
ar
X

iv
:s

ub
m

it/
10

12
86

9
 [

cs
.C

C
]

 1
 J

ul
 2

01
4

A Lower Bound of 2n Conditional Jumps for Boolean

Satisfiability on A Random Access Machine

Samuel C. Hsieh
Computer Science Department, Ball State University

July 1, 2014

Abstract

We establish a lower bound of 2n conditional jumps for deciding the satisfiability of

the conjunction of any two Boolean formulas from a set called a full representation of

Boolean functions of n variables - a set containing a Boolean formula to represent each

Boolean function of n variables. The contradiction proof first assumes that there exists

a RAM program that correctly decides the satisfiability of the conjunction of any two

Boolean formulas from such a set by following an execution path that includes fewer

than 2n conditional jumps. By using multiple runs of this program, with one run for

each Boolean function of n variables, the proof derives a contradiction by showing that

this program is unable to correctly decide the satisfiability of the conjunction of at least

one pair of Boolean formulas from a full representation of n-variable Boolean functions

if the program executes fewer than 2n conditional jumps. This lower bound of 2n

conditional jumps holds for any full representation of Boolean functions of n variables,

even if a full representation consists solely of minimized Boolean formulas derived by

a Boolean minimization method. We discuss why the lower bound fails to hold for

satisfiability of certain restricted formulas, such as 2CNF satisfiability, XOR-SAT, and

HORN-SAT. We also relate the lower bound to 3CNF satisfiability.

1 Introduction

The problem of deciding whether a Boolean formula is satisfiable is commonly known as the
Boolean satisfiability problem. It was the first problem shown to be NP-complete [1]. We
establish a lower bound of 2n conditional jumps for deciding the satisfiability of the conjunc-
tion of any two Boolean formulas from a set called a full representation of Boolean functions
of n variables - a set containing a Boolean formula to represent each Boolean function of n
variables. The contradiction proof first assumes that there exists a RAM program [5] that
correctly decides the satisfiability of the conjunction of any two Boolean formulas from such
a set by following an execution path that includes fewer than 2n conditional jumps. By using
multiple runs of this RAM program, with one run for each Boolean function of n variables,

1

http://arxiv.org/submit/1012869/pdf

the proof derives a contradiction by showing that this RAM program is unable to correctly
decide the satisfiability of the conjunction of at least one pair of Boolean formulas from a
full representation of n-variable Boolean functions if the RAM program executes fewer than
2n conditional jumps.

We briefly summarize the remaining sections of this paper. The next section provides a
brief overview of Boolean formulas and the random access machine model due to Machtey and
Young [5]. As there are variations in the nomenclatures used in the literature, an overview
of the related concepts and terminology as used in this paper seems appropriate. Section 3
introduces concepts related to executing multiple runs of a RAM program and proves a few
related lemmas. Section 4 proves the lower bound of 2n conditional jumps and shows that the
lower bound applies to CNF satisfiability and, by duality, to DNF falsifiability. Section 5 first
discusses why the lower bound fails to hold for satisfiability of certain restricted formulas
such as 2CNF satisfiability, XOR-SAT and HORN-SAT, and the section then relates the
lower bound to 3CNF satisfiability. Section 6 discusses some lower bounds on two other
abstract models of computation.

2 Boolean Formulas and a RAM

Boolean formulas are widely known, e.g., [2,7]. As there are variations in the nomenclatures,
we summarize the related concepts and terminology as used here.

2.1 Boolean Formulas

The set B = {true, false} denotes the set of Boolean values. A Boolean variable has either
true or false as its value. A function f : Bn → B is a Boolean function of n variables. The
expression Bn → B denotes the set of Boolean functions of n variables.

We may use a Boolean formula to define or represent a Boolean function. A Boolean
formula is composed of Boolean values, Boolean variables, and the Boolean operators ∧ (for
conjunction, i.e., AND), ∨ (for disjunction, i.e., OR) and overbar (for negation, i.e., NOT).
A Boolean function can be represented by many different Boolean formulas.

