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ABSTRACT
Gibbs sampling is a well-known Markov Chain Monte Carlo (MCMC) technique, widely applied to draw samples from
multivariate target distributions which appear often in many different fields (machine learning, finance, signal processing, etc.).
The application of the Gibbs sampler requires being able to draw efficiently from the univariate full-conditional distributions.
In this work, we present a simple, self-tuned and extremely efficient MCMC algorithm that produces virtually independent
samples from the target. The proposal density used is self-tuned to the specific target but it is not adaptive. Instead, the proposal
is adjusted during the initialization stage following a simple procedure. As a consequence, there is no “fuss” about convergence
or tuning, and the execution of the algorithm is remarkably speed up. Although it can be used as a stand-alone algorithm to
sample from a generic univariate distribution, the proposed approach is particularly suited for its use within a Gibbs sampler,
especially when sampling from spiky multi-modal distributions. Hence, we call it FUSS (Fast Universal Self-tuned Sampler).
Numerical experiments on several synthetic and real data sets show its good performance in terms of speed and estimation
accuracy.
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1. INTRODUCTION

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques [14, 23] have become very
popular over the last years. Indeed, many practical problems demand procedures for sampling from probability distributions
with non-standard forms, such as Markov chain Monte Carlo (MCMC) methods [4] and particle filters [2]. MCMC techniques
generate samples from a target probability density function (pdf) by drawing from a simpler proposal pdf [13, 14]. The two
best known MCMC approaches are the Metropolis-Hastings (MH) algorithm and the Gibbs sampler [23]. The Gibbs sampling
technique is extensively used in Bayesian inference [23], e.g., in signal processing [24] and machine learning [20], to generate
samples from multi-dimensional target densities, drawing each component of the generated samples from the corresponding
univariate full-conditional density.

The key point for its successful application is being able to draw efficiently from these univariate pdfs. The best scenario
for Gibbs sampling occurs when exact samplers for each full-conditional are available. Otherwise, sampling techniques like
rejection sampling (RS) or MH-type algorithms are used within the Gibbs sampler to draw from complicated full-conditionals.
In the first case, samples generated from the RS algorithm are independent, but the acceptance rate can be very low. In the
second case, we have an approach where an MCMC, the MH method, is applied inside another MCMC, that is the Gibbs
samplers. Therefore, the typical problems of the external-MCMC (long “burn-in” period, large correlation, etc.) could raise
dramatically if the internal-MCMC is not extremely efficient. Although the Gibbs sampler needs only one sample from each
full-conditional, in this case several iterations are necessary to avoid the “burn-in” period of the internal-MCMC. The length
of the “burn-in” period is strictly related to the correlation among the samples. Higher correlation corresponds to a slower
convergence of the chain.

Thus, several automatic and self-tuning samplers, such as adaptive rejection sampling (ARS) [5, 8], Adaptive Rejection
Metropolis Sampling (ARMS) [6, 7, 19], Independent Doubly Adaptive Rejection Metropolis Sampling (IA2RMS) [18], and
Adaptive Sticky Metropolis [16] have been proposed. All of these methods build an adaptive sequence of proposal pdfs via
some interpolation procedure given a set of support points. The proposal is updated when a new support point is incorporated,
according to some statistical criterion. Although their performance can be extremely good, the results show a dependence
from the initial set of support points. Moreover, depending on the complexity of the target, these algorithms can appear too



slow. Another drawback is the need of take care of the ergodicity especially in the applications within Gibbs sampling [7, 23].
Other related works, where a non-adaptive proposal pdf is built via interpolation procedures, can be found in literature [21, 25].
Furthermore, owing their good performance, different kind of adaptive MH methods based on an independent proposal have
been also studied [10, 11].

In this work, we present a novel algorithm that uses a different strategy: start with a huge number of support points and
then remove some of them, according to certain conditions. The resulting method is extremely fast (it fits particularly in a
MATLAB implementation) and extremely efficient (it yields virtually independent samples), as shown in the numerical results,
even with highly multimodal and complicated targets. The dependence on the initial set of points is drastically reduced, since
the user must provide only a large interval where he considers that the algorithm should concentrate the main computational
effort. Moreover, the proposal is self-tuned, during the initialization stage, but non-adaptive afterwards. Hence, ergodicity is
not an issue and the convergence of the chain to the target distribution is always guaranteed. For these reasons, we call the new
method as FUSS algorithm (“Fast Universal Self-tuned Sampler”) since, with this sampler, there is no “fuss” about convergence
or tuning. The FUSS algorithm is particularly advisable for multimodal spiky target densities, i.e., densities with several sharp
and tight modes, where virtually all of the existent MCMC techniques often fail. This kind of target pdfs often appears in
several applications, as in financial inference problems (see Section 6 for an example).

