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Abstract: Since 1969, the superstructure has been the usual approach to

nonstandard analysis. The method used to measure the strength of a

GD-model Divine attribute, which is comparable to a human attribute,

is, at least, partially expressible in terms of cardinality. In this paper, it

is shown that for the non-atomic approach to superstructure construction

such a cardinality does not have a set-theory upper bound when restricted

to class theory. A one-step rational extension of class theory does yield an

ultra-infinite bound. However, this is not the necessary generic infinite, a

concept that can not be fully characterized.

1. The GD-model.

This article is a theological application of the Grundlegend-Deductive Model (GD-

model). This mathematical model predicts that Divine attributes, which are comparable

to human attributes, are infinitely stronger than the corresponding human attributes.

There is a specific list of attributes that are termed as “Divine attributes.” The phrase

“higher-attribute” can, relative to context, refer to a Divine attribute. But, it can also

refer to a more general list. The term “infinite,” in this case, is not the “generic infinite.”

This article shows that the generic infinite concept is not fully describable via class theory.

This article also contains some rather complex mathematics.

As is customary within mathematical modeling, there first are the intuitive notions

relative to such a language L. There are various approaches. Robinson [12] employs basic

set theory. In this approach, for a formal language, there is a set of individuals U and

“That is to say, there are certain disjoint sets of individuals of U , of adequate cardinal

numbers, that serve as brackets, commas, connectives (∼ ∧, and ∨), quantifiers (∀ and

∃), variables, constants, relations and functions of L” [12, p. 90]. He apparently considers

the symbols themselves as members of U . Further, “the terms and well-formed formula

(wff) of L are also constitute subsets of U.” Then Robinson goes back-and-forth between

the intuitive notions and the formal: “. . . one-place relations Qv(x) ‘x is an L-variable,’ .

. . , Qs(x) ‘x is an L-sentence,’ . . . .” Of course, these are the predicates that determine

the sets. This, of course, is the customary approach, where sets are defined “informally”

and then a set-theory is applied.

On the other hand, Mendelson [11, p. 28] mentions that the mathematical objects
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used in Mathematical Logic can be considered as abstract in character. Then the language

aspects are obtained via an interpretation of the abstract relations.

In the Robinson approach, representations for how the wff are formed is not included.

In the original Herrmann approach [4], an intuitive interpretation injection i: L → IN is

introduced. Thus natural numbers represent members of L. This leads to an abstract

representation via relations between the natural numbers. Then the construction of a

word from an alphabet is represented by a set of equivalence classes E of partial se-

quences of the images of i. There is the usual back-and-forth informal to formal cor-

respondences. For example, the injection i is often suppressed and one has a member of a

set described by “An|||elementary|||particle|||k′(i′, j′)|||with|||total|||energy|||c′ + n′” when

this actually is the natural number i(An|||elementary|||particle||| k′(i′, j′)|||with|||total|||

energy|||c′ + n′). Then under the *-transfer process, without the i, this appears

as An|||elementary|||particle|||k′(i′, j′)|||with|||total|||energy|||c′ + n′, which actually is

the extended standard member ∗(i(An|||elementary|||particle|||k′(i′, j′)|||with|||total|||

energy|||c′ + n′)) of ∗
IN. These notationally simplifications are used throughout [4].

In the new alterations to the entire Theory of Ultralogics [7], the Robinson approach is

adjoined to the original and an additional set of equivalences classes W ′ is also employed.

In this specific case, no intuitive injection i is used. Partial sequences also generate these

equivalence classes. Each class contains partial sequences that represent the construction

of a word via juxtaposition, but the images are members of the language itself, now denoted

by W′.

The generic symbol W ′ is used to represent either of these sets of equivalence classes.