A literal is a Boolean variable or a logically negated variable. A Boolean formula in DNF
(Disjunctive Normal Form), or a DNF formula, is an OR of DNF clauses, and a DNF clause
is an AND of literals. For example, (x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x3) is a DNF formula.
A DNF formula is a kDNF formula if each clause has k literals. The example just given
is a 2DNF formula. A Boolean formula in CNF (Conjunctive Normal Form), or a CNF
formula, is an AND of CNF clauses, and a CNF clause is an OR of literals. For example,
(x1∨x2)∧ (x1 ∨x2)∧ (x2 ∨x3) is a CNF formula. A CNF formula is a kCNF formula if each
clause has k literals. The example just given is a 2CNF formula.

An assignment to a set of Boolean variables assigns a Boolean value to each variable in
the set. An assignment can be used to evaluate a Boolean formula or a Boolean function.
If an assignment makes a formula or a function true, the assignment is said to satisfy the
formula or the function and is called a satisfying assignment; similarly, if an assignment

2

makes a formula or a function false, the assignment is said to falsify the formula or the
function and is called a falsifying assignment.

A Boolean formula is satisfiable if it has a satisfying assignment; otherwise, the formula
is unsatisfiable. A Boolean formula is falsifiable if it has a falsifying assignment; otherwise,
the formula is unfalsifiable.

2.2 A Random Access Machine

Henceforth the acronym RAM refers to the random access machine due to Machetey and
Young [5]. It is a simple model of computation. The RAM is associated with an alphabet
and deals with strings composed from the alphabet. In this paper, the alphabet of the RAM
will be denoted by Σ = {a1, a2, · · ·, ak}, where k > 1, and the set of strings composed from
Σ will be denoted by Σ∗. The RAM has access to an unlimited number of registers named
R1, R2, · · ·. Each register can store a string from Σ∗.

A RAM program is a finite sequence of RAM instructions. Each instruction in a RAM
program can be optionally labeled by a ”line name” [5], henceforth referred to as an instruc-
tion label or simply as a label. The instructions in a RAM program are executed sequentially,
unless a jump is performed. A RAM instruction can be of one of the following four types. 1

• The instruction add uses two operands: a register Ri and a symbol aj ∈ Σ. The
instruction appends the string stored in Ri with the symbol aj . As a result, aj becomes
the new rightmost symbol of the string in Ri.

• The instruction delete uses one operand: a register Ri. The instruction deletes the
leftmost symbol (if any) from the string stored in Ri.

• The instruction conditional jump uses three operands: a register Ri, a symbol aj ∈
Σ, and a label dest. If the first (i.e., leftmost) symbol of the string in Ri is aj , then
jump to the nearest instruction above or below (as specified in the instruction) that is
labeled dest.

• The instruction continue is a no-op instruction, but when used as the final instruc-
tion of a program, the instruction halts the program. Henceforth, a final continue
instruction will be referred to as the halt instruction.

Executing a conditional jump instruction makes a binary decision: if the first symbol of
the string in Ri is aj then a jump takes place; otherwise execution continues sequentially.
Program execution continues sequentially after executing an add, delete, or non-halting
continue instruction. A RAM program is defined to be a finite sequence of RAM instructions
such that a) the destination of any jump (i.e., the label to jump to) exists, and b) the final
instruction is a continue instruction, which serves to halt program execution.

1Only a subset of RAM instructions is given here. Every RAM program using the full set of RAM

instructions can be converted into an equivalent program using only the instructions in this subset.

3

Any input to a RAM program is to be provided as the initial contents of a finite number
of registers R1, R2, · · ·, Ri, and the other registers are initially empty. When a program
terminates, the output from the program is to be found in the register R1.

For the Boolean satisfiability problem, an answer is either yes or no. We will say that a
RAM program accepts its input if the program halts with the answer yes in R1 and that a
program rejects its input if the program halts with the answer no in R1.

3 Multiple Runs of a RAM Program

First, we will define a few related terms.

Definition 1. An execution of a RAM program P with ω1,ω2, · · · , ωi ∈ Σ∗ as the initial
contents of the registers R1, R2, · · ·, Ri, respectively, is called a run of P and is denoted by
P(ω1, ω2, · · · , ωi).

A run of a RAM program solves an instance of the general problem that the program
is intended to solve. For example, if a program P solves the Boolean satisfiability problem,
then a run of P decides whether a specific Boolean formula is satisfiable.