The rest of the paper is divided as follows. Sections 2-3 are devoted to recall the general framework and describe the
structure of the novel technique. The details about the proposal construction and generation are given in Section 4. Then,
different pruning algorithms are introduced in Section 5. Section 6 provides different numerical simulations. Finally, Section 7
contains some brief final considerations.

2. PROBLEM STATEMENT

Bayesian inference often requires drawing samples from complicated multivariate posterior pdfs, π(x|y) with x ∈ XD ⊆ RD.
A common approach, when direct sampling from π(x|y) is unfeasible, is using a Gibbs sampler [23]. At the i-th iteration, a
Gibbs sampler obtains the d-th component (d = 1, . . . , D) of x, xd, drawing from the full conditional pdfs of xd given all the
previous generated components [23, 3, 12], i.e.,

x
(i)
d ∼ π̄(xd|x(i)

1:d−1,x
(i−1)
d:D ) = π̄(xd) ∝ π(xd), xd ∈ X , (1)

with the initial vector drawn from the prior, i.e., x(0) ∼ π̄0(x). However, even sampling from the univariate pdf in Eq. (1)
can often be complicated. In these cases, a common approach is using another Monte Carlo technique (e.g., rejection sampling
(RS) or the Metropolis-Hastings (MH) algorithms) within the Gibbs sampler, drawing candidates from a simpler proposal,

p̄(x) ∝ p(x) = eW (x), x ∈ R.

The best case is when an RS technique can be applied since it yields independent and identically distributed (i.i.d.) samples.
However, the RS technique requires that p(x) ≥ π(x) for all x ∈ X . In general, it is not straightforward to satisfies this
inequality for: instance, the adaptive rejection sampling (ARS) technique can be applied only for log-concave target pdfs.
Thus, in general, the use of another MCMC method becomes mandatory. In this case, the performance of this approach depends
strictly on the choice of p̄(x). For sake of simplicity, in the sequel we denote the univariate target pdf (i.e., the full-conditional
proposal in Eq. (1)) as π̄(x).

Our aim is designing an efficient fast sampler to draw from the univariate target pdf,

π̄(x) ∝ π(x) = eV (x), x ∈ X ⊆ R, (2)

where π(x) is unnormalized and V (x) = log[π(x)].

3. STRUCTURE OF THE ALGORITHM

The FUSS algorithm is an MCMC based on an independent proposal pdf built via a simple interpolation procedure, shown in
the next section. The general structure is given in Table 1. The first 3 steps form a pre-processing procedure, applied only once,
useful to obtain a good proposal density. The step 4 contains the MCMC iterations, repeated K times. Here, wee consider two
possible techniques for the step 4 of FUSS:

• The Metropolis-Hastings (MH) algorithm [23]: it is shown in Table 2. In this case, we denote the whole method as
FUSS-MH.



Table 1. General structure of the FUSS algorithm.

1. Initialization: Choose a set of support points SM = {s1, . . . , sM}, sorted in ascending order s1 < s2 < . . . < sM , and the total number of
desired sample K.

2. Pruning: Remove certain support points according to some criterion, providing a new set Sm with m < M .

3. Construction: Build adequately a proposal function p(x|Sm) given Sm, using a suitable procedure.

4. MCMC algorithm: apply K steps of an MCMC method using p(x|Sm) as proposal pdf and yielding a set of samples {x1, . . . , xK}.

Table 2. Possible step 4 of FUSS: the Metropolis-Hastings method

3.1 Set k = 0 and choose x0.

3.2 Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3.4 Set xk+1 = x′ with probability

αMH = 1 ∧
π(x′)p(xk|Sm)

π(xk)p(x′|Sm)
, (3)

otherwise, with probability 1− αMH set xk+1 = xk .

3.5 If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

Table 3. Possible step 4 of FUSS: the rejection chain method

3.1 Set k = 0 and choose x0.

3.2 Draw x′ ∼ p̄(x) ∝ p(x|Sm) and u′ ∼ U([0, 1]).

3.3 If u′ ≥ π(x′)
p(x′|Sm)

repeat from step 3.2.

3.4 If u′ ≤ π(x′)
p(x′|Sm)

, with probability

αRC = 1 ∧
π(x′) [π(xk) ∧ p(xk|Sm)]

π(xk) [π(x′) ∧ p(x′|Sm)]
, (4)

set xk+1 = x′, otherwise, with probability 1− αRC set xk+1 = xk .

