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ABSTRACT
Bayesian inference often requires efficient numerical approximation algorithms, such as sequential Monte Carlo (SMC) and
Markov chain Monte Carlo (MCMC) methods. The Gibbs sampler is a well-known MCMC technique, widely applied in
many signal processing problems. Drawing samples from univariate full-conditional distributions efficiently is essential for
the practical application of the Gibbs sampler. In this work, we present a simple, self-tuned and extremely efficient MCMC
algorithm which produces virtually independent samples from these univariate target densities. The proposal density used is
self-tuned and tailored to the specific target, but it is not adaptive. Instead, the proposal is adjusted during an initial optimization
stage, following a simple and extremely effective procedure. Hence, we have named the newly proposed approach as FUSS
(Fast Universal Self-tuned Sampler), as it can be used to sample from any bounded univariate distribution and also from any
bounded multi-variate distribution, either directly or by embedding it within a Gibbs sampler. Numerical experiments, on
several synthetic data sets (including a challenging parameter estimation problem in a chaotic system) and a high-dimensional
financial signal processing problem, show its good performance in terms of speed and estimation accuracy.

1. INTRODUCTION

Bayesian methods, and their implementations by means of sophisticated Monte Carlo techniques (1; 2), have become very
popular over the last two decades. Indeed, many practical statistical signal processing problems demand procedures for drawing
from probability distributions with non-standard forms, such as Markov chain Monte Carlo (MCMC) methods (3; 4) and particle
filters (5; 6; 7). MCMC techniques generate samples from a target probability density function (pdf) by drawing from a simpler
proposal pdf (1; 8) and generating a Markov chain. The two most widely applied MCMC approaches are the Metropolis-
Hastings (MH) algorithm and the Gibbs sampler (1; 2).

The Gibbs sampling technique is extensively used in Bayesian inference (9) to generate samples from multivariate target
densities, drawing each component of the samples from univariate full-conditional densities (10; 11; 12).1 When the multivariate
target can be easily factorized into univariate conditional pdfs, the key point for the successful application of the Gibbs sampler
is the ability to draw efficiently from these univariate pdfs (1; 2; 10). The best scenario for Gibbs sampling occurs when exact
samplers for each full-conditional are available. Otherwise, another exact sampling technique, like rejection sampling (RS)
or an MH-type algorithm, is typically used within the Gibbs sampler to draw from the complicated full-conditionals. In the
first case, samples generated from the RS algorithm are independent, but the acceptance rate can be very low. In the second
case, we have an approach where an internal MCMC (the MH method) is applied inside another external MCMC (the Gibbs
sampler). Therefore, the typical problems of the external-MCMC (long “burn-in” period, large correlation, etc.) could raise
dramatically if the internal-MCMC is not extremely efficient. Indeed, although the Gibbs sampler needs only one sample from
each full-conditional, several iterations are typically performed to avoid the “burn-in” period of the internal-MCMC.2

In order to avoid these problems, several automatic and self-tuning samplers have been proposed: adaptive rejection
sampling (ARS) (14; 15), Adaptive Rejection Metropolis Sampling (ARMS) (16; 17; 18), Independent Doubly Adaptive

1Blockwise Gibbs sampling approaches, where several random variables are updated simultaneously, have been proposed to speed up the convergence of
the Gibbs sampler (13). However, unless direct sampling from the multi-variate full-conditionals is feasible, these approaches result in an increased difficulty
of drawing samples and a higher computational cost per iteration. Furthermore, the performance of the overall algorithm can decrease if the blocks are not
properly chosen, especially when direct sampling from the multi-variate full-conditionals is unfeasible.

2Note that, from a theoretical point of view, performing a single iteration of the internal MH is enough to guarantee the ergodicity of the Gibbs sampler.
However, the convergence of the chain can be very slow. Namely, the performance of the resulting estimator built from those samples can be very poor if the
proposal pdf is not very similar to the full-conditionals. Hence, several iterations of the internal MH algorithm are typically required in order to achieve the
desired level of performance (more as the proposal differs more from the target). See the numerical examples in Section 6 for further details on this issue.



Rejection Metropolis Sampling (IA2RMS) (19; 20), Adaptive Sticky Metropolis (ASM) (21), etc. ARS builds a piecewise linear
proposal on the target’s log-domain, starting with a reduced number of support points and incorporating new points whenever a
candidate sample is rejected. Unfortunately, since it is based on the rejection sampling technique, the proposal must be always
above the target, a requirement which is only fulfilled by log-concave targets. In order to solve this issue, ARMS introduces
a Metropolis-Hastings step, thus obtaining a universal sampler which is able to draw virtually from any target pdf. However,
the adaptive structure in ARMS has an important restriction: support points cannot be added inside regions where the proposal
is below the target. Recently, the IA2RMS and ASM algorithms have been proposed to overcome this drawback, introducing
more flexibility in the mechanism used to add points to the support set and decoupling it from the proposal construction.

All the previous methods build an adaptive sequence of proposal pdfs via some interpolation procedure given a set of support
points. The proposal is updated when a new support point is incorporated, according to some statistical criterion. However,
although these methods can attain a very good performance, the results show a dependence on the initial set of support points.
Another drawback is the difficulty of ensuring their ergodicity, especially in applications within Gibbs sampling (2; 17), as
the Markovian nature of the chain is lost due to the adaptive nature of the proposal, which may depend on all the previous
samples. Other related works, where a non-adaptive proposal pdf is built via interpolation procedures can be found in literature
(22; 23; 24). Furthermore, different types of generic adaptive MH schemes based on independent proposals have also been
studied (25; 26). However, in general, the considered proposal pdf has a fixed parametric form so that the complete adaptation
of the proposal is not possible.

In this work, we present a novel algorithm that follows a complementary strategy: start with a large number of support points
and remove many of them following some pruning strategy.3 The key idea is starting with a thin uniform grid that covers the
effective support of the target and discard those support points that do not provide relevant information according to some pre-
defined criterion. The idea of using a grid and a piecewise linear constant function to approximate a uni-variate full conditional
was already proposed by the griddy Gibbs sampler (27). However, their approach is substantially different from ours. On the
one hand, they simply select a few support points heuristically, instead of starting with a large set of points and selecting the
best ones in a principled way. On the other hand, the proposal in the griddy Gibbs sampler does not take into account the tails of
the target (the proposal is set to zero outside of the interval covered by the grid), thus providing a poor performance for slowly
decaying tails (e.g., heavy tailed distributions). Furthermore, this griddy approximation of the uni-variate full conditionals is
not embedded within another inner Monte Carlo method, thus leading to an approximate sampler, unlike our scheme, which
results in an exact sampler.

The resulting method is fast and extremely efficient (it yields virtually independent samples), even for highly multimodal
and complicated targets. The dependence on the initial set of points is also drastically reduced, since the algorithm only requires
an approximate knowledge of the effective support of the target pdf. Moreover, unlike previous approaches, the proposal is self-
tuned during the initialization stage, without any adaptation afterwards. Hence, ergodicity is not an issue and the convergence of
the chain to the target distribution is always guaranteed. For these reasons, we call the new method FUSS (“Fast Universal Self-
tuned Sampler”) since, with this sampler, there is no “fuss” about convergence or tuning. The FUSS algorithm is particularly
well suited for multi-modal and spiky target densities (i.e., densities with several sharp and narrow modes), where virtually
all of the existing MCMC techniques fail. This kind of target pdfs often appears in practical applications, e.g., in ecology,
bioinformatics and financial inference problems (see Sections 6 and 7).

The rest of the paper is organized as follows. Sections 2 and 3 are devoted to recalling the general framework and describing
the structure of the novel technique. Details about the proposal construction and generation are given in Section 4. Different
pruning algorithms are then introduced in Section 5. Sections 6 and 7 provide numerical results on several uni-variate and
multi-variate pdfs, including a challenging parameter estimation problem in a chaotic system, as well as a multi-dimensional
and multi-modal inference problem in financial signal processing. Finally, Section 8 contains some brief final remarks.

2. PROBLEM STATEMENT

Bayesian inference often requires drawing samples from complicated multivariate posterior pdfs, π(x|y) with x ∈ XD ⊆ RD.
A common approach, when direct sampling from π(x|y) is unfeasible, is using a Gibbs sampler (2). At the i-th iteration, a
Gibbs sampler obtains the d-th component (d = 1, . . . , D) of x, xd, by drawing from the full conditional pdf of xd given all the
previously generated components (2; 9; 28), i.e.,

x
(i)
d ∼ π̄(xd|x(i)

1:d−1,x
(i−1)
d:D ) = π̄(xd) ∝ π(xd), (1)

3Note that all of the previous methods typically follow the opposite strategy: start with a reduced number of support points and keep adding points in order
to improve the proposal adaptively.



Table 1. General structure of the FUSS algorithm.

1. Initialization: Choose a set of support points, SM = {s1, . . . , sM}, such that s1 < s2 < . . . < sM .

2. Pruning: Remove support points according to a pre-specified criterion, attaining a final set Sm, with m < M .

3. Construction: Build a proposal function p(x|Sm) given Sm, using some appropriate pre-defined mechanism.

4. MCMC algorithm: Perform K steps of an MCMC method using p(x|Sm) as proposal pdf, thus yielding a set of samples {x1, . . . , xK}.

where π̄(xd) is the normalized target pdf, π(xd) denotes its unnormalized counterpart (note that we have dropped the
dependence on x(i)

1:d−1 and x(i−1)
d:D to simplify the notation), xd ∈ X and the initial vector is typically drawn from the prior

(i.e., x(0) ∼ π̄0(x)), but can also be set to some fixed value when no prior information is available or it is unreliable.
However, even sampling from the univariate pdfs in Eq. (1) can often be complicated. In these cases, a common approach

is to use another Monte Carlo technique (e.g., rejection sampling (RS) or the Metropolis-Hastings (MH) algorithm) within the
Gibbs sampler, drawing candidates from a simpler proposal pdf,

p̄(x) ∝ p(x) = eW (x),

where p̄(x) and p(x) denote the normalized and unnormalized proposal respectively, W (x) is a “potential” function and x ∈ R.
The best case occurs when an RS technique can be applied, since it yields independent and identically distributed (i.i.d.)
samples. However, RS requires p(x) ≥ π(x) for all x ∈ X , which may be hard to guarantee in practice. For instance, the
adaptive rejection sampling (ARS) technique can be applied only to log-concave target pdfs (15). Thus, the use of another
MCMC method becomes almost mandatory in practical applications. In this case, the performance of this approach depends
strictly on the choice of p(x). Our aim is designing an efficient fast sampler to draw from the univariate target pdf,

π(x) = eV (x), x ∈ X ⊆ R, (2)

where V (x) = log[π(x)] is a generic function, i.e., π(x) can be multimodal and/or heavy tailed for example.