Definition 2. An execution path, or simply a path, is a sequence of instructions that a
RAM program may execute, beginning with the initial instruction of the program. A path
is either terminated or open: a terminated path ends with the halt instruction, and an
open path ends with an instruction other than the halt instruction. A program that
serially executes the entire sequence of instructions of a path is said to follow the path.
The first instruction that a program executes after following an open path U or after
executing an instruction i is said to immediately succeed the path U or the instruction i.
An instruction that immediately succeeds a path U or an instruction i is called an
immediate successor instruction of U or of i.

As mentioned before, executing a conditional jump instruction involves a two-way deci-
sion: if the first symbol of the string in a certain register is a certain symbol, then a jump
takes place else execution continues sequentially. Hence, a conditional jump instruction may
have two alternative immediate successor instructions. On the other hand, due to sequen-
tial execution, there is one fixed immediate successor instruction for any add, delete, or
non-halting continue instruction in a RAM program. A terminated path has no successor
instruction.

Lemma 1. For any RAM program and for any integer m ≥ 0, the sum of the following
two numbers is no more than 2m.

a) the number of distinct open paths with each containing m + 1 conditional jump in-
structions and ending with a conditional jump instruction, and

b) the number of distinct terminated paths with each containing m or fewer conditional
jump instructions.

4

Proof. We define a term to be used later in the proof: a line is a sequence of instructions that
a program may execute and that consists of 0 or more add, delete or non-halting continue
instructions followed either by a conditional jump instruction or by the halt instruction. In
other words, a line is a piece of straight line code that ends with a conditional jump or the
halt instruction. Since the instructions add, delete and non-hating continue are executed
sequentially, if the first instruction of a line is executed, all instructions of the line will be
executed serially. Every instruction i in any RAM program begins no more than one line.
This is because if i is the halt instruction or a conditional jump, then i alone is a line;
otherwise, i is an add, delete or non-halting continue instruction, and in any line that begins
with i, due to sequential execution of the instructions add, delete and non-halting continue,
there is only one possible sequence of execution from i and no alternative is possible until
the end of the line, which is either a conditional jump or the halt instruction. Hence, an
instruction cannot begin more than one line.

We will prove the lemma by induction. The initial instruction of any RAM program
begins no more than one line, which ends with either the halt instruction or a conditional
jump. In the former case, the line is one (= 20) terminated path containing no conditional
jump; in the latter case, the line is one open path containing one conditional jump instruction.
Hence the lemma holds for m = 0. Suppose that there are t distinct terminated paths with
each containing j or fewer conditional jump instructions, that there are p open paths with
each containing j + 1 conditional jump instructions and ending with a conditional jump
instruction, and that t+ p ≤ 2j (inductive hypothesis). Since each of the p open paths ends
with a conditional jump instruction, each such open path has no more than two alternative
immediate successor instructions, each of which begins no more than one line, which either
ends with the halt instruction or with a conditional jump instruction. Hence, by appending
each of the p open paths with each of the lines that the open path’s alternative immediate
successors begin, we can form no more than 2p new distinct paths that end either with
the halt instruction or with a conditional jump. Of the 2p new paths, those that end with
a conditional jump instruction remain open with each containing j + 2 conditional jump
instructions (including the new ending conditional jump instruction), and those that end
with the halt instruction become terminated, with each containing j + 1 conditional jump
instructions (as no new conditional jump instruction is added). No new paths can be formed
from the t terminated paths each of which contains j or fewer conditional jump instructions,
since terminated paths have no successor instruction. Hence the sum of the number of
distinct open paths with each containing j + 2 conditional jump instructions and ending
with a conditional jump, and the number of terminated paths with each containing j + 1
or fewer conditional jump instructions, is no more than t + 2p, which is no more than 2j+1

since by the inductive hypothesis t+ p ≤ 2j. Q.E.D.

Lemma 2. For any strings first1, second1, f irst2, second2 ∈ Σ∗ and for any RAM
program P, if P(first1, second1) and P(first2, second2) follow a terminated path U, then
P(first1, second2) must follow the same terminated path U.

Proof. We will prove the lemma by contradiction. Let the path U, which the two runs
P(first1, second1) and P(first2, second2) follow, be the sequence of instructions U1 U2

5

· · · Uu , let the run P(first1, second2) follow the path Q, and let Q be the sequence of
instructions Q1 Q2 · · · Qq. Assume that Q is different from U. The rest of the proof will
derive a contradiction to this assumption.