3.5 If k ≤ K, set k = k + 1 and repeat from step 3.2. Otherwise, stop.

• The Rejection chain algorithm [26, 27]: it is shown in Table 3. In this case, firstly a rejection sampling (RS) test is
performed; whether a sample is accepted then a MH step is applied to ensure to drawing from the target pdf. We denote
the complete method as FUSS-RC.

FUSS-RC is slower than FUSS-MH since when a sample is rejected in the RS test the chain is not moved forward. On the
other hand, FUSS-RC yields samples with less correlation due to application of the RS test. We will test and compare the
performance in the numerical simulations. The notation a ∧ b denotes the minimum between two real values, i.e., min [a, b].

3.1. Important remarks

It is important to stand out the following considerations:



• If p(x|Sm) ≥ π(x) for all x ∈ X then the FUSS-RC algorithm becomes a rejection sampler, providing i.i.d. samples
from π̄(x). Indeed, note that in this scenario the probability αRC of accepting the new state is always 1, i.e., after passing
the rejection test, the sample is automatically accepted.

• Observe that in FUSS-RC, after passing the rejection test, the samples are distributed as

q̄(x) ∝ q(x) = π(x) ∧ p(x|Sm).

Thus, q(x) is used as proposal in the acceptance function αRC . Note also that q(x) is closer to π(x) than p(x|Sm): this
is the reason why FUSS-RC produces samples with less correlation than FUSS-MH.

• All the operations in both algorithms, FUSS-MH and FUSS-RC, can be easily implemented in log-domain evaluating
only the functions V (x) = log[π(x)] and W (x) = log[p(x|Sm)]. In FUSS-MH, the acceptance probability can be
expressed as

αMH = exp
(
V (x′) +W (xk)− V (xk)−W (x′)

)
.

Whereas in FUSS-RC, the ratio in the RS test can be written eW (x′)−V (x′) and the probability of accepting a new state
can be expressed as

αRC = exp
(
V (x′) + V (xk) ∧W (xk)− V (xk)− V (x′) ∧W (x′)

)
.

• Steps from 1 to 3 of the general FUSS algorithm in Table 1 are performed only once. The success of the FUSS algorithms
lies on the speed in performing these steps and the quality of the final proposal density. Indeed, if the final proposal has
a shape close to π(x) the generated samples will be virtually independent.

• The initial support points in SM plays the role of parameters of the FUSS algorithms. After the pruning step, the proposal
p(x|Sm) is built according to the new set Sm with m < M . After that, the proposal p is kept fixed. Thus, the FUSS
techniques are standard non-adaptive MCMC, avoiding any issue about the ergodicity.

• The possibility of applying FUSS directly for drawing from multidimensional distributions depends on the ability to
construct efficiently the proposal pdf via interpolation in dimensions higher than one (step 3 in the general structure
of FUSS). In this work, we consider the application of FUSS within Gibbs sampling, drawing from univariate full-
conditional pdfs.

3.2. Initialization and general strategy for FUSS

The initial set SM should be cover the regions of high probabilities described by the target π(x). In general, if no prior
information is available we suggest the following FUSS approach:

• Choose a huge, thin, initial (uniform) grid of support points, si+1 − si = ε, i.e.,

SM = {s1, s2 = s1 + ε, . . . , sM},

in order to capture all the main features of the target.

Then we reduce the number of support points according to a certain criterion obtaining a new set Sm (see Section 5 for some
examples) and we build a stepwise approximation of the target pdf given the pruned support points (see Section 4). The resulting
proposal pdf is a self-tuned but non-adaptive, since it does not vary during the run of the chain (it is “adapted” offline). In the
next section, we describe in details the construction of the proposal.

4. CONSTRUCTION OF THE PROPOSAL DENSITY

In several applications, it is useful to evaluate the target pdf in the log-domain so that, here, we consider the construction of the
proposal function in the log-domain as well. Let us consider a set of support points (after the pruning step),

Sm = {s1, s2, . . . , sm} ⊂ X ,



where s1 < . . . < sm, and the intervals I0 = (−∞, s1], Ij = (sj , sj+1] for j = 1, ...,mt − 1 and Im = (sm,+∞). Then, let
us consider

p̄(x) ∝ p(x|Sm) = eW (x),

where W (x) is built as in Eq. (5) using a piecewise constant approximation, with the exception of the first and last intervals
corresponding to the tails. Mathematically,

W (x) = wi(x) = max [V (si), V (si+1)] IIi(x), 1 ≤ i ≤ mt − 1, (5)

where

IIi(x) =

{
1, x ∈ Ii = (si, si+1],

0, x 6= Ii = (si, si+1].
(6)