Further, of considerable importance is that when the abstract nonstandard model is being

interpreted the composition of a “nonstandard word” [f ] is best determined by considering

the values of the hyperfinite partial sequences in [f ]. For the approach using a single set of

atoms, the use of W′ and W ′, or the use of only E ′ is a matter of individual choice, but what

must be maintained is the consistent modeling process of going back-and-forth between

the informal interpretations and corresponding formal symbolic expressions. This will not

be the case for the generation of the superstructures in Section 2, where the mathematical

model is composed of the consistent informal interpretations of the abstract formalism.

For the case where our set theory uses a basic set of atoms, the two disjoint sets W′

and rational numbers Q of atoms are, usually, employed as the ground set X0 = W′ ∪ Q

for superstructure construction [4, 7]. (NOTE: The rational numbers can be replaced with

the natural numbers, integers, real numbers or other sets, as the case may be.) However,

requiring the set theory employed to have atoms has been shown not to be necessary.

By a special coding [10, p. 57-58], any infinite set X is representable by a

set Y of the same cardinality and Y preserves the necessary atomic properties
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needed for the construction of a superstructure. The coding is a bijection. It

is standard practice that, in all applications, all specially defined relations on

X are isomorphically impressed upon Y . The practical modeling requirement

is that informal interpretations employed for members of a superstructure

based upon X be exactly maintained for the corresponding Y isomorphic

copies.

In the previous article on measuring intelligence, the notion | · · · | is employed. This

symbol is used to indicate the “power of a set” compared to another set, where |A| < |B|,

means there is a injection on A into B, but no injection on A onto B. And, |A| = |B|

means there is an injection on |A| onto |B| (i.e. a bijection). In this paper, the order ≤

[resp. ≥] is denote by � [rep. �] [1] and the cardinality of a set is denoted by ‖ · · · ‖.

As first proposed, an alphabet is a finite set of symbols, images, and, by a coding,

all human sensory information. The rational numbers can be considered as objects that

are only members of a formal language. On the other hand, they can also be considered

as members of an informal alphabet using notions such as Kleene’s tick notation. If they

are part of our informal alphabet, it is trivial to consider the informal rational numbers

as part of the informal language. This gives a denumerable alphabet. Then as mentioned,

each word is representable by a finite equivalence class [f] ∈ W ′ of partial sequences and a

unique fn ∈ [f], where each fn(i) is an alphabet symbol and the finite n > 0 represents the

length of a word as intuitively written via the join operator. The length includes symbol

repetitions. With or without intuitive rational number symbols, the set W′ or employed

W ′ is denumerable. On the other hand, if members of IR are to have symbol names in W′,

then the concept of the “extended language” of a higher cardinality is necessary.

2. A Superstructure Approach.

In what follows, an altered superstructure approach is used [7]. In general, for the

foundationally conceived W′, the superstructure ground set X0 ⊃ W′∪IR (or IR is replaced

with IN or the set of rational numbers Q). In accordance with the general principles of

mathematical modeling, abstract mathematical objects represent entities identified within

other specific disciplines. The properties associated with various mathematical relations

between the representative entities represent the behavior of the entities being so identified.

The set W′ represents a general language concept as used in an intuitive model. The

language contains symbols for various numbers, an ordinary alphabet, and, additionally,

images, diagrams and digitally representable “virtual reality” human sensory information.

Which additional features one employs depends upon the application. The intuitive monoid

behavior displayed by the basic juxtaposition operator is reflected by a monoid relation

defined on W′.
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As shown in [10, p. 58-59], atoms are not necessary for proper superstructure applica-

tion to nonstandard analysis. Hence, this non-atomic approach can be used for an infinite

set X0 of the appropriate cardinality and for a superstructure, where the “ground set” Y of

the same cardinality as X0 is obtained by the special coding of the members of X0. Within

the set-theory itself are the sets IN, Q and IR. Then, as mentioned, the bijection used for

this coding impresses upon Y any necessary structure defined for X0 or on subsets of X0.

For example, consider W′ ∪ IR ⊂ X0. Then the special coding bijection k:X0 → Y , yields

disjoint k[W′] and k[IR]. Further, all of the necessary relations and properties defined for

W′ and IR are passed to Y via k.