Since Q is different from U, there is at least one integer i such that the instruction Qi is
different from the instruction Ui. Of such integers, there must a least one. Let m be the least
such integer. Since m is the smallest integer such that Qm is different from Um, the path U1

· · · Um−1 is identical to the path Q1 · · · Qm−1. Since, by definition, both paths begin with
the initial instruction of the program P, m ≥ 2. Let T be the point in U and in Q between
the instruction Um−2 and the instruction Um−1 (i.e., between Qm−2 and Qm−1). Let the
three runs execute to the point T, where each run has completed the common sequence of
instructions U1 · · · Um−2 (i.e., Q1 · · · Qm−2) but has not executed the instruction Um−1 (i.e.,
Qm−1) yet. Since Um and Qm are different instructions, the instruction Um−1 (i.e., Qm−1)
has two different immediate successor instructions and therefore must be a conditional jump.
Let the operands of the conditional jump instruction Um−1 be the register Rx, some symbol
ay, and some label: the conditional jump instruction Um−1 selects its immediate successor
by checking to see whether the first symbol of the string in Rx is ay. The register Rx can
be either R1, R2 or some other register. In each case, Um can be shown to be the same
instruction as Qm, as detailed below.

A) Suppose that Rx is R1. The two runs P(first1, second1) and P(first1, second2) have
the same string first1 as the initial content of their respective R1. As they follow the
common path U1 · · · Um−2 to the point T, the two runs perform an identical sequence
of operations on their registers, including R1. Hence, at the point T, the two runs
will have the same string stored in their respective R1. This will cause the conditional
jump instruction Um−1 (i.e., Qm−1) to select the same immediate successor instruction
for the two runs. That is, Um is the same instruction as Qm.

B) Suppose that Rx is R2. The two runs P(first2, second2) and P(first1, second2) have
the same string first2 as the initial content of their respective R2. As they follow the
common path U1 · · · Um−2 to the point T, the two runs perform an identical sequence
of operations on their registers, including R2. Hence, at the point T, the two runs have
the same string stored in their respective R2. This will cause the conditional jump
instruction Um−1 (i.e., Qm−1) to select the same immediate successor instruction for
the two runs. That is, Um is the same instruction as Qm.

C) Suppose that Rx is neither R1 nor R2. Since Rx is not used to hold any input string, Rx

is initially empty for all three runs. That is, all three runs have identical initial content
(the null string) for their respective Rx. As the three runs follow the common path U1

· · · Um−2 to the point T, the three runs perform an identical sequence of operations
on their registers, including Rx. Hence, at the point T, all three runs have the same
string strored in their respective Rx. This will cause the conditional jump instruction
Um−1 (i.e., Qm−1) to select the same immediate successor instruction for all three runs.
That is, Um is the same instruction as Qm.

6

Thus, there does not exist an integer m such that Qm is different from Um. In other words,
the path U and the path Q are identical. Q.E.D.

4 A Lower Bound for Satisfiability

We now establish a worst-case lower bound on the number of conditional jump instructions
required in order for a RAM program to decide Boolean satisfiability. Obviously, the alphabet
of the RAM is assumed to be appropriate for the Boolean satisfiability problem.

Definition 3. Let x1, x2 · · · xn be the variables of which the members of the set Bn → B
are functions. A Boolean formula that represents or defines a Boolean function f : Bn →
B is a formula φf of the variables x1, x2 · · · xn such that, for every assignment to the
variables x1, x2 · · · xn, the formula φf evaluates to the same value as what the function f
evaluates to.

A Boolean formula that represents a function f will be denoted by φf here. However,
the symbol φ without a subscript, or with a numerical subscript, such as φ3, will denote a
Boolean formula without indicating the specific function that it represents.

Definition 4. Let x1, x2 · · · xn be the variables of which the members of the set Bn → B
are functions. A full representation of the set Bn → B is a set E of Boolean formulas of
the variables x1, x2 · · · xn such that every function f : Bn → B is represented by a formula
φf ∈ E. The set E is said to fully represent the set Bn → B.