3. STRUCTURE OF THE ALGORITHM

FUSS is an MCMC approach based on an independent proposal pdf, built through a simple interpolation procedure, like the
ones shown in the next section. The general structure of FUSS is given in Table 1. The first 3 steps consist of an optimization
procedure (applied only once, during the algorithm’s initialization stage), designed to obtain a good proposal density, tailored
to the shape of the target. Step 4 contains the MCMC iterations, which are repeated K times. In this work, we consider two
possible techniques for Step 4 of FUSS. The first one is the well known Metropolis-Hastings (MH) algorithm (2), which is
recalled in Table 2. In this case, the resulting method is denoted as FUSS-MH. The second one is the rejection chain (RC)
algorithm (29; 30), which is shown in Table 3. In this case, a rejection sampling (RS) test is initially performed, and an MH
step is applied only when a sample is accepted, thus ensuring that samples are drawn from the target pdf. We denote this second
method as FUSS-RC. On the one hand, FUSS-RC is slower than FUSS-MH, since the chain does not move forward when a
sample is rejected in the RS test. On the other hand, FUSS-RC yields samples with a lower correlation, due to the application
of the RS test. We test and compare the performance of both schemes through numerical simulations in Sections 6 and 7. The
notation a ∧ b, used in Tables 2 and 3, denotes the minimum between two real values, i.e., a ∧ b = min{a, b}.

3.1. Important remarks

It is important to emphasize some aspects of our approach. First of all, we remark again that steps 1 to 3 of the general FUSS
algorithm in Table 1 are performed only once. The success of the FUSS algorithms lies on the speed in performing these steps
and the quality of the final proposal density. Indeed, since the shape of the proposal is tailored to π(x), the samples generated
will always be virtually independent.

The initial support points in SM play the role of internal “tuning” parameters of the FUSS algorithm. After the pruning
step, the proposal p(x|Sm) is built according to the final support set, Sm with m < M , and remains fixed for the rest of the



Table 2. The Metropolis-Hastings (MH) method used in Step 4 of the FUSS-MH algorithm.

1. Set k = 0 and choose x0.

2. Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3. Set xk+1 = x′ with probability

αMH = 1 ∧
π(x′)p(xk|Sm)

π(xk)p(x′|Sm)
. (3)

Otherwise, set xk+1 = xk with probability 1− αMH .

4. If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

Table 3. The rejection chain (RC) method used in Step 4 of the FUSS-RC algorithm.

1. Set k = 0 and choose x0.

2. Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3. If u′ ≥ π(x′)
p(x′|Sm)

, then go back to step 3.2.

4. If u′ ≤ π(x′)
p(x′|Sm)

, set xk+1 = x′ with probability

αRC = 1 ∧
π(x′) [π(xk) ∧ p(xk|Sm)]

π(xk) [π(x′) ∧ p(x′|Sm)]
. (4)

Otherwise, set xk+1 = xk with probability 1− αRC .

5. If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

algorithm. Consequently, the FUSS techniques become standard non-adaptive MCMC methods after step 3, thus avoiding any
issue about the ergodicity.

The possibility of applying FUSS directly for drawing from multidimensional distributions depends on the ability to
construct efficiently the proposal pdf via interpolation in dimensions higher than one (step 3 in the general structure of FUSS).
Although a strategy for building a multidimensional proposal is described in Section 4.3, in this work we focus our attention on
the application of FUSS within Gibbs sampling to draw from multi-variate pdfs. This allows us to concentrate on designing very
efficient procedures for sampling from univariate full-conditional pdfs. Furthermore, note also that all the operations in both
algorithms (FUSS-MH and FUSS-RC) can be implemented in the log-domain, thus evaluating the functions V (x) = log[π(x)]
and W (x) = log[p(x|Sm)], which may be more convenient for many applications.

As a final remark, note that the FUSS-RC algorithm becomes a standard rejection sampler when p(x|Sm) ≥ π(x) for all
x ∈ X , thus providing independent identically distributed (i.i.d.) samples from π̄(x). Indeed, note that in this scenario the
probability of accepting the new state is always αRC = 1, i.e., any candidate movement that has survived the rejection test is
automatically accepted. This is due to the fact that, in FUSS-RC after the rejection test, the proposed samples are distributed as

q̄(x) ∝ q(x) = π(x) ∧ p(x|Sm).

Finally, note also that q(x) is closer, in terms ofL1 distance, to π(x) than to p(x|Sm). Hence, FUSS-RC produces less correlated
samples than FUSS-MH at the expense of an increased computational cost per iteration.4

3.2. Initialization and general strategy for FUSS

The initial set SM should cover all the high probability regions of the target π(x). In general, if no prior information about
π(x) is available, we suggest the following FUSS approach: choose a large, dense, uniform initial grid of support points, such

4In the extreme (and trivial) case when proposal and target are the same function (i.e. q(x) = π(x)), the correlation is zero, since we are drawing i.i.d.
samples directly from the target.



that si+1 − si = ε for i = 1, . . . ,M − 1, i.e.,

SM = {s1, s2 = s1 + ε, . . . , sM = s1 + (M − 1)ε},

in order to capture all the main features of the target. The grid could be thicker in the regions where the user desires to focus
the computational effort. The number of support points can then be drastically reduced according to some pre-defined pruning
criterion (see Section 5 for several proposed approaches), thus obtaining the final set Sm, which is used to build a stepwise
approximation of the target pdf. We emphasize again that the resulting proposal pdf is self-tuned and tailored to the target, but
is non-adaptive, since it does not vary during the run of the chain (i.e., it is “adapted” offline, before running the Markov chain).

4. CONSTRUCTION OF THE PROPOSAL DENSITY

In this section we describe in detail the construction of the proposal density, both for one-dimensional and multidimensional
pdfs. In many applications it is advantageous to evaluate the target pdf in the log-domain. Therefore, in the following we only
consider the construction of the proposal function in the log-domain.

4.1. One-dimensional construction

Let us consider the set of support points after the pruning step (see Section 5),

Sm = {s1, s2, . . . , sm} ⊂ X ,

where s1 < . . . < sm, and we define the intervals I0 = (−∞, s1], Ij = (sj , sj+1] for j = 1, ...,m− 1 and Im = (sm,+∞).
The unnormalized proposal pdf is then given by

p(x|Sm) = eW (x),

where W (x) is built using a piecewise constant approximation for all the intervals, with the exception of the first and last
intervals (i.e., the tails), where a non-constant function is used. Mathematically,

W (x) = wi(x) = max [V (si), V (si+1)] IIi
(x), (5)

where 1 ≤ i ≤ m− 1 and

IIi(x) =

{
1, x ∈ Ii = (si, si+1],
0, x 6= Ii = (si, si+1].

(6)

The maximum in (5) is selected in order to satisfy the inequality, W (x) ≥ V (x), in as many regions as possible. Let us recall
again that FUSS-RC becomes a standard rejection sampler (thus providing independent samples) when p(x|Sm) ≥ π(x) for all
x ∈ X , which is equivalent to W (x) ≥ V (x) for all x ∈ X . In the first and last intervals, I0 and Im respectively, we have

W (x) = wj(x), j ∈ {0,m}, x ∈ Ij ,

where wj(x) represents a generic log-tail function. For instance, in order to have a light-tailed proposal, linear functions can be
selected for wj(x) when j ∈ {0,m}. Figures 1 and 8 provide some specific examples. For further details, see A.

4.2. Variate generation from p̄(x)

The proposal p̄(x) ∝ p(x|Sm) is composed of m + 1 pieces, including the two tails. Therefore, p(x|Sm)) can be seen as a
finite mixture

p(x|Sm) =
m∑

i=0

ηiφi(x),

with
∑m
i=0 ηi = 1, whereas φi(x) = exp (wi(x)) for all x ∈ Ii, and φi(x) = 0 for x /∈ Ii. Hence, in order to draw a sample

from p̄(x) ∝ p(x|Sm), it is necessary to perform the following steps:
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Fig. 1. Example of the proposal construction. (a) Construction procedure with m = 9 support points, in the log-domain. In this
case, we have two light tails (two straight lines in the log-domain). (b) The corresponding unnormalized densities p(x) = eW (x)

and π(x) = eV (x). (c) The corresponding normalized densities p̄(x) ∝ p(x) and π̄(x) ∝ π(x).

1. Compute the area Ai below each piece, i = 0, . . . ,m. This is straightforward and can be done analytically, both for the
rectangular pieces, Ai = (si+1 − si) exp(max [V (si), V (si+1)]) for i = 1, . . . ,m− 1, and for the tails considered here
(see A for further details). Then, normalize them,

ηi =
Ai∑m
j=1Aj

, for i = 0, . . . ,m.

2. Choose a piece (i.e., an index j∗ ∈ {0, . . . ,m}) according to the weights ηi for i = 0, . . . ,m.

3. Given the index j∗, draw x′ ∼ φ̄j∗(x) ∝ φj∗(x) = exp (wj∗(x)).

It is important to remark that the process of calculating the areas Ai (and then the weights ηi) only has to be performed once,
before running the Markov chain.