When one states that an image of a member of one of the equivalence classes in W ′ is

an alphabet symbol “m,” ones means that the image “represents” this symbol under the

codings being employed. As with W′, the intuitive monoid behavior displayed by the basic

juxtaposition operator is reflected by a monoid relation defined on coded W′ as well as

on coded W ′ [6]. This coding statement will be understood. Technically, under the rules

for modeling, the intuitive language concepts can be directly associated with the coded

entities via the mappings employed. However, when a consistent interpretation is made

this technical aspect is not employed.

Let X ′ be any infinite set such that ‖X ′‖ ≥ ‖X0‖. Then X ′ � X0 and the injection

from X0 into X ′ can be used to pass to X ′ all the defined relations associated with W′ and

IR. In what follows, the same notation is used for each functionally obtained isomorphic

copy. The set X ′ is coded to obtain the representation Y . Since there can be different X ′

that yield different Y , then rather then use the customary symbolism ∗Z to denote the

monomorphism mapping applied to Z, ∗YZ is employed. This alteration in symbolism is

used for
σ

as well. As usual, for the infinite set Y , the basic superstructures employed

are S(Y ) =
⋃
{Xi | i ∈ IN}, X0 = Y, and S(∗YY ), X0 = ∗YY. Recall, that for any

X ∈ S(Y ), σYX = {(∗Yx | (x ∈ X) ∧ (x ∈ S(Y ))} and σY embeds S(Y ) into S(∗YY ) and

the σY objects model the standard superstructure S(Y ). Since this is an altered approach

to superstructure construction, the x ∈ S(Y ) in the definition of σY appears necessary.

This allows the same identification as used in [4] to be applied to these superstructures.

This yields that for x ∈ X0,
σYx = ∅.

As for this identification, since for ground sets Y and ∗YY, a ∈ Y yields that ∗a ∈ ∗YY ,

then it is customary to write ∗a = a. Since in each case, a member of W ′

Y is a finite set

of finitely many entities, and each of these entities is itself a finite set that reduces to

finitely many members of the ground set, then this identification procedure also holds for

[f ] ∈ W ′

Y . That is, for ∗ [f ] ∈ σYW ′

Y , ∗ [f ] = [f ]. Further, the relation ∗Y <Y and operation
∗Y+Y relative to ∗YINY are denoted as <Y and +Y , since <Y and +Y defined on INY are

considered as but restrictions of ∗Y <Y and ∗Y+Y , respectively. These identifications are
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used throughout the appropriate portions of what follows.

Notice that the definition of an hyperfinite interval such as ∗Y[µ, ν], ν, µ ∈ ∗YINY under

the identification is the same as [µ, ν]. Further, it is well know that, in general, for any

ν ∈ ∗YINY −INY , and any m ∈ INY , {x | (m ≤Y x)∧ (x ∈ INY )} ⊂ [m, ν]. This follows since

for arbitrary n ≥Y m, n ∈ INY , [m,n]∩ (∗YINY − INY ) = ∅. Recall that the set ∗YINY − INY

is termed as a set of “infinite” numbers.

Theorem 1. Consider any infinite set X ′ of the appropriate cardinality that contains,

at least, an isomorphic copy INX ′ ⊂ X ′ of the natural numbers. Let Y be the coded

representation for X ′ and ∗M a ‖S(Y )‖+-saturated model contained in S(∗YY ). Then

‖S(Y )‖ ≤ ‖∗YINY ‖ = ‖A‖, for any infinite internal set A ∈ S(∗YY ).

Proof. Consider infinite ground set Y = X0 ∈ S(Y ). From saturation, there exists a

hyperfinite F0 such that σYX0 ⊂ F0 ⊂ ∗YX0. (Note: Each hyperfinite sets is an internal

set.) From [1], X0 � σYX0. Since F0 is hyperfinite, then there exists some ν0 ∈ ∗YINY −INY

such that for the segment [0, ν0], [0, ν0] ≃ F0. Thus, X0 � [0, ν0].

