2
1)/(2b1),

Kg
A2

(x2, ω2) =
1√
g2πb2

eg(a2x
2
2−2x2ω1+d2ω

2
2)/(2b2). (37)

The two-sided QLCT of signals h ∈ L1(R2,H) can now
generally be defined as

Lf,g(ω) =
∫
R2

Kf
A1

(x1, ω1)h(x)K
g
A2

(x2, ω2)d
2x. (38)

The left-sided and right-sided QLCTs can be defined corre-
spondingly by placing the two kernel factors both on the left
or on the right5, respectively. For a1 = d1 = a2 = d2 = 0,
b1 = b2 = 1, the conventional two-sided (left-sided, right-
sided) QFT is recovered. We note that it will be of interest to
”complexify” the matrices A1 and A2, by including replacing
a1 → a1r + fa1f , a2 → a2r + ga2g , etc. In [34] for f = i
and g = j the right-sided QLCT and its properties, including
an uncertainty principle are studied in some detail.

In [45] a complex Clifford linear canonical transform is
defined and studied for signals f ∈ L1(Rm, Cm+1), where
Cm+1 = span{1, e1, . . . , em} ⊂ Cl(0,m) is the subspace of
paravectors in Cl(0,m). This includes uncertainty principles.
Motivated by Remark 2.2 in [45], we now modify this defini-
tion to generalize the one-sided CFT of [25] for real Clifford
algebras Cl(n, 0) to a general real Clifford linear canonical
transform (CLNT). We define the parameter matrix

A =

(
a b
c d

)
, a, b, c, d ∈ R, ad− cb = 1. (39)

We again omit the case b = 0 and define the kernel

Kf (x,ω) =
1√

f(2π)nb
ef(ax

2−2x·ω+dω2)/(2b), (40)

with the general square root of −1: f ∈ Cl(n, 0), f2 = −1.
Then the general real CLNT can be defined for signals h ∈
L1(Rn;Cl(n, 0)) as

Lf{h}(ω) =
∫
Rn

h(x)Kf (x,ω)dnx. (41)

For a = d = 0, b = 1, the conventional one-sided CFT of [25]
in Cl(n, 0) is recovered. It is again of interest to modify the
entries of the parameter matrix to a→ a0+faf , b→ b0+fbf ,
etc.

Similarly in [33] a Clifford version of a linear canonical
transform (CLCT) for signals h ∈ L1(Rm;Rm+1) is formu-
lated using two-by-two parameter matrices A1, . . . , Am, which
maps Rm → Cl(0,m). The Sommen Bülow CFT (23) is
recovered for parameter matrix entries ak = dk = 0, bk = 1,
1 ≤ k ≤ m.

5In [34] the possibility of a more general pair of unit quaternions f, g ∈ H,
f2 = g2 = −1, is only indicated for the case of the right-sided QLCT,
but with the restriction that f, g should be an orthonormal pair of pure
quaternions, i.e. Sc(fg) = 0. Otherwise [34] always strictly sets f = i
and g = j.



Fig. 1. Manifolds [28] of square roots f of−1 in Cl(2, 0) (left), Cl(1, 1) (center), and Cl(0, 2) ∼= H (right). The square roots are f = α+b1e1+b2e2+βe12,
with α, b1, b2, β ∈ R, α = 0, and β2 = b21e
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Fig. 2. Family tree of Clifford Fourier transformations.

IV. CONCLUSION

We have reviewed Clifford Fourier transforms which apply
the manifolds of

√
−1 ∈ Cl(p, q) in order to create a

rich variety of new Clifford valued Fourier transformations.
The history of these transforms spans just over 30 years.
Major steps in the development were: Cl(0, n) CFTs, then
pseudoscalar CFTs, and Quaternion FTs. In the 1990ies es-
pecially applications to electromagnetic fields/electronics and
in signal/image processing dominated. This was followed by
by color image processing and most recently applications in
Geographic Information Systems (GIS). This paper could only
feature a part of the approaches in CFT research, and only
a part of the applications. Omitted were details on opera-
tor exponential CFT approach [5], and CFT for conformal
geometric algebra. Regarding applications, e.g. CFT Fourier
descriptor representations of shape [41] of B. Rosenhahn, et
al was omitted. Note that there are further types of Clifford
algebra/analysis related integral transforms: Clifford wavelets,
Clifford radon transforms, Clifford Hilbert transforms, ...
which we did not discuss.
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