4.3. Multidimensional construction

In this work, we focus on the application of the FUSS algorithm within a Gibbs sampler, drawing from univariate full-
conditional densities. However, FUSS can also be applied to draw directly from a multivariate target density, π(x) with
x ∈ XD ⊆ RD with D > 1. This approach can be useful both for generating samples directly from the target (using FUSS as
a stand-alone algorithm) and for updating jointly several variables within a block Gibbs sampler.

In this section, we describe briefly how to build a multidimensional proposal equivalent to the one described in Section 4.1.
Let us consider a bounded target density, π(x) with x ∈ XD ⊆ RD and D > 1. Let us define now D sets of support points,
each one forming a grid within X :

Sm1 = {s1,1, . . . , s1,m1},
...

Smd
= {sd,1, . . . , sd,md

},
...

SmD
= {sD,1, . . . , sD,mD

},

(7)

where the elements of each set are sorted in ascending order, i.e., sd,1 < sd,2 < . . . < sd,md
for all d = 1, . . . , D. This grid

divides XD into
∏D
d=1(md − 1) hyper-rectangles delimited by 2D vertices. Namely, a generic hyper-rectangle is defined as

Ij1,...,jL = [s1,j1 , s1,j1+1]× [s2,j2 , s2,j2+1]× . . .× [sD,jD , sD,jD+1],

where jd ∈ {1, . . . ,md − 1} with d = 1, . . . , D. Therefore, a grid is created with a rectangular boundary defined by

RB =
D∏

d=1

[min sd,jd ,max sd,jd+1] .



Table 4. Pruning algorithm P1

1. Given SM = {s1, . . . , sM}, decide the desired number m of final support points (or a rate of reduction m
M

).

2. Sort π(si), i = 1, . . . ,M , in a decreasing order:

π(sr1 ) ≥ π(sr2 ) ≥ .... ≥ π(srM ).

3. Return Sm = {sr1 , sr2 , . . . , srm}.

Within RB , a piecewise constant proposal pdf can be easily built by evaluating the target pdf at the vertices of the hyper-
rectangle Ij1,...,jD , in a similar fashion to Eq. (5). Namely, denoting as Vj1,...,jD the set of 2D vertices of Ij1,...,jD , we can
define

p(x|Sm1 , . . . ,SmD
) = max

x∈Vj1,...,jD

π(x), ∀x ∈ Ij1,...,jD ⊂ RB , (8)

i.e., p(x) is constant within Ij1,...,jD , taking a value equal to the maximum value attained by the target π(x) at the 2D vertices
of Ij1,...,jD . Outside ofRB , the proposal pdf can be constructed by using D independent exponential pieces, i.e.,

p(x|Sm1 , . . . ,SmD
) =

D∏

d=1

exp (−ξdxd − ζd) , x /∈ RB , (9)

where every ξd and ζd are obtained applying the interpolation procedure described in Eq. (5) independently to each component
of the state space. Note that the function in Eq. (9) can be analytically integrated and it is possible to draw easily from it,
following the procedure described in Section 4.2.

5. PRUNING ALGORITHMS

The computational cost of drawing from the proposal pdf p̄(x) (and, as a consequence, the speed of the algorithm) depends
on the number of support points used and on the complexity of constructing each piece. Since we are considering simple
uniform pieces, the speed is then mainly hindered by the total number of points. Moreover, since we consider initially a thin
grid (composed of a large number of support points), the application of some pruning strategy to discard unnecessary points is
essential in order to obtain an efficient algorithm. Indeed, the application of the pruning step has two advantages: it speeds up
the algorithm and allows the use of a large number of initial support points to capture all the important features of the target.

In the following, we present some possible pruning criteria, sorted in increasing level of complexity. For the sake of
simplicity, we assume a bounded target π(x). The first two procedures, P1 and P2, are shown in Tables 4 and 5 respectively.
They are based on the simple idea of pruning all the points sr corresponding to “small” values of the target. They are the
simplest and fastest approaches, but they also present several limitations: they are not advisable for heavy tailed distributions
and their performance is quite sensitive to the dispersion of the target. Therefore, P1 and P2 should be used carefully with
complicated pdfs, although they can be very efficient for simple densities.

More refined pruning techniques can be easily devised. An example is the procedure P3 in Table 6. The underlying idea is
removing support points in areas where the target is virtually flat, i.e., |π(si+1) − π(si)| ≈ 0. Moreover, if a uniform grid is
used at the first iteration (i.e., si+1 − si = ε), the ratio π(si+1)−π(si)

ε is an estimation of the first derivative of the target. Hence,
imposing a condition on |π(si+1) − π(si)| is equivalent to imposing a condition on the first derivative of π(x). Clearly, this
procedure could be repeated until achieving the desired rate of reduction, as shown in Table 6, where the procedure is iterated
until the pruning condition is no longer verified. Indeed, this criterion can be modified in order to obtain an optimal mimimax
pruning strategy, as described in the following section.

5.1. Optimal minimax pruning strategy

The performance of a rejection sampler or an independent Metropolis algorithm is related to the L1 distance between the target
and the proposal (2),

Dp|π(R) =
∫ ∞

−∞
|p(x|SM )− π(x)|dx. (12)



Table 5. Pruning algorithm P2

1. Given SM = {s1, . . . , sM}, choose a value δ ∈ (0, 1).

2. Find all the support points, skj
∈ SM , such that

π(skj
) ≤ δ max

1≤i≤M
π(si). (10)

3. Return Sm = SM \ {sk1 , . . . , skG
}, where G is the number of points satisfying the inequality in Eq. (10).

Table 6. Pruning algorithm P3

1. Given SM = {s1, . . . , sM}, choose a value δ > 0 and set S(0) = SM , G = M , r = 1 and L = max
0≤i≤M

|π(si+1)− π(si)|, with

s0 = −∞ and sM = +∞.

2. While G 6= 0:

(a) Find all the support points skj
∈ S(r) such that ˛̨̨

π(skj+1)− π(skj
)
˛̨̨
≤ δL, (11)

(b) Set S(r) = S(r−1) \ {sk1 , . . . , skG
}, where G = |{sk1 , . . . , skG

}|.
(c) Set r = r + 1.

3. Return Sm = S(r).

Taking into account the procedure used to build the proposal and described in detail in Section 4, we can write

Dp|π(R) =
M∑

j=0

Dp|π(Ij),

where Dp|π(Ij) denotes the local L1 distance within the i-th interval (0 ≤ j ≤M ),

Dp|π(Ij) =
∫

Ij

|p(x|SM )− π(x)|dx

=
∫ sj+1

sj

|p(x|SM )− π(x)|dx,
(13)

where s0 = −∞ and sM+1 = +∞, since I0 = (−∞, s1] and IM = [sM ,∞). Moreover, recall that s1 < s2 < . . . < sM .
The essential consideration now is the following: when a support point is removed, the distance between the target and the

proposal generally increases, thus leading to a worse performance of the algorithm. Hence, an optimal criterion for pruning
support points is discarding those points that lead to the smallest increase in the L1 distance between p(x) and π(x). This can
be seen as a minimax pruning criterion, since its goal is minimizing the maximum increase in Dp|π(R). Let us assume that the
j-th support point (2 ≤ j ≤M − 1) is pruned, then the distance between the target and the proposal becomes now

D̃p|π(R) =
M∑

i=0
i 6=j−1,j

Dp|π(Ei) = Dp|π(R) +Dp|π(Ij−1 ∪ Ij)−
[
Dp|π(Ij−1) +Dp|π(Ij)

]
, (14)

where Dp|π(Ij−1 ∪ Ij) denotes the distance between the target and the proposal in the new interval, Ij−1 ∪ Ij , created by
removing the j-th support point. Hence, the optimal support point to be pruned is the one that minimizes the increase in the
distance between p(x) and π(x), given by (14), i.e.,

k = arg min
2≤j≤M−1

{
Dp|π(Ij−1 ∪ Ij)−

[
Dp|π(Ij−1) +Dp|π(Ij)

]}
, (15)



Table 7. Pruning algorithm P4

1. Choose a value δ > 0. Given SM = {s1, ..., sM}, set S(0) = SM , m = M , n = 0 and

L = max
1≤j≤

j
m−1

2

k(s2j+1 − s2j−1)|π(s2j+1)− π(s2j−1)|.

2. FOR r = 1, . . . , R =
¨
m−1

2

˝
:

(a) Compute br = (s2r+1 − s2r−1)|π(s2r+1)− π(s2r−1)|.
(b) If br ≤ δL, set S(r) = S(r−1) \ {s2r} and n = n+ 1.

(c) Otherwise, if br > δL, set S(r) = S(r−1).

3. If n > 0 set n = 0, S(0) = S(R), m = |S(R)| and repeat from step 2.

4. Otherwise, if n = 0, return Sm = S(R).

where the constant termDp|π(R) has been removed. Since the proposal p(x|SM ) is a piecewise constant function, taking values

exp(wi) = exp(max [V (si), V (si+1)]),

with the exception of the tails, and considering a continuous target pdf, it can be easily shown that

Dp|π(Ij) ≤ Bj−1,j+1 = (sj+1 − sj−1)|π(sj+1)− π(sj−1)|,

i.e., Bj−1,j+1 is an upper bound on the distance D̃p|π(R). Therefore, by pruning the support point that minimizes Bj−1,j+1

we are indeed minimizing the maximum possible increase in the L1 distance between the target and the proposal pdfs. This
observation is the theoretical basis of the minimax optimal pruning strategy detailed in Table 7. The pruning algorithm P4
applies this criterion recursively, performing several iterations through the support set and discarding those points such that
B2r−1,2r+1 ≤ δL, where L = max1≤j≤bm−1

2 c(s2j+1 − s2j−1)|π(s2j+1) − π(s2j−1)|. The algorithm stops automatically
when no support points are pruned at one iteration, thus providing the user with a black-box algorithm where only one easily
interpretable parameter (δ) has to be chosen. Figure 5.1 depicts several examples of proposals obtained after applying the
pruning P4 with different values of δ for a target pdf π(x) = 0.2N (x;−1, 1) + 0.8N (x; 3, 1), where N (x;µ, σ2) denotes a
Gaussian pdf with mean µ and variance σ2.