Now consider X1. Then, in like manner, there exists some ν1 ∈ ∗YINY − INY such that

X1 � [0, ν1]. Consider [ν0 +Y 1, ν0 +Y ν1 +Y 1]. Then using f(x) = x +Y ν0 +Y 1, 0 ≤

x ≤ ν1, [0, ν1] ≃ [ν0 +Y 1, ν0 +Y ν1 +Y 1] � X1 and [0, ν0] ∩ [ν0 +Y 1, ν0 + ν1 +Y 1] = ∅.

Let n0 = 0, ν0 = m0, n1 = m0 +Y 1, m1 = m0 +Y ν1 +Y 1. Then, since m0 <Y

n1, [n0,m0]∩ [n1,m1] = ∅. Suppose that for k > 0, k ∈ IN there is a nonempty finite set of

intervals {[ni,mi], | (0 ≤ i ≤ k)∧(i ∈ IN)∧(ni ∈ ∗YINY −INY )∧(mi ∈ ∗YINY −INY )∧(∀j((j ∈

IN) ∧ (0 ≤ j < i ≤ k) → (mj <Y ni))} and [ni,mi] � Xi, 0 ≤ i ≤ k.

Consider Xk+1. Then there is a νk+1 ∈ ∗YINY − INY such that [0, νk+1] � Xk+1. Let

nk+1 = mk +Y 1, mk+1 = mk +Y νk+1 +Y 1. Then [nk+1,mk+1] � Xk+1, mj <Y ni, 0 ≤

j < i ≤ k + 1, j, i ∈ IN. Thus, [np,mp] � Xp, 0 ≤ p ≤ k + 1 and {[np,mp] | (0 ≤

p ≤ k + 1) ∧ (p ∈ IN)} is a set of disjoint intervals. Hence, by induction, there is a set

of disjoint intervals {[nk,mk] | k ∈ IN} such that [nk,mk] � Xk, k ∈ IN. Consequently,
⋃
{Xk | k ∈ IN} = S(Y ) �

⋃
{[nk,mk] | k ∈ IN}. (This comes from the fact that a

surjection f :A → B reduces to an injection g:A → B and that the [nk,mk] are disjoint.)

But,
⋃
{[nk,mk] | k ∈ IN} ⊂ ∗YINY . Therefore, S(Y ) � ∗YINY . Hence from [1, Corollary

10, p. 365], ‖S(Y )‖ ≤ ‖∗YINY ‖. For any infinite internal set A ∈ S(∗YY ), from [13, p. 38,

0.4.4], it follows that ‖S(Y )‖ ≤ ‖∗YINY ‖ = ‖A‖. (Considering [1], I can find no reason

why this statement is not valid for a superstructure constructed using the coded method

presented in [10].) This completes the proof.

From Theorem 1, with QY in place of INY , ‖S(Y )‖ ≤ ‖∗YINY ‖ = ‖∗YQY ‖ = ‖∗YY ‖ =

‖∗YLY ‖. Thus, the cardinality of each ∗YLY is rather “large” compared to ‖LY ‖. Further,

‖INY ‖ ≤ ‖Y ‖ < ‖S(Y )‖ ≤ ‖∗YINY ‖.
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The language L, the rule of inference PR and all other standard entities are modeled

in S(Y ) by LY and PRY etc. Further, in general, the attributes and the “greater than,

better than, stronger than” order are also modeled by members of S(Y ) [4, Section 4.4].

For denumerable LY , ‖LY ‖ = ‖INY ‖ = ‖QY ‖ = ‖EY ‖ = ‖PRY‖, etc.

Let INX ′

1

⊂ S(∗YY ) = X ′

1. Then ‖S(Y )‖ ≤ ‖∗YINY ‖ < ‖S(Y1)‖ ≤ ‖∗Y1INY1
‖. If one

considers cardinalities as a measure of a type of “size,” then nonstandard ∗Y1INY1
is con-

siderably greater in “size” [14] than ∗YINY .