Definition 5. The logical negation of a function g : Bn → B is a function g : Bn → B
such that, on every assignment to the variables x1, x2 · · · xn,

g(x1, x2 · · · xn) = g(x1, x2 · · ·xn).

The logical negation of a function g is denoted by g. For any function g : Bn → B and
for every assignment, g and g must evaluate to different values: one of them must evaluate
to false and the other to true.

Definition 6. A run P(φ1, φ2) of a RAM program P is said to decide the satisfiability of
φ1 ∧ φ2, or to decide whether φ1 ∧ φ2 is satisfiable, if and only if the run accepts its input
(i.e., halts with the answer yes in R1) if φ1 ∧ φ2 is satisfiable and rejects its input (i.e.,
halts with the answer no in R1) otherwise. A run P(φ1, φ2) is said to decide the
falsifiability of φ1 ∨ φ2, or to decide whether φ1 ∨ φ2 is falsifiable, if and only if the run
accepts its input if φ1 ∨ φ2 is falsifiable and rejects its input otherwise.

Theorem 1. Let E be a full representation of the set Bn → B. There does not exist a
RAM program P such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1, φ2) correctly
decides whether φ1 ∧ φ2 is satisfiable by following a terminated path that includes fewer
than 2n conditional jump instructions.

7

Proof. We will prove the theorem by contradiction. We first assume that there exists a
RAM program P such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1, φ2) correctly decides
the satisfiability of φ1 ∧ φ2 by following a terminated path that includes fewer than 2n

conditional jump instructions. In other words, P(φ1, φ2) will accept the input if φ1 ∧ φ2 is
satisfiable and reject the input otherwise, and P(φ1, φ2) will do so by following a terminated
path that includes fewer than 2n conditional jump instructions. The rest of this proof will
derive a contradiction to this assumption.

Since E fully represents the set Bn → B, every function f : Bn → B and its logical
negation f : Bn → B are represented by some Boolean formulas φf , φf ∈ E. Let S be a
set containing, for each distinct function f : Bn → B, one run P(φf , φf). In other words,
for each function f : Bn → B, S contains the run P(φf , φf), which is to decide whether the

formula φf ∧ φf is satisfiable. Since there are F = 22
n

distinct functions in the set Bn →
B, the set S has F runs of the program P.

The set S may seem expensive to implement in terms of computing resources. However,
S will only be used to prove that logically the RAM program P does not exist. An actual
implementation of S is not needed.

Since, for every function f : Bn → B and for every assignment, either the function f or
its logical negation f evaluates to false, and since φf , φf ∈ E represent f and f , for every
assignment either φf or φf evaluates false. Therefore, the formula φf ∧ φf is false for
every assignment and, thus, is not satisfiable. Hence, every run in the set S must eventually
reject its input. By our assumption on P, every run in S must follow a terminated path that
includes 2n − 1 or fewer conditional jump instructions and reject its input.

By Lemma 1, there are no more than 2m terminated paths with each including m or
fewer conditional jump instructions. Since each run in S follows a terminated path that
includes 2n − 1 or fewer conditional jump instructions, by Lemma 1 there are no more than
the following number of terminated paths that the runs in S may follow.

2(2
n
−1) = 22

n

2−1 = F2−1 = F/2

To summarize, each of the F = 22
n

runs in the set S follows a terminated path that
includes 2n − 1 or fewer conditional jump instructions to reject its input, but there are no
more than F/2 such paths. Therefore, there is at least one such path that multiple runs in
S follow. Let U be a path that multiple runs in S follow and let P(φg, φg) and P(φh, φh) be
two runs in S that follow the path U. Since S contains one run of P for each distinct Boolean
function of n variables, g and h must be different functions. Since, as discussed previously,
all runs in S must reject their inputs, both P(φg, φg) and P(φh, φh) must reject their inputs.
By Lemma 2, two other runs, P(φg, φh) and P(φh, φg), which are not in S, must follow the
same path U and reject their inputs, as the two runs P(φg, φg) and P(φh, φh) do.