−10 0 10
x

(a)

−10 0 10
x

(b)

−10 0 10
x

(c)

Fig. 2. Examples of proposal construction starting with SM = {−100 : 0.01 : 100} and after applying the pruning algorithm
P4: (a) with the final number of points m = 37, (b) m = 18, (c) and m = 10, respectively. The considered target pdf is showed
in dashed line.

6. NUMERICAL EXAMPLES FOR UNIVARIATE DENSITIES

In this section, we consider two different univariate target densities in order to test the performance of FUSS as a stand-alone



algorithm: the Nakagami pdf (widely used to simulate fading in wireless communication systems) and a Gaussian mixture that
contains four modes (three of them very narrow). The FUSS algorithm is compared to other two well-known MCMC methods:
the Metropolis-Hastings (MH) algorithm and the slice sampler.

6.1. Unimodal target pdf: Nakami distribution

First of all we consider a Nakagami target distribution, i.e.,

π̄(x) ∝ π(x) = x2β−1 exp
(
− β

Ω
x2

)
, x > 0, (16)

with β ≥ 0.5 and Ω > 0. The Nakagami distribution is widely used for the simulation of fading channels in wireless
communications (31; 32; 33). When β is an integer or half-integer (i.e., β = n

2 with n ∈ N), independent samples can be
directly generated through the square root of a sum of squares of n zero-mean i.i.d. Gaussian random variables (33). However,
for generic values of β there is not direct method to sample from it, and several alternative approaches have been considered
(31; 32). Here, our goal is to estimate the expected value of X ∼ π̄(x), µ = E[X] = Γ(β+ 1

2 )

Γ(β)

√
Ω
β , and the variance,

σ2 = Ω
(

1− 1
β

(
Γ(β+ 1

2 )

Γ(β)

)2
)

for Ω = 1 and β = 4.6.

We apply the FUSS methods using different pruning procedures (P2, P3 and P4) with different values of the threshold
parameter δ. We always use an initial set SM = {0.01, 0.02, 0.03, . . . , 103}, i.e., si = 10−2 · i for i = 1, . . . ,M = 105 points.
We also test a standard MH technique (2) with a random walk proposal

p̄(xk|xk−1) ∝ exp
{−(xk − xk−1)2

2σ2
p

}
,

with different values of σp. Furthermore, we consider another well-known methodology, the slice sampling technique (2,
Chapter 8). In order to obtain a fair (and reproducible) comparison of the computational time, we use the corresponding Matlab
functions provided by MathWorks: mhsample.m and slicesample.m respectively.

For all these techniques, we choose x0 ∈ U [0, 10], K = 5000, and we consider all the generated samples without removing
any burn-in period. We have performed 3 · 104 independent runs. The results are shown in Tables 8 and 9. These tables provide
the Mean Square Errors (MSE) in the estimation of µ and σ2, the linear correlation among the samples at lag-1, ρ(1), the
acceptance rate (0 ≤AR≤ 1) in the rejection sampling (RS) step,5 the final number of support points after the pruning stage,
m, and the computational time for the whole algorithm (normalized w.r.t. the time required by the standard MH method).

We can see that both FUSS algorithms (FUSS-MH and FUSS-RC) always outperform the standard MH and slice sampling
techniques. In all cases, the FUSS algorithms are faster, with the only exception of FUSS-RC using P2 and δ = 0.9, which is
slightly slower than MH, but faster than slice sampling. Moreover, both FUSS-MH and FUSS-RC attain the performance of an
exact sampler in the estimation of µ, since

MSE(µ) ≥ σ2

K
= 1.0560 10−5.

This optimal behaviour of both samplers is due to the fact that they are able to draw virtually independent samples (lag-1
correlation ρ(1) < 10−3 in all cases for FUSS-RC and ρ(1) < 10−2 for FUSS-MH with P4 and δ ≥ 0.5), just like the ones
that would be obtained from an exact sampler. On the one hand, FUSS-MH is always faster than FUSS-RC, due to the lack of
the rejection sampling (RS) test. On the other hand, FUSS-RC provides better results (thanks to this RS test) and is still faster
than the standard MH and the slice sampler. Note also that the time required by FUSS-MH always increases when m becomes
larger, whereas in FUSS-RC the computational cost can also decrease when m grows due to an improvement in the acceptance
rate. Finally, let us remark that the performance of the pruning procedures P3 and P4 is clearly better than P2. As expected, the
best one is P4, owing to the fact that P4 selects the final support points according to a minimax optimality criterion, as discussed
in Section 5.1. This results in a better quality of the estimators (in terms of MSE), a lower correlation among samples (i.e., a
smaller value of ρ(1)), and a reduced computational time (especially for FUSS-RC, as the AR increases).6

5We remark that the AR is not the acceptance probability α in the FUSS-MH and MH methods. The AR is the averaged number of samples accepted in
the rejection sampling step of FUSS-RC, which is the only algorithm that includes an RS step. This means that the total number of iterations of FUSS-RC is
greater than K = 5000 (depending on the acceptance rate), whereas for the other methods AR = 1 and K = 5000.

6The benefit of using P4 can be seen more clearly in the next example, where a multimodal target pdf with narrow modes and a smaller number of iterations
K is considered.



FUSS-MH FUSS-RC
Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01 δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 3.13 10−5 2.15 10−5 1.68 10−5 1.10 10−5 1.12 10−5 1.09 10−5 1.06 10−5 1.05 10−5

MSE(σ2) 3.94 10−6 2.25 10−6 1.65 10−6 1.05 10−6 1.21 10−6 1.13 10−6 1.12 10−6 1.12 10−6

ρ(1) 0.4811 0.3288 0.2142 0.0087 -8.77 10−4 -2.26 10−4 -1.30 10−4 -1.05 10−4

AR 1 1 1 1 0.3926 0.6354 0.7677 0.9779
m 23 56 73 139 23 56 73 139

Time 0.6683 0.6742 0.6781 0.6875 1.3476 0.8263 0.7927 0.7328

P3

MSE(µ) 1.11 10−5 1.09 10−5 1.06 10−5 1.05 10−5 1.10 10−5 1.07 10−5 1.05 10−5 1.05 10−5

MSE(σ2) 1.20 10−6 1.16 10−6 1.15 10−6 1.13 10−6 1.14 10−6 1.11 10−6 1.11 10−5 1.10 10−6

ρ(1) 0.0200 0.0124 0.0077 0.0053 -2.35 10−4 -2.50 10−4 -2.80 10−4 -1.85 10−4

AR 1 1 1 1 0.9570 0.9630 0.9787 0.9830
m 50 88 106 166 50 88 106 166

Time 0.6712 0.6816 0.6859 0.7019 0.7676 0.7408 0.7424 0.7426

P4

MSE(µ) 1.10 10−5 1.09 10−5 1.06 10−5 1.05 10−5 1.10 10−5 1.07 10−5 1.05 10−5 1.05 10−5

MSE(σ2) 1.19 10−6 1.14 10−6 1.12 10−6 1.10 10−6 1.13 10−6 1.10 10−6 1.09 10−6 1.08 10−6

ρ(1) 0.0133 0.0096 0.0076 0.0053 1.27 10−4 -2.61 10−4 -2.45 10−4 -2.62 10−4

AR 1 1 1 1 0.9666 0.9769 0.9800 0.9832
m 71 109 121 177 71 109 121 177

Time 0.6849 0.6937 0.6957 0.7105 0.7339 0.7397 0.7380 0.7502

Table 8. Results of FUSS for the Nakagami target (β = 4.6 and Ω = 1) with different pruning procedures (P2, P3 and P4) and
K = 5000. The table shows the MSE in the estimation of the mean and variance (µ and σ2), the correlation at lag-1 (ρ(1)), the
acceptance rate (AR) for FUSS-RC (for FUSS-MH AR=1, since there is no RS test), the number of support points in the final
grid (m), and the time required by the whole algorithm (normalized w.r.t. the time required by a standard MH sampler).

σp= 0.2 σp= 0.5 σp= 0.8 σp= 1 σp= 2 σp= 3 σp= 4

MH

MSE(µ) 0.0021 3.95 10−4 1.98 10−4 1.52 10−4 1.43 10−4 1.90 10−4 2.52 10−4

MSE(σ2) 0.0513 0.0091 0.0039 0.0027 9.20 10−4 6.18 10−4 5.69 10−4

ρ(1) 0.8935 0.7495 0.7433 0.7611 0.8389 0.8808 0.9043
AR 1 1 1 1 1 1 1

Time 1 1 1 1 1 1 1
Slice sampling

MSE(µ)= 1.24 10−5 MSE(σ2)= 2.27 10−5 ρ(1)= 0.0229 AR=1 Time= 2.5037

Table 9. Results of the standard MH and slice sampling methods for the Nakagami target (β = 4.6 and Ω = 1) with different
standard deviations (σp) and K = 5000. The meaning of the parameters displayed is the same as in Table 8.