For a given infinite Y , the higher-language is ∗YLY and ‖∗YLY ‖ = ‖∗YINY ‖. Thus, given

any such higher-language ∗YLY , there exists a higher-language ∗Y1LY1
such that ‖∗YLY ‖ <

‖∗Y1LY1
‖. Consequently, for such superstructure obtained higher-languages, there is no

upper bound in the terms of cardinality.

3. Strengths of Divine Attributes.

In the proof of Theorem 4.4.1 [4], b is a basic attribute such as “intelligent.” A

member of Cb is the coded form of “very, very, . . . , b.” It is shown in the proof that

for any superstructure S(Y ) and a corresponding attribute b and any ν ∈ ∗YINY − INY

there is an ultraword c, a higher-attribute, such that c is greater than or better than

(i.e. ∗Y <B) any ∗Yw ∈ σYCb. Under the identification w ∈ Cb.

Due to the construction of W ′

Y , the form of this c ∈ ∗YW ′

Y −W ′

Y can be determined.

(Note: Recall that when the notation W ′

Y and elements are considered, the original intu-

itive injection i, if employed, is supressed and understood relative to the set of equivalence

classes E ′.) In particular, c = [g] and each member of [g] is an internal function. There is

a unique function f ∈ [g] and ν ∈ ∗YINY − INY such that f : [0, ν] → ∗T , ∗T = ∗YINY , and

f(0) = b ∈ W′

Y , f(j) = very, |||, where 1 ≤ j ≤ ν. This follows since, for each 0 ≤ n ∈ INY ,

there is a w = [h] ∈ Cb, and a unique k ∈ [h] such that k: [0, n] → T, k(0) = b and

k(j) = very, |||), where 1 ≤ j ≤ n. These unique functions, when restricted to [1, ν] and

[1, n], respectively, are the “counting” functions, where the number of embedded “very,”

strings is directly related to the “size” of the intervals [1, n] and [1, ν]. The cardinality of

[1, n] can be symbolized as “n.” And, if n = 0, then [1, n] = ∅ and ‖[1, n]‖ = 0.

More directly, there is no bijection Θ from any set of the form [1, ν] onto [1, n]. For if

there is, then since internal [1, n] ⊂ [1, ν] 6= [1, n] the restriction Θ|[1, n] is an injection on

[1, n] onto a proper subset of [1, n]. However, no such mapping exists [14]. Consequently,

[1, n] ≺ [1, ν] and ‖[1, n]‖ < ‖[1, ν]‖ = ‖∗YINY ‖ = ‖∗YLY ‖ > ‖S(Y )‖ since [1, ν] is infinite.

This gives additional guidance since ∗<B, the stronger than ordering, only states that

w ∗<B c since n < ν. This applies to an attribute b associated with any biological entity

in any universe (even a countably infinite collection of universes with the attribute as a

combined attribute) that can be qualified by the “very,” strengthening. How should the
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strength of an attribute be measured? For superstructures as a class of objects, does it

correspond to the hyperreal numbers or to the cardinality of hyperfinite intervals?

Within S(∗YY ), there are two (and many more) higher-attributes c1 and c2 in the

language ∗YLY such that for each w ∈ Cb, w ∗Y <B c1
∗Y <B c2. For the ordering ∗Y <B,

the c1 attribute has the measure ν for the segment [1, ν] and c2 has the measure µ > ν

and µ corresponds to [1, µ]. However, ‖[1, ν]‖ = ‖[1, µ]‖ = ‖∗YINY ‖ since [1, ν] and [1, µ]

are infinite and internal hyperfinite sets. Hence, within the set-theory in which S(∗YY ) is

an member, it is only necessary to consider one of these infinite measures for the results

stated in [4].

The external cardinalities employed, for a specific structure S(∗YY ), do not have the

same properties as the greater than ordering, ∗Y <Y . For any structure S(∗YY ), there is

no ν ∈ ∗YINY that is a ∗Y <Y upper bound. But, such subtle words as cν , cµ exist for each

ν, µ ∈ ∗YINY − INY . So, in this case, using any ν ∈ ∗YINY − INY , the ∗<B has no upper

bound within S(∗YY ). But, when ν is replaced by [1, ν], then, viewed externally, ‖[1, ν]‖

is an upper bound relative to the structure S(∗YY ).