Now let us derive a contradiction to the assumption that the RAM program P exists.
Since g and h are different Boolean functions, there exists an assignment s that makes g
and h evaluate to different values. Hence, the assignment s will make g and h evaluate to
the same value. If both g and h evaluate to true on the assignment s, so will both of the
formulas φg and φh, since φg, and φh represent g and h. Thus, φg ∧ φh is satisfiable. On

8

the other hand, if g and h evaluate to false on the assignment s, then h and g will evaluate
to true on the assignment s and so will the formulas φh and φg, since φh and φg represent
h and g. Thus, φh ∧ φg is satisfiable. Therefore, at least one of the two formulas φg ∧ φh

and φh ∧ φg is satisfiable and, thereby, at least one of the two runs P(φg, φh) and P(φh,
φg) should accept its input. However, as discussed previously, by Lemma 2 both P(φg,
φh) and P(φh, φg) reject their inputs. That is, by Lemma 2, at least one of the two runs
P(φg, φh) and P(φh, φg) incorrectly rejects its input. This contradicts our assumption that
the program P exists such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1, φ2) correctly
decides the satisfiability of φ1 ∧ φ2 by following a terminated path that includes fewer than
2n conditional jump instructions. Q.E.D.

By Theorem 1, for any RAM program P, there is at least one pair of formulas φ1 and
φ2 in any full representation of Bn → B such that P(φ1, φ2) cannot correctly decide the
satisfiability of φ1 ∧ φ2 by executing fewer than 2n conditional jump instructions. In other
words, 2n is a lower bound on the number of conditional jump instructions needed.

The proof for Theorem 1 does not rely on a specific representation of Boolean functions.
Hence, the lower bound applies to the problem of deciding whether the conjunction of a
pair of n-variable Boolean functions has a satisfying assignment, even if the two conjuncts
are represented in the input as some expressions other than Boolean formulas of the form
introduced previously.

Since there are many different Boolean formulas that represent a given Boolean function,
there are many full representations of the set Bn → B. Theorem 1 holds for any full
representation E, even if E consists solely of minimized Boolean formulas that are derived
by a Boolean minimization method.

Since the set Bn → B can be fully represented by a set of CNF formulas, the lower bound
holds even if the conjuncts φ1 and φ2 are limited to CNF formulas.

Corollary 1.1. Let E be a set of CNF formulas that fully represents Bn → B. There
does not exist a RAM program P such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1,
φ2) correctly decides whether the CNF formula φ1 ∧ φ2 is satisfiable by following a
terminated path that includes fewer than 2n conditional jump instructions.

By duality, Corollary 1.2 follows from Theorem 1.

Corollary 1.2. Let E be a full representation of Bn → B. There does not exist a RAM
program P such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1, φ2) correctly decides
whether φ1 ∨ φ2 is falsifiable by following a terminated path that includes fewer than 2n

conditional jump instructions.

By duality, Corollary 1.3 follows from Corollary 1.1.

Corollary 1.3. Let E be a set of DNF formulas that fully represents Bn → B. There
does not exist a RAM program P such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1,
φ2) correctly decides whether the DNF formula φ1 ∨ φ2 is falsifiable by following a
terminated path that includes fewer than 2n conditional jump instructions.

9

5 Restricted Formulas

Theorem 1 requires that the two conjuncts φ1 and φ2 be formulas from a full representation
of Bn → B. Since the following widely known sets of restricted formulas of n variables do
not fully represent Bn → B, Theorem 1 does not apply if the two conjuncts are limited
to n-variable formulas from any of these sets: XOR-SAT, HORN-SAT, 2CNF, and 3CNF.
Polynomial-time algorithms to decide 2CNF satisfiability, XOR-SAT, and HORN-SAT are
known. The next theorem establishes a lower bound on conditional jump instructions for
3CNF satisfiability.

Definition 7. Let E1 and E2 be sets of Boolean formulas. A satisfiability-preserving
mapping from E1 to E2 is a function t : E1 → E2 such that, for every formula φ ∈ E1, the
image t(φ) ∈ E2 is satisfiable if and only if φ is satisfiable. The function t is said to
preserve satisfiability.

Definition 8. Let E1 and E2 be sets of Boolean formulas. A mapping from E1 to E2 that
preserves satisfiability over conjunction is a function t : E1 → E2 such that, for every pair
of formulas φ1, φ2 ∈ E1, the formula t(φ1) ∧ t(φ2) is satisfiable if and only if φ1 ∧ φ2 is
satisfiable. The function t is said to be satisfiability-preserving over conjunction.