6.2. Multimodal target pdf: mixture of Gaussians

In this second example we test the FUSS approach to draw from a multimodal target density. More specifically, we consider a
mixture of 4 Gaussian pdfs,

π̄(x) =
4∑

i=1

N (x;µi, σ2
i ), (17)

where µ1 = −7, σ1 = 0.1, µ2 = 0, σ2 = 1, µ3 = 8, σ3 = 0.2, µ4 = 15 and σ4 = 0.1. This choice leads to 4 clearly separated
modes (three of them quite narrow), as shown in Figure 3(a).7 We perform K iterations of the chain, taking into account all the
generated samples (K) to perform the estimation (without removing any burn-in period). We test again the performance of the
FUSS algorithm, the standard MH method with a Gaussian random walk proposal pdf (with variance σ2

p) and the slice sampler,
as in the previous example. Furthermore, we also apply two more sophisticated MCMC techniques: the Metropolis adjusted
Langevin algorithm (MALA) (34) and the Hamiltonian Monte Carlo (HMC) method (35). Both methodologies incorporate the
gradient information in their respective proposal mechanisms. Hence, they should provide a better performance whenever it is
possible to evaluate the gradient of the target. However, they are also more costly (compared to a standard MH method) due to
the evaluations of the gradient required. We consider a Gaussian pdf with a standard deviation σp = 20 for the diffusion noise

7Note that, from a Monte Carlo point of view, the problem becomes harder as the number of modes increases. This is due to the fact that our interest here is
not discovering the number of modes (as in spectral estimation), but being able to construct a proposal that mimicks the target as closely as possible. Therefore,
having clearly separated and narrow modes results in a more challenging problem than having partially overlapping (and thus wider) modes.



in MALA and for the kinetic distribution in HMC.8 We test different values of the discretization parameter (ε) for MALA, and
different values of ε and L (length of the trajectory) in HMC.9

For the sake of simplicity, we have only considered the FUSS-MH algorithm in this example.10 For all the different
algorithms, the initial state of the chain has been chosen as x0 ∼ U([−10, 20]). As in the previous example, we have used the
Matlab functions directly provided by MathWorks for the MH and slice samplers (mhsample.m and slicesample.m
respectively). For HMC we have used the code provided in (36, Chapter 30), whereas for MALA we have developed
our own Matlab code, since there is no code publicly available as far as we know. For FUSS-MH, we use an initial set
SM = {−103,−103 + 0.01, . . . , 103 − 0.01, 103}, i.e. SM = {s1, . . . , sM} with si = s1 + (i− 1)ε for s1 = −103, ε = 10−2

and M = 2 · 105 + 1 points.
Table 10 shows the results (using K = 200 samples, different pruning algorithms (P2, P3 and P4) and values of δ) for

FUSS-MH: MSE in the estimation of the mean (µ) and variance (σ2) of the target, correlation at lag-1 (ρ(1)), number of final
support points (m), and time required by the whole algorithm (normalized w.r.t. the time required by the standard MH algorithm
using K = 200). The results of the standard MH (using again K = 200 samples and different values of σp) are provided in
Table 11, whereas Table 12 shows the results (in terms of MSE and elapsed time) for the MH and slice samplers when the
number of iterations of the Markov chain (K) is increased from K = 200 up to K = 2 · 104. Finally, Tables 13 and 14 provide
the results for MALA and HMC respectively. Furthermore, in Figures 3(b) and (c) we depict respectively the log-MSE and
log-time of MH and slice sampling as function of K, compared to the results for FUSS-MH (which do not depend on K). All
the results are averaged over 3 · 104 runs.

FUSS-MH
Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 11.38 7.33 4.30 0.4680
MSE(σ2) 409.02 288.35 211.78 19.52
ρ(1) 0.9142 0.8917 0.8419 0.1468
m 18 46 103 662

Time 1.03 1.04 1.06 1.17

P3

MSE(µ) 1.7683 1.1368 0.8686 0.3679
MSE(σ2) 78.96 49.82 35.92 15.3513
ρ(1) 0.6693 0.5284 0.4224 0.0296
m 61 99 135 497

Time 1.20 1.27 1.31 1.35

P4

MSE(µ) 0.3786 0.3662 0.3638 0.3526
MSE(σ2) 15.53 15.31 15.10 14.53
ρ(1) 0.0446 0.0306 0.0247 0.0093
m 145 195 223 605

Time 1.23 1.26 1.28 1.40

Table 10. Results of FUSS-MH for the mixture of Gaussians target in Eq. (17) using different pruning procedures (P2, P3 and
P4) and K = 200. The table shows the MSE in the estimation of the mean and variance (µ and σ2), the correlation at lag-1
(ρ(1)), the number of support points in the final grid (m), and the time required by the whole algorithm (normalized w.r.t. the
time required by the standard MH sampler with K = 200).

σp= 2 σp= 8 σp= 14 σp= 20 σp= 25 σp= 30

MH

MSE(µ) 34.92 24.64 19.62 19.46 19.80 20.57
MSE(σ2) 4.43 103 1.36 103 1.13 103 1.09 103 1.37 103 1.51 103

ρ(1) 0.7481 0.9465 0.9425 0.9424 0.9445 0.9459
Time 1 1 1 1 1 1

Table 11. Results of the standard MH method for the mixture of Gaussians target in Eq. (17) using K = 200. The table shows
the MSE in the estimation of the mean and variance (µ and σ2), the correlation at lag-1 (ρ(1)), and the time required by the
whole algorithm (normalized to 1 in order to compare with the alternative methods). The best results are obtained for σp = 20,
but the MSE is always larger than using FUSS-MH.

8 The value σp = 20, used both in MALA and HMC, corresponds to the optimal scale parameter for a random walk MH method obtained in the simulations
(see Table 11).

9Note that MALA can also be interpreted as a special case of HMC with L = 1 (35).
10As shown in the previous numerical example, FUSS-RC provides in general better results at the expense of a slight increase in the computational time.



K = 200 K = 103 K = 2 · 103 K = 5 · 103 K = 104 K = 1.5 · 104 K = 2 · 104

MH MSE(µ) 19.46 6.16 3.16 1.35 0.6735 0.4540 0.3341
σp= 20 MSE(σ2) 1.09 103 263.36 123.37 44.69 22.48 14.45 10.79

Time 1 4.55 8.75 21.51 41.48 61.44 81.06

Slice
MSE(µ) 22.13 6.08 3.25 1.26 0.6136 0.4177 0.2911

MSE(σ2) 1.10 103 171.13 68.91 23.98 10.48 7.40 5.85
Time 2.37 11.04 21.62 52.66 103.78 154.38 204.57

Table 12. Results of the slice sampling and the standard MH method for the mixture of Gaussians target in Eq. (17) using
σp = 20 and varying the total number of iterations of the chain (K) from K = 200 up to K = 2 · 104. The table shows the
MSE in the estimation of the mean and variance (µ and σ2), and the time required by the whole algorithm (normalized w.r.t.
the time required by the standard MH sampler with K = 200).

K = 1.5 · 104

ε= 0.05 ε= 0.1 ε= 0.5 ε= 0.7 ε= 0.8 ε= 0.9 ε= 1 ε= 1.2 ε= 1.5

MALA
MSE(µ) 0.4686 0.5038 0.5269 0.4135 0.4616 0.4701 0.4413 0.4748 0.4828

MSE(σ2) 14.09 16.80 18.03 14.61 14.69 15.36 11.19 13.75 14.73
Time 61.59 61.59 61.59 61.59 61.59 61.59 61.59 61.59 61.59

Table 13. Results of MALA (34) for the mixture of Gaussians target in Eq. (17) using K = 1.5 · 104, σp = 20 (the standard
deviation of the driving noise), and varying the parameter ε. The table shows the MSE in the estimation of the mean and
variance (µ and σ2), and the time required by the whole algorithm (normalized w.r.t. the time required by the standard MH
sampler with K = 200).

K = 1.5 · 104

L = 2 L = 3 L = 5 L = 8 L = 9 L = 10 L = 15

HMC MSE(µ) 1.06 0.9829 0.9453 0.5058 0.3987 0.6217 0.8448
ε= 0.1 MSE(σ2) 21.98 20.56 18.83 15.42 16.74 39.42 61.15

Time 62.63 73.28 79.94 131.68 141.08 156.76 215.58

HMC MSE(µ) 0.5295 0.3445 1.05 0.8356 0.5183 0.9699 0.4694
ε= 0.2 MSE(σ2) 10.52 10.21 25.11 25.75 35.53 28.41 21.47

Time 62.63 73.28 79.94 131.68 141.08 156.76 215.58

HMC MSE(µ) 0.4408 0.5173 0.5213 0.3259 1.12 0.6557 0.6134
ε= 0.5 MSE(σ2) 12.53 13.76 13.91 21.40 24.93 30.13 25.05

Time 62.63 73.28 79.94 131.68 141.08 156.76 215.58

Table 14. Results of HMC for the mixture of Gaussians target in Eq. (17) using the code in (36, Chapter 30) withK = 1.5 ·104,
σp = 20 (σ2

p represents the inverse of the mass in the kinetic energy equation), and varying the parameters ε (the discretization
step size of the leapfrog method within HMC (35)) and L (the total number of leapfrog steps). The table shows the MSE in
the estimation of the mean and variance (µ and σ2), and the time required by the whole algorithm (normalized w.r.t. the time
required by the standard MH sampler with K = 200).

Taking into account all these results we can obtain the following conclusions:

• For a fixed value of K, FUSS-MH outperforms MH, slice sampling, MALA and HMC. All of these methods are able
to obtain similar results to FUSS when properly parameterized, but they are much more sensitive to the choice of the
parameters and they require a much larger number of iterations (K = 2·104 for MH and slice sampling, andK = 1.5·104

for MALA and HMC), thus implying a much higher computational cost.

• The results also highlight the importance of using an adaptive or self-tuned method: the results vary considerably with
the choice of the parameters for MH, slice sampling, MALA and HMC. Furthermore, FUSS-MH attains the theoretical
limit (in terms of MSE in the estimation of µ) for independent samples, MSE(µ) ≥ σ2

K = 68.765
200 = 0.3438 for K = 200,

whereas the MSE of the competing methods is always much higher than this limit, MSE(µ) ≥ σ2

K = 68.765
2·104 = 3.438·10−3

for K = 2 · 104. This is due to the fact that FUSS-MH is able to adapt the entire shape of the proposal pdf according to
the target, thus providing virtually independent samples.