For arbitrary superstructure S(Y ), applying the above procedure to the superstructure

S(Y1), it follows that for ν ∈ ∗YINY − INY and µ ∈ ∗Y1INY1
− INY1

that ‖[1, ν]‖ < ‖[1, µ]‖.

Further, there is no set of all superstrutures as here constructed. For if S is the set of all

substructures, then S is a set of infinite sets and
⋃
S is an infinite set and can be used,

as above, to construct a superstructure not a member of S. Since S(Y ) is arbitrary, then

no matter how a superstructure’s ground set Y is obtained there is another superstructure

that verifies that there is no upper bound for ‖[1, ν]‖, where ν is an infinite number. Thus

the greater than ordering ∗<B, as it relates to the external cardinality, at present, also has

no < upper bound that can represent the strength of a higher-Divine-attribute for class of

all superstructures thus far being considered. This follows since for every infinite number ν

in any superstructure, ∗Cb contains an ultraword c that contains ‖[1, ν]‖ “very, |||” symbol-

strings. Relative to the external cardinality, ‖∗YINY ‖ represents the external strength of

the superstructure specific Divine attributes.

Consider the class C of all ‖∗YINY ‖. This class of all such characterizing cardinali-

ties can conceptually be considered as a type of generic “ultra-infinite bound.” By one

simple extension of the order concept as it relates to cardinality, the class C does have

a corresponding “order” notion. If α, β are cardinal numbers, then α < β if an only if

α ∈ β [1]. Although this would not correspond to actual cardinal number ordering since

C is not a cardinal number, from the class theoretic viewpoint, each ‖∗YINY ‖ ∈ C. This, of

course, only establsihes the rationality of this concept. This result may further increase

comprehension once an individual has accepted the existance of such a Divine entity.

Wilder [14] discusses cardinality in terms of the intuitive notion of “size.” The su-
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perstructure method leads to an higher-language. For the set theory being employed, the

cardinality measure gives but a partial measure as to the “size” of an higher-language.

There is no set-theoretic upper bound for this size notion when additonal superstructures

are considered. These “sizes” also correspond to the members of C. This rationally yields

a generic “size” notion for an ultimate higher-language notion.

Notice that a formal proof can be represented in W′ by a single finitely long word

w ∈ W′. The number “n” of steps in a formal proof, or more generally as produced

by the deduction algorithm, is a measure for the number of deductions. This number is

determined by a specific member of the equivalence class of partial sequences associated

with w ∈ W′. It is known that, at least for a formal predicate language, that there exists

for each n ∈ IN a formal theorem that requires, at least, n steps to deduce. Considering

propositional deduction relative to W′ and properly characterizing this fact leads to the

prediction that, for each ν ∈ ∗YINY − INY , there is higher-form of deduction characterized

by the “step number” ν.

4. The Generic Infinite.

Consider a predicate P(x). There are various comprehensible linguistic expressions

where the parameter can be expanded in an inductively increasing way. Let P(x) = “I

think about x.” Then we have the expanding collection of statements, (1) “I think about

my thinking.” (2) “I think about my thinking about my thinking.” (4) “I think about my

thinking about my thinking about my thinking.” Etc. This produces a “logical regress,”

a sequence of meaningful expressions that has no resolution. One should not dwell upon

such regresses. These types of regresses also occur when various theological notions are

discussed [5].

Consider the notion of physical reductionism. Suppose one states that physical objects

are compose of x-tons. “Then x-tons are composed of xx-tons, Then xx-tons are composed

of xxx-tons. . . . Then xn-tons are composed of xn+1-tons. . . .” This also forms a logical

regress. Such a regression is stopped by simply restricting the language used. In pure

quantum field theory, reductionism is essentially stopped by not allowing something more

fundamental to generate the fields. That is, not allowing such a language to be employed.