Definition 9. A set E of Boolean formulas is said to be a satisfiability representation of
the set Bn → B if and only if there exist a full representation E1 of the set Bn → B and a
function t : E1 → E that preserves satisfiability over conjunction. The set E is said to
satisfiability-represent the set Bn → B.

Theorem 2. Let E be a satisfiability representation of Bn → B. There does not exist a
RAM program P such that, for every pair of formulas φ1, φ2 ∈ E, P(φ1, φ2) correctly
decides whether the formula φ1 ∧ φ2 is satisfiable by following a terminated path that
includes fewer than 2n conditional jump instructions.

Proof. Our proof for Theorem 2 is essentially identical to that for Theorem 1, with the
following adaptions:

1. The proof assumes that there exists a RAM program P such that, for every pair of
formulas φ1, φ2 ∈ E, P(φ1, φ2) correctly decides the satisfiability of φ1 ∧ φ2 by following
a terminated path that includes fewer than 2n conditional jump instructions.

2. Since E satisfiability-represents Bn → B, there is a set E1 that is a full representation of
Bn → B and there is a function t : E1 → E that preserves satisfiability over conjunction.
Let the set S contain, for each function f : Bn → B, one run P(t(φf), t(φf)), where φf ,
φf ∈ E1 and, hence, t(φf), t(φf) ∈ E.

3. For every function f : Bn → B and for every assignment, one of f and f evaluates to
false. Since φf and φf represent f and f , for every assignment one of φf and φf evaluates
to false. Hence, φf ∧ φf is false for all assignments and, thus, is not satisfiable. Since
t is satisfiability-preserving over conjunction, the formula t(φf) ∧ t(φf) is not satisfiable.
Hence, every run in S must eventually reject its input.

10

4. To derive a contradiction, let P(t(φg), t(φg)) and P(t(φh), t(φh)) be two runs in S that
reject their inputs by following a common terminated path U that includes fewer than 2n

conditional jump instructions - as deptailed in the proof for Theorem 1, there must be at
least two such runs in S. By Lemma 2, the two runs P(t(φg), t(φh)) and P(t(φh), t(φg)),
which are not in S, must follow the same execution path U to reject their inputs, as the two
runs P(t(φg), t(φg)) and P(t(φh), t(φh)) do. Since g and h are different Boolean functions,
there exists an assignment s that makes g and h evaluate to different values. Therefore, g
and h evaluate to the same value on the assignment s. If both g and h evaluate to true on
the assignment s, then so will both of the formulas φg and φh since φg and φh represent g
and h. Hence, φg ∧ φh is satisfiable. Since t is satisfiability-preserving over conjunction,
t(φg) ∧ t(φh) is satisfiable too. On the other hand, if both g and h evaluate to false on
the assignment s, then both h and g evaluate to true on the assignment s, and the formula
t(φh) ∧ t(φg) can be similarly shown to be satisfiable. So, at least one of the formulas
t(φg) ∧ t(φh) and t(φh) ∧ t(φg)) is satisfiable. That is, at least one of the two runs P(t(φg),
t(φh)) and P(t(φh), t(φg)) should accept its input. However, as discussed previously, by
Lemma 2 both P(t(φg), t(φh)) and P(t(φh), t(φg)) reject their inputs. That is, by Lemma
2, at least one of the two runs P(t(φg), t(φh)) and P(t(φh), t(φg)) incorrectly rejects its
input. This contradicts the assumption stated above in item 1. Q.E.D.

We give an example of a set of restricted Boolean formulas that satisfiability-represents
Bn → B. It is well known that the problem of CNF satisfiability can be reduced to 3CNF
satisfiability, e.g., [2,7]. Specifically, when this reduction is applied to a CNF formula C1

∧ C2, where C1 and C2 are CNF formulas, the reduction yields a formula t(C1) ∧ t(C2)
as the resultant 3CNF formula, where t(C1) and t(C2) are 3CNF formulas and are derived
by applying the reduction to C1 and C2 respectively. The formulas t(C1) and t(C2) are
satisfiable if and only if C1 and C2 are, respectively, and the resultant 3CNF formula t(C1)
∧ t(C2) is satisfiable if and only if the original CNF formula C1 ∧ C2 is. This reduction
introduces distinct new variables into the resultant 3CNF formulas. With the new variables
being distinct, this reduction defines a mapping from CNF formulas to 3CNF formulas that
is satisfiability-preserving over conjunction. Let E1 be a set of CNF formulas that fully
represents Bn → B. This reduction can be used to transform each CNF formula in E1 into
a 3CNF formula. Let E be the set of the resultant 3CNF formulas. The set E satisfiability-
represents the set Bn → B.