• Tables 13 and 14 show that, unlike FUSS, MALA and HMC suffer when applied to multimodal distributions with narrow
modes. In this specific scenario, the use of gradient information can even reduce the exploratory behaviour of the chain
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Fig. 3. (a) The multimodal target pdf π(x) in Eq. (17). (b) Log-MSE as function of K
103 for the slice (triangles) and the MH

(squares) methods, with σp = 20. The solid line shows the log-MSE, log(0.3526) = −1.0424, of FUSS-MH-P4 with δ = 0.01,
achieved using only K = 200. (c) Log-time (normalized w.r.t. the time required by the standard MH sampler with K = 200)
as function of K for the slice (triangles) and the MH (squares) methods. The solid line corresponds to FUSS-MH-P4 with
δ = 0.01 and K = 200.

for some values of the parameters. The results for MALA and HMC are comparable to the standard MH method (with a
similar number of samples, K = 2 · 104) and to FUSS-MH-P4(δ = 0.01) using only K = 200 samples. Namely, using
FUSS we can save more than 98% of the computational time.

• FUSS-MH using the pruning procedure P4 attains virtually the theoretical bound for the MSE (i.e., 0.3438 for the
estimation of µ using K = 200), achievable using independent samples. Similar results are attained using different
choices of the threshold δ (showing the robustness of the approach w.r.t. the parameterization), due to the fact that
FUSS-MH-P4 produces virtually independent samples.

7. NUMERICAL EXAMPLES FOR MULTIVARIATE DENSITIES

In this section, we consider four multi-variate densities in order to test the performance of FUSS-within-Gibbs: two bivariate
multimodal pdfs, a challenging problem of parameter estimation in a chaotic system, and a high-dimensional and multi-modal
problem in financial signal processing. The FUSS algorithm is compared to other two well-known MCMC-within-Gibbs
methods: the Metropolis-Hastings (MH) algorithm and adaprive rejection Metropolis sampling (ARMS). Furthermore, the
bivariate version of the stand-alone FUSS algorithm is also tested in Section 7.2, showing that it can outperform all the MCMC-
within-Gibbs approaches.

The FUSS-within-Gibbs algorithm is summarized in Table 15. The algorithm in Table 15 is essentially a standard Gibbs
sampler, where FUSS is used to draw from the full-conditionals at each iteration. Note that the set of support points is always
re-calculated before applying the FUSS algorithm. This leads to an optimal design of the proposal at each iteration and does not
result in a large computational cost, as shown in the simulations. However, if the target is not expected to change substantially
between two consecutive Gibbs iterations, the update could be performed only once out of P iterations (as done in the griddy
Gibbs sampler), thus reducing even more the computational cost. Note also that the alternative methods tested (MH-within-
Gibbs and ARMS-within-Gibbs) are similar to the algorithm in Table 15, but removing steps 2(b) and 2(c) and using instead
some other proposal function, as described later.

7.1. FUSS-within-Gibbs: simple bivariate pdf

In order to show the importance of using an adequate MCMC technique within a Gibbs sampler, in this section we provide a
simple example using different methods for drawing from the full-conditional pdfs. Let us consider the bivariate target density

π̄(x1, x2) ∝ π(x1, x2) = exp
(
− (x2

1 −A+Bx2)2

4
− x2

1

2σ2
1

− x2
2

2σ2
2

)
, (18)

where A = 16, B = 10−2 and σ2
1 = σ2

2 = 104

2 . Densities with this analytic form are often used in the literature to evaluate
the performance of different Monte Carlo algorithms (37; 38). We apply a Gibbs sampler to draw from π̄(x1, x2). To generate



Table 15. General structure of the FUSS-within-Gibbs algorithm.

1. Initialization: Select the number of Gibbs iterations, NG, and the number of FUSS iterations per Gibbs iteration, K. Choose a set of support
points, SM = {s1, . . . , sM}, such that s1 < s2 < . . . < sM .

2. FOR t = 1, . . . , NG:

FOR i = 1, . . . , D:

(a) Let the target be π(x) = π(x
(t)
i |x

(t)
1 , . . . , x

(t)
i−1, x

(t)
i+1, . . . , x

(t−1)
D ).

(b) Apply some of the pruning procedures described in Section 5, using the initial support set SM and the target π(x), to obtain the
final support set S(t)

i .

(c) Build a proposal function p(x|S(t)
i ), using some appropriate pre-defined mechanism, as described in Section 4.

(d) Perform K steps of an MCMC method using p(x|S(t)
i ) as proposal pdf. Take the last one as x(t)

i .

samples from the full conditional pdfs, π(x1|x2) and π(x2|x1), we use FUSS-MH-P4 with δ = 0.9, starting with a uniform grid
SM = {−104,−104+0.01, . . . , 104−0.01, 104}, i.e. SM = {s1, . . . , sM}with si = s1+(i−1)ε for s1 = −104, ε = 10−2 and
M = 2·106+1 points. We also apply the ARMS method within the Gibbs sampler (16). ARMS uses an interpolation procedure
to build the proposal using a set of support points, similarly to FUSS. However, unlike FUSS, ARMS starts with few support
points and incorporates new ones adaptively. We choose for ARMS the initial set {−10,−6,−4.3,−0.01, 3.2, 3.8, 4.3, 7, 10}.
Finally, we also consider a standard MH algorithm with a random walk proposal

p̄(x(t)
i |x

(t−1)
i ) ∝ exp

(
− (x(t)

i − x
(t−1)
i )2

2σ2
p

)
,

with σp ∈ {1, 2, 10}, initial state x(0)
i ∈ U([−5, 5]), and x(t)

i denoting the value of xi (i ∈ {1, 2}) at the t-th iteration of the
MH algorithm. We perform NG = 2000 iterations of the Gibbs sampler, using all the samples to estimate four statistics which
involve the first four moments of the target: mean, variance, skewness and kurtosis. In each iteration, we draw K samples from
each full-conditional, taking only the last one and continuing the Gibbs cycle.

Table 16 provides the numerical results (averaged over 1000 runs) for the Mean Absolute Error (MAE) and the time required
by the Gibbs sampler. The time is normalized by considering 1 to be the time elapsed when using ARMS-within-Gibbs with
K = 50. Figure 4(a) illustrates the target π̄(x), whereas Figures 4(b)-(c) depict the MAE and the time required by ARMS
and FUSS-MH-P4 as function of K. Observing Table 16 and Fig. 4(b), we notice that FUSS-MH-P4 outperforms ARMS for
all values of K in the estimation of the four central moments: FUSS-MH-P4 always achieves MAEs close to zero. As shown
also in Fig. 4(c), FUSS-MH-P4 is slightly slower than ARMS for K ∈ {3, 5, 10} due to the pruning stage. However, the
computational time in FUSS-MH-P4 remains virtually constant with K, whereas in ARMS it increases with K, since ARMS
keeps adding new support points to improve the proposal pdf, hence becoming more costly for K > 15. Regarding the use of
MH-within-Gibbs, the results depend largely on the choice of the variance of the proposal, σ2

p, showing the need of adaptive or
self-tuned MCMC strategies. Indeed, for an inadequate scale parameter (e.g., σp = 1 or σp = 2), even the use of K = 1000
provides bad results. On the other hand, when a good σp is selected (i.e., σp = 10), MH with K = 100 and K = 1000 provides
virtually the same performance as FUSS-MH-P4, although at the expense of an increased computational cost.

7.2. FUSS-within-Gibbs and bivariate FUSS: donut target pdf

In order to assess the performance of the FUSS algorithm when the variables of the target are strongly correlated, we consider
here a bivariate donut target density:

π(x1, x2) = exp
(
− (x2

1 −A+Bx2
2)2

4

)
, (19)

with A = 10 and B = 0.01. Figure 5(a) depicts the proposal approximation of π(x1, x2), obtained using the multi-variate
version of FUSS described in Section 4.3, which is virtually undistinguishable from the true target pdf. Moreover, Figures 5(a)
and (b) illustrate two slices of the target function π(x1, x2), obtained fixing x2 = 10 and x1 = 3 respectively. Note that both
the support and the shape of the conditional pdfs vary considerably.
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Fig. 4. (a) Contour plot of the target pdf π̄(x1, x2). (b) MAE in estimation of the kurtosis (first component) as a function of
K, using ARMS-within-Gibbs (squares) and FUSS-within-Gibbs (circles). (c) Time required by ARMS (squares) and FUSS
(circles) within the Gibbs sampler as a function of K (normalized w.r.t. the time required by ARMS-within-Gibbs using
K = 50).

MAE
Technique K Mean Variance Skewness Kurtosis Time

3 0.0735 0.0365 0.0369 0.0022 0.343
FUSS-MH-P4 5 0.0735 0.0361 0.0367 0.0022 0.343
δ = 0.9 10 0.0724 0.0354 0.0365 0.0021 0.345

50 0.0721 0.0355 0.0364 0.0021 0.348

3 3.408 11.580 3.384 11.572 0.077
5 3.151 9.839 2.650 7.079 0.116

ARMS 10 2.798 7.665 2.024 4.124 0.223
50 1.918 3.407 1.134 1.292 1.000

MH

σp = 1 100 3.509 12.308 3.671 13.666 0.540
σp = 2 100 1.756 3.077 0.9782 0.9633 0.540
σp = 10 100 0.0756 0.0376 0.0368 0.0025 0.540
σp = 1 1000 3.508 12.302 3.665 13.624 3.229
σp = 2 1000 1.601 2.560 0.8741 0.7691 3.229
σp = 10 1000 0.0743 0.0360 0.0363 0.0021 3.229

Table 16. Mean absolute error (MAE) in the estimation of the first component of four statistics (mean, variance skewness
and kurtosis) of π̄(x1, x2), and simulation time for the whole algorithm (normalized w.r.t. the time required by ARMS using
K = 50). All the techniques are used within a Gibbs sampler (NG = 2000 total iterations), performing K iterations per Gibbs
iteration for each full-conditional.