Consider the notion of physical expansionism. Suppose one states that physical objects

are compose of X-tins. “Then X-tins are contained in XX-tins, Then XX-tins are contained

in XXX-tins. . . . Then Xn-tins are contained in Xn+1-tins. . . .” This also forms a

logical regress. For various atheistic science communities, expansionism is stopped by not

allowing a selected cosmology to be generated by any process that is not part of cosmologies

technical language. No statements are allowed that even in the slightest manner would

lead one to conclude that a specific universe is not “all there is and all there ever will be,”
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so to speak.

Class terminology is a mathematical expansionism concept that is terminated relative

to the language allowed. Should the Wider notion of the size of a set [14] be extended

to the size of a class? Does not the class of all cardinal numbers intuitively carry the

idea of a size notion? From the class theoretic viewpoint the answer is no. Although the

symbol string α ∈ C is allowed changing this to α < C is not allowed. Any expansion of

the technical concept of the infinite is stopped if the notion is restricted to class theory. Of

course, the term “ultra-infinite” is a one-step addition to the language and it has not been

further extended. However, relative to theology, a type of one step expansion is introduced.

This occurs when the “omni” notion is applied.

The logic employed by science-communities is the classical logic as studied within

Mathematical Logic. All such logic is based upon various forms of languages. For the

GGU-model a general language is employed. Within the logic employed, the term “all”

(“every”) has no truth-value unless it is restricted to a specific collection of objects. But, in

general the “all” associated with the “omni” notion is not so restricted. This “all” concept

does not appear to be fully describable via any form of rationally presented language. The

atheist presents classically stated “omni” related theological questions in their attempts to

discredit the God-concept. In all known cases, it is the restricted notion of “all” that leads

to rational difficulties. The unrestricted “omni” notion shows that the questions asked

have no meaning relative to this Divine aspect.

As here presented the intuitive concept of the generic infinite, relative to the strength

of Divine attributes, only has a partial descriptive bound - the ultra-infinite. The generic

infinite is a concept that falls into the category of a concept that is some-how-or-another

known by the human mind. But, we are unable to present a full linguistic description for

its properties. “I know what it is but I can’t find the words that fully describe it.” Or as

Eccles and Robinson state it:

[W]e have ideas in mind that have no relationship to linguistic expression and

may never be expressed [2, p. 118].

The existence of such concepts counters the philosophic claim that the “essence” of a

concept is linguistically expressible.

Thus, for various none-abstract models, using the statement that a higher-attribute is

“infinitely greater than” the same attribute displayed by an entity in the sense of the greater

than ordering has but a “partial” set-theoretic measure. Stating without qualification

that a specific higher-attribute is “infinitely greater than” a similar attribute should be

considered as a generic characteristic. Further, infinitely strong Divine-attributes can be

further described. A higher-Divine-attribute is “stronger than,” and, indeed,
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beyond any modern mathematical means to measure its strength. And no

attribute is intuitively stronger than such a higher-Divine-attribute.

.

The actual notion of the generic infinite does not appear as a specific word-form in the

oldest extant versions of the Bible. Linguistically, the rule of reciprocation needs to be

applied to Biblical statements. This rule states that comprehension of a collection of words

does not come from the meaning of a single word, but that words in a statement alter their

meanings relative to the “neighboring” words and conversely. When this rule is applied

additional comprehension is gleaned from the informational content of the collection of

words employed. From this, further detailed descriptions can be properly made.

Unfortunately, since the Vulgate and except for one translation, this law cannot be

properly applied to the known Bible translations. Such translations as KJV, NIV, etc.

contain chosen word meanings, for the oldest Greek, that tend to force doctrinal concepts

upon the reader. The Concordant Version of the Bible was specifically constructed so

as to avoid such special word choices. It allows for the proper application of the law of

reciprocation to Bible passages via fixed and strict literal meanings. An example of the

application of the rule of reciprocation is to be found in reference [A].
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