The following corollary directly follows from Theorem 2.

Corollary 2.1. Let E be a set of 3CNF formulas that satisfiability-represents Bn → B.
There does not exist a RAM program P such that, for every pair of 3CNF formulas φ1,
φ2 ∈ E, P(φ1, φ2) correctly decides whether the 3CNF formula φ1 ∧ φ2 is satisfiable by
following a terminated path that includes fewer than 2n conditional jump instructions.

Similarly, there is a reduction from the problem of DNF falsifiability to 3DNF falsifiability
[1]. By duality, the following corollary follows from Corollary 2.1. The term falsifiability-
represent is the dual of the term satisfiability-represent defined previously. A detailed defi-
nition of the term falsifiability-represent parallels Definitions 8-9.

11

Corollary 2.2. Let E be a set of 3DNF formulas that falsifiability-represents Bn → B.
There does not exist a RAM program P such that, for every pair of 3DNF formulas φ1,
φ2 ∈ E, P(φ1, φ2) correctly decides whether the 3DNF formula φ1 ∨ φ2 is falsifiable by
following a terminated path that includes fewer than 2n conditional jump instructions.

6 Lower Bounds on Two Other Machine Models

By similar proofs, we previously established in [3,4]

• 2n as a lower bound [4] on the number of conditional branches that Post’s Formulation
1 [6] needs to execute in order to decide Boolean satisfiability, and

• 2nlogk2 as a lower bound [3] on the number of ”moves” that a Turing machine [8] with
k symbols in its tape alphabet needs to make in order to decide Boolean satisfiability.
The lower bound is 2n when k = 2, i.e., when a Turing machine uses a binary tape
alphabet.

Unlike the RAM or Post’s formulation 1, a Turing machine bundles each decision with
a ”move”, which includes a state transition, a movement of the read/write head, and an
operation to write a symbol to a tape square. Hence, the lower bound 2nlogk2 is on the
number of moves that a Turing machine makes, whereas in the context of a RAM program
or Post’s Formulation 1, the lower bound is on the number of conditional jump instructions
and does not apply to other types of instructions that a RAM program or Post’s Formulation
1 executes.

References

1. Cook, S.A. The complexity of theorem proving procedures. In Proceedings, Third Annual
ACM Symposium on the Theory of Computing (1971), pp. 151-158.

2. Hopcroft, J.E., Ullman, J.D., Introduction to Automata Theory, Languages, and Compu-
tation. Addison-Wesley, 1979.

3. Hsieh, S. C. A Lower Bound for Boolean Satisfiability on Turing Machines. preprint
(2014) available at http://arxiv.org/abs/1406.5970

4. Hsieh, S. C. A Lower Bound of 2n Conditional Branches for Boolean Satisfiability on Post
Machines. preprint (2014) available at http://arxiv.org/abs/1406.6353

5. Machtey, M., Young P., An Introduction to the General Theory of Algorithms. North-
Holland, New York, NY, 1978.

6. Post, E.L. Finite Combinatory Processes-Formulation 1. The Journal of Symbolic Logic
1 (1936) pp. 103-105.

12

7. Sipser, M. Introduction to the Theory of Computation. 2nd ed. Thomson Course Tech-
nology, 2006.

8. Turing, A.M. On Computable Numbers, with an Application to the Entscheidungs prob-
lem. In Proceedings of the London Mathematical Society (1936), pp.230-265.

13

	1 Introduction
	2 Boolean Formulas and a RAM
	2.1 Boolean Formulas
	2.2 A Random Access Machine

	3 Multiple Runs of a RAM Program
	4 A Lower Bound for Satisfiability
	5 Restricted Formulas
	6 Lower Bounds on Two Other Machine Models