We use different Monte Carlo techniques in order to compute the variances in the diagonal of the covariance matrix of
π(x1, x2), σ2

1 ≈ 5 and σ2
2 ≈ 500 respectively. We calculate the relative error (that is the ratio of the mean absolute error

(MAE) and the true value) for each component and compute the arithmetic mean of the two values obtained.
First of all, we apply two MCMC-within-Gibbs techniques (performing NG = 1000 iterations of the Gibbs sampler):

FUSS-MH-P2 with δ = 0.01 and an MH scheme. For the FUSS technique, we consider only K = 3 steps for each
full conditional and SM = {−104 : 0.1 : 104}. For the MH scheme, we set K = 10 and use a random walk

proposal p̄(x(t)
i |x

(t−1)
i ) ∝ exp

(
− (x

(t)
i −x

(t−1)
i )2

2σ2
p

)
for i ∈ {1, 2}. We test several values of σp. The initial value is always

set to x
(0)
i = −2 for both (FUSS and MH). Furthermore, we apply directly the bivariate version of FUSS-MH-P2 with

δ = 0.01, using the proposal constructed following the procedure described in Section 4.3. We use the initial support set
SMi = {−104 : 0.1 : 104} for i ∈ {1, 2}, and different number of iterations K ∈ {30, 50, 100, 1000}. We compare with a
standard bivariate MH algorithm using again a random walk Gaussian proposal pdf, i.e., p̄(x(t)|x(t−1)) = N (x(t)|x(t−1),Σp),
with Σp = [σ2

p 0; 0 σ2
p]> and testing again several values of σp.

Tables 17 and 18 show the results in terms of relative error. Note that the FUSS schemes always outperform the MH
methods, even with an optimal choice of the scale parameter σp. Furthermore, FUSS obtains better results using a smaller
number of iterations K, thus saving a good deal of valuable computational power. Moreover, the cost of drawing from the



FUSS proposal pdf is small due to the application of the pruning procedure. Finally, note that the stand-alone version of FUSS
provides better results than FUSS-within-Gibbs (which in turn provides better results than MH and MH-within-Gibbs). This is
due to the strong correlation among x1 and x2, which slows down the convergence of the Gibbs sampler, and might be solved
(at least partially) using an appropriate reparameterization or a better sweep strategy (e.g., a random scan approach) for the
Gibbs sampler (2).

Relative Error
Technique within Gibbs K σp= 2 σp= 5 σp= 8 σp= 10 σp= 12 σp= 15 σp= 20

MH 10 0.6654 0.4994 0.0949 0.1118 0.1889 0.2479 0.3046

FUSS-MH-P2, δ= 0.01 3 0.0856

Table 17. Mean relative error in the estimation of the trace of the covariance matrix, for the donut target pdf (σ2
1 = 5 and

σ2
2 = 500) using MH or FUSS within a Gibbs sampler with NG = 1000 iterations. We use K = 10 steps for each iteration of

Gibbs for MH, whereas only K = 3 for FUSS.

Relative Error
Technique K σp= 2 σp= 5 σp= 8 σp= 10 σp= 12 σp= 15 σp= 18 σp= 20 σp= 25

Bidim. MH 1000 0.5889 0.4209 0.3168 0.2819 0.2560 0.2337 0.2161 0.2301 0.2426

Bidim. FUSS-MH-P2, δ= 0.01

30 0.1947
50 0.1249

100 0.0731
1000 0.0225

Table 18. Mean relative error in the estimation of the trace of the covariance matrix, for the donut target pdf (σ2
1 = 5 and

σ2
2 = 500) applying directly MH and FUSS-MH in the bidimensional space, with K = 1000 iterations for MH and different

values of K for the FUSS scheme.
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Fig. 5. (a) Bidimensional proposal function obtained by the FUSS procedure: it is a excellent approximation of the target
function π(x1, x2). (b) Slice of the target function π(x1, x2) keeping fixed x2 = 10. (c) Slice of the target function π(x1, x2)
keeping fixed x1 = 3.

7.3. FUSS within Gibbs: parameter estimation in a chaotic system

The FUSS algorithms are also able to overcome severe computational issues in some statistical frameworks where other, even
more sophisticated, MCMC techniques seem to fail (39; 40). In order to show this capability, we address the estimation of
fixed parameters of a chaotic system, which is considered a very challenging problem in the literature (39; 40; 41). This type of
systems are often utilized for modelling the evolution of population sizes, for instanc in ecology (39). Let us consider a logistic
map (42) perturbed by multiplicative noise,

zt+1 = R
[
zt

(
1− zt

Ω

)]
exp(εt), εt ∼ N (0, λ2), (20)



with z1 ∼ U([0, 1]) and for some unknown parameters R > 0 and Ω > 0. Let us assume that a sequence z1:T = [z1, . . . , zT ] is
observed and, for the sake of simplicity, let us consider that λ is known. Under these circumstances the likelihood function is
given by

p(z1:T |R,Ω) =
T−1∏

t=1

p(zt+1|zt, R,Ω),

where, defining g(zt, R,Ω) = R
[
zt
(
1− zt

Ω

)]
, we have

p(zt+1|zt, R,Ω) ∝
∣∣∣∣
g(zt, R,Ω)

zt+1

∣∣∣∣ exp


−

log
(

zt+1
g(zt,R,Ω)

)2

2λ2


 ,

if g(zt, R,Ω) > 0, and p(zt+1|zt, R,Ω) = 0, if g(zt, R,Ω) ≤ 0. Considering uniform priors, R ∼ U([0, 104]) and
Ω ∼ U([0, 104]), our goal is computing the mean of the bivariate posterior pdf, p(R,Ω|z1:T ) ∝ p(z1:T |R,Ω), which
corresponds to the minimum mean squared error (MMSE) estimate of the parameters.

In the experiments, we set R = 3.7, Ω = 0.4 and T = 20. Furthermore, we take into account different values of λ of the
same order of magnitude as considered in (39). Then we apply FUSS-MH-P2, with δ = 10−3 and K = 10, within a Gibbs
sampler using only NG = 50 iterations (SM = {10−4, 2 · 10−4, . . . , 20}).11 We also consider an MH-within-Gibbs approach
with random walk proposal, p̄(xt|xt−1) ∝ exp

(
−(xt−xt−1)2

2σ2
p

)
, with two different values of σp ∈ {1, 2}. The initial states

of the chains are chosen randomly from U([1, 5]) and U([0.38, 1.5]) in order to start sampling from the two full conditionals,
p(R|Ω, z1:T ) and p(Ω|R, z1:T ) respectively. In order to compare the performance of both approaches, we also perform an
approximate computation of the true value of the mean (of the corresponding posterior pdf) via an expensive deterministic
numerical integration procedure, and so we are able to calculate the MSE obtained by FUSS-MH-P2 and MH.

The results, averaged over 1000 independent runs, are shown in Table 19. It can be clearly seen that FUSS-MH-P2 achieves
a very small MSE in the estimation of the two desired parameters (especially in the case of Ω) for any value of λ. Comparing
with the MSE obtained by the MH algorithm, the benefit of building a proposal tailored to the full-conditionals (as done
by FUSS) becomes apparent. Figures 6(a)–(b) provide two examples of conditional log-pdfs, whereas Figure 6(c) shows the
“sharp” conditional density corresponding to Figure 6(b). This pdf resembles a delta function: even using sophisticated adaptive
techniques it is difficult to recognize the mode of this kind of target pdf.

λ = 0.001 λ = 0.005 λ = 0.01 λ = 0.05 λ = 0.08 λ = 0.10

FUSS-MH-P2 MSE(R) 0.0071 0.0089 0.0093 0.0138 0.0150 0.0778
MSE(Ω) 5.01 10−5 6.15 10−5 6.15 10−5 5.26 10−5 7.33 10−5 1.78 10−4

MH (σp= 1) MSE(R) 0.6830 0.7264 0.7067 1.1631 1.3298 1.3293
MSE(Ω) 0.0373 0.0402 0.0423 0.0399 0.0471 0.0440

MH (σp= 2) MSE(R) 1.3566 1.4906 1.4247 2.0015 2.3042 2.2401
MSE(Ω) 0.0897 0.1117 0.1041 0.0989 0.1089 0.1125

Table 19. MSEs in estimation of R and Ω using FUSS-MH-P2 and MH inside a Gibbs sampler, with δ = 10−3, K = 10 and
NG = 50. The observed sequence z1:T is generated with R = 3.7, Ω = 0.4, T = 20 and different values of λ.

7.4. FUSS within Gibbs: jump diffusion model for stock market index

We consider the inference problem in a model which is combination of the stochastic volatility model and infinite-activity Lévy
jumps as in (43). This model outperforms the popular Black-Scholes model by (44) and Heston model by (45) in describing the
dynamics of real-life stock prices. Specifically, suppose Yt is the daily log-return of some stock market index, i.e. Yt = log(St),
where St is the daily index value, and let vt be the instantaneous variance of return, t ∈ N. We assume that the joint dynamics
of the index return and variance can be described by the following stochastic equations,

Yt+1 − Yt =
(
r − 1

2
vt + φJ(−i) + ηsvt

)
∆+

+
√
vt∆εt+1,1 + Jt+1,

vt+1 − vt = k(θ − vt)∆ + σv
√
vt∆εt+1,2,

(21)

11Note that we use the simplest pruning procedure (P2) in order to show that, even in this case, FUSS provides a good performance.
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Fig. 6. (a)-(b) Examples of (unnormalized) conditional log-pdfs with λ = 0.1 and considering T = 20 observations. (a) Fixing
Ω = 4. (b) Fixing R = 0.7. (c) The (unormalized) conditional pdf corresponding to Figure (b). Even advanced and adaptive
MCMC techniques often fail in drawing samples from this kind of sharp densities.

where r is the risk-free interest rate, ηsvt is the risk premium, and ∆ is the time interval of the discretization on the daily basis
(we set ∆ = 1

252 ). In the variance process, k measures the speed of mean reverting, θ is the long-term mean of variance vt,
and σv is the volatility of variance. εt,1 and εt,2 are two noise perturbations distributed according a bivariate Gaussian pdf,
specifically,

(εt,1, εt,2) ∼ N ([0, 0]>,Σ),

where Σ = [1, ρ; ρ, 1]>. We also consider a Lévy jump Jt in the process of Yt, and φJ(−i) is its jump compensator,
defined as EQ[eiuJt ] = e−tφJ (u) where Q is the so-called risk-neutral probability measure. In our model setting, we employ
the Variance Gamma process proposed by (46) as Jt, and for simplicity we assume the jump-relevant parameters γ, ν, and σ
remain unchanged under Q, i.e.,

Jt = γGt(1, ν) + σWGt(1,ν),

φJ(−i) =
log(1− γν − 1

2
νσ2)

ν
,

(22)

where Gt is an independent Gamma process that we consider known, and WGt(1,ν) is a Brownian motion subordinated by Gt.
In the market we observe the daily index return Yt, t = 1, . . . , T . To calibrate the model, we need to filter all the latent variables
vt, Jt, and the fixed parameters Θ = {k, θ, ρ, σv, ηs, γ, ν, σ}. In particular, since all the latent variables are varied from day to
day, for example v = [v1, . . . , vT ]> with T = 252 (in one year), the estimation of this model is very challenging owing to the
high dimension.

We apply a Gibbs sampler to draw from the complete posterior distribution. The full-conditional pdfs of several latent
variables and parameters have a standard form as Gaussian, inverse Gamma and Gamma densities so that direct sampling
methods are available. However, the conditional pdfs corresponding to vt, t = 1, ..., 252, and the parameter ν, have a complex
analytic form, thus we apply FUSS-RC-P4 for drawing from them. We also apply a standard MH algorithm, with a Gaussian
random walk proposal p̄(xt|xt−1) ∝ exp

(
− (xk−xk−1)2

2σ2
p

)
, to compare the performance. We set x0 = 0.02 (regarding v) or

x0 = 0.5 (regarding ν), K = 3 for both methods. We set σp = 0.01 for MH. We chose these values of x0 and σp after
several attempts, in order to provide the best results of the MH method. Furthermore, for FUSS-RC-P4, we chose s1 = 0.0001,
sM = 6, ∆si

= si+1 − si = 0.0001, δ = 0.01. In this example, we change the number of iterations of the Gibbs sampler,
Ng = {10, 100, 500, 5 · 103}. For the MH method, we also consider Ng = 104.

We simulate artificial data by the system using as true parameters k = 4, θ = 0.02, σv = 0.3, ρ = −0.8, ηs = 0.4, ν = 0.1,
γ = 0.1, σ = 0.1, Y0 = 7, v0 = 0.02, and r = 0.02 (we recall that the jump component Gt is assumed known). Then we
compute the MSEs in the estimation of ν and the entire vector v, i.e., the dimension of the problem is D = 253.

The results, averaged over 100 independent runs, are provided in Table 20. FUSS-RC-P4 always outperforms the standard
MH method. We can also observe that FUSS-RC-P4 with only Ng = 10 provides a smaller MSE(v) than the MH method with
Ng = 104.

Figure 5, which compares the filtered paths by FUSS-RC-P4 (dashed line) and MH (dotted-dashed line) with the simulated
true path (solid line) of vt, demonstrates that MH can yield quite poor results if there is no much prior information on vt. In
particular, given that it is a flat curve for initial variance with vt = 0.02 for all t = 1 . . . 252, MH did not achieve the true



Technique Ng MSE(v) MSE(ν)

10 3.989 10−5 1.460 10−2

FUSS-RC-P4 100 2.542 10−5 1.642 10−3

500 1.798 10−5 3.783 10−4

5000 1.138 10−5 9.119 10−5

10 3.330 10−4 1.289 10−1

100 3.392 10−4 3.093 10−2

MH 500 3.289 10−4 1.264 10−2

5000 2.754 10−4 7.514 10−3

105 7.660 10−5 1.368 10−3

Table 20. MSEs obtained by FUSS-RC-P4 and MH methods for different number of iterations Ng of the Gibbs sampler.

variance dynamics being sensitive to initial flat values whereas FUSS-RC-P4 captured the actual variance dynamics relatively
well.
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Fig. 7. Filtering of variance path vt, t = 1, . . . , 252, by FUSS-RC-P4 and Ng = 5000 and MH with Ng = 105. The path is the
average of the filtered paths in 100 different experiments.

8. CONCLUSIONS AND FUTURE LINES

In this work, we have introduced FUSS (“Fast Universal Self-tuned Sampler”), a novel and extremely efficient MCMC
sampler for drawing from univariate densities. Although the proposal is tailored to the target by means of an initial automatic
optimization procedure, FUSS is not an adaptive MCMC algorithm, hence its ergodicity is not an issue. We have tested the
new technique in several scenarios with different target distributions, including two very challenging practical applications:
estimation of the parameters of a chaotic map and a financial signal processing problem. The performance achieved by the
new methodology is close to that of an exact sampler, yielding virtually i.i.d. samples. Consequently, the novel technique
outperforms other well-known MCMC methods (such as the Metropolis-Hastings (MH) algorithm, the slice sampler, the
Metropolis adjusted Langevin algorithm (MALA) or the Hamiltonian Monte Carlo (HMC) method), both in terms of accuracy
and speed. Furthermore, the dependence on the initial parameters is also drastically reduced with respect to other MCMC
techniques. Numerical simulations also show a clear benefit of using the FUSS schemes within a Gibbs sampler. Future lines
include developing more efficient representations for the multi-variate version of FUSS (e.g., using Chua’s canonical PWL
model (47)), adapting it to sequential inference applications and addressing other problems in machine learning where MCMC-
based inference is difficult to implement efficiently (e.g., inference in generalized Poisson mixed models (48) or Gaussian
process latent variable models (49)).
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A. CONSTRUCTION OF THE TAILS FOR THE PROPOSAL

The choice of the tails for the proposal is important for two reasons: (a) to accelerate the convergence of the chain to the target
(especially for heavy-tailed target distributions) and (b) to increase the robustness of the method w.r.t. the initial choice of the
set SM . Indeed, often the construction of tails with a bigger area below them can reduce the dependence on a specific choice
of the set of initial support points. In general, a good choice is to build tails such that p(x) ≥ π(x) for x ∈ I0 and x ∈ Im.
This is always possible when the target pdf has light tails (i.e., convex tails in the log-domain) and also for many heavy-tailed
targets that appear in real-world applications. In the following, we show two practical approaches to build both light-tailed and
heavy-tailed distributions.

A.1. Light Tails

In order to use light tails, we can simply use two exponential pieces for the first and last intervals of the proposal:

p(x|Sm) = eh0x+b0 , ∀x ∈ I0,

p(x|Sm) = ehmx+bm , ∀x ∈ Im.

The first linear function, w0(x) = h0x + b0, is the straight line passing through the points (s1, V (s1)) and (s2, V (s2)),
whereas the second linear function, wm(x) = hmx + bm, is the straight line passing through (sm−1, V (sm−1)) and the
last point (sm, V (sm)). Note that we can compute the area below each piece analytically, A0 = 1

h0
exp(h0s1 + b0) and

Am = − 1
hm

exp(hmsm + bm), and that we can also easily draw from each exponential tail using the inversion method (2).

A.2. Heavy Tails

For heavy tailed constructions, there are also several possibilities. For instance, here we propose to use Pareto pieces, which
have the following analytic form

p(x|Sm) = eρ0
1

|x− µ0|γ0
, ∀x ∈ I0,

p(x|Sm) = eρm
1

|x− µm|γm
, ∀x ∈ Im,

with γj > 1, j ∈ {0,m}. In the log-domain, this results in

w0(x) = ρ0 − γ0 log(|x− µ0|), for x ∈ I0,

wm(x) = ρm − γm log(|x− µm|), for x ∈ Im.

Fixing the parameters µj , j ∈ {0,m}, the remaining parameters, ρj and γj , are set in order to satisfy the passing conditions
through the points (s1, V (s1)) and (s2, V (s2)), and through the points (sm−1, V (sm−1)) and (sm, V (sm)), respectively. The
parameters µj can be arbitrarily chosen by the user, as long as they fulfill the following inequalities:

µ0 > s2, µm < sm−1.



Values of µj such that µ0 ≈ s2 and µm ≈ sm−1 yield small values of γj (close to 1) and, as a consequence, fatter tails. Larger
differences in |µ0 − s2| and |µm − sm−1| yield γj → +∞, i.e., lighter tails. Several examples of this type of construction are
illustrated in Figure 8. As in the previous case, we can compute analytically the integral of p(x|Sm) in I0 and Im:

A0 =
eρm

γm − 1
1

(sm − µm)γm−1
,

Am =
eρ0

γ0 − 1
1

(µ0 − s1)γ0−1
.

We can also draw samples easily from each Pareto tail using the inversion method (2).
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Fig. 8. Example of the construction of heavy tailed proposal pdfs in the log-domain. (a) Example with a specific choice of
the parameters µ0 > s2 and µm−1 < sm−1 (m = 10 in figure). (b)–(c) Alternative right log-tail constructions, decreasing
the parameter µm−1. For µm−1 → −∞, the log-tail tends to become a straight line passing through (sm−1, V (sm−1)) and
(sm, V (sm)). (d) Construction of the right log-tail with µm−1 ≈ sm−1. In this case, µm−1 → sm−1, i.e., it tends to become a
constant line.