In the first and last interval, I0 and Im, we have

W (x) = wj(x), j = {0,m}, x ∈ Ij ,
where wj(x) represents a generic log-tail function. For instance, choosing light tails, wj(x), j = {0,m}, are linear
functions.Figures 1 and 4 provide some specific examples. For further details, see Appendix A. The choice of taking the
maximum is in order to satisfy the inequality W (x) ≥ V (x), in more regions as possible. If this inequality is verified for all
x ∈ X then also p(x|Sm) ≥ π(x), and FUSS-RC becomes a standard rejection sampler providing independent samples.
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Fig. 1. Example of the proposal construction. (a) Construction procedure with m = 9 support points, in the log-domain.
The log-tails are in this case light tails (two straight lines). (b) The corresponding unnormalized densities p(x) = eW (x) and
π(x) = eV (x). (c) The corresponding normalized densities p̄(x) ∝ p(x) and π̄(x) ∝ π(x). (d) Construction of p(x) and π(x)
with a thin grid of support points.

4.1. Variate generation from p̄(x)

The proposal p̄(x) ∝ p(x|Sm) is composed, in general, by m+ 1 pieces, including the two tails. Note that p̄(x) can be seen as
a finite mixture

p̄(x) ∝ p(x|Sm) =

m∑

i=0

ηiφi(x),



Table 4. Pruning algorithm P1

1. Given SM = {s1, . . . , sM}, decide the desired number m of final support points (or a rate of reduction m
M

).

2. Sort π(si), i = 1, . . . ,M , in a decreasing order

π(sr1 ) = max
1≤i≥N

π(si) ≥ π(sr2 ) ≥ .... ≥ π(srM ) = min
1≤i≥N

π(si).

3. Return Sm = {sr1 , sr2 , . . . , srm}.

Table 5. Pruning algorithm P2

1. Given SM = {s1, . . . , sM}, choose a value δ ∈ (0, 1).

2. Find all the support points skj ∈ SM such that
π(skj ) ≤ δ max

1≤i≤M
π(si). (7)

3. Return Sm = SM \ {sk1 , . . . , skG}, where G is the number of points satisfying the inequality (7).

where
∑m
i=0 ηi = 1 and

φi(x) ∝ exp (wi(x)) , x ∈ Ii.
Therefore, in order to draw adequately from p̄(x), it is necessary:

1. Compute the area Ai below each pieces, i = 0, . . . ,m. It can be done analytically easily for the rectangular pieces, and
for the tails considered here (exponential or Pareto, for instance) as well. Then, normalize them

ηi =
Ai∑m
j=1Aj

, for i = 0, . . . ,m.

2. Choose a piece, i.e., an index j∗ ∈ {0, . . . ,m} according to the weights ηi, i = 0, . . . ,m.

3. Given the index j∗, draw x′ ∼ φj∗(x) ∝ exp (wj∗(x)).

It is important to remark that the process of calculate the areas Ai and then the weights ηi is done once, before running the
Markov chain. The calculation of the areas Ai of the rectangular regions is straightforward and fast.

5. PRUNING ALGORITHMS

The computational cost of drawing from p̄(x) and, as a consequence, the speed of the algorithm depend on the number of
support points. The application of the pruning step has two advantages: it speeds up the algorithm, and allows the use of
a greater number of initial support points (capturing all the features of the target). In the sequel, we present some possible
pruning criteria, sorted for increasing level of complexity. For the sake of simplicity, we assume a bounded target π(x). The
first two procedures P1 and P2 are shown in Tables 4 and 5. They are based on the simple idea of pruning all the points sr with
“small” value π(sr). They are the simplest and fastest ones but they also present several limitations, then they should be used
carefully. For instance, they are not advisable for heavy tailed distributions. Another drawback of the procedures P1 and P2 is
that the performance are quite sensitive to the dispersion of the target.

More refined pruning techniques can be easily provided. An example is the procedure P3 in Table 6. The underlying idea
is that we can remove support points where the target is “almost” flat, i.e., |π(si+1) − π(si)| ≈ 0. Moreover, note that at the
first iteration, if a uniform grid is used, i.e., si+1 − si = ε, the ratio π(si+1)−π(si)

ε is an estimation of the first derivative, hence
a condition over |π(si+1) − π(si)| can be consider a condition over the first derivative of π. Clearly, this procedure could be
repeated until achieving the desired rate of reduction or simply iterated N times. In Table 6, the procedure is iterated until the
pruning condition is no longer verified.



Table 6. Pruning algorithm P3

1. Given SM = {s1, . . . , sM}, choose a value δ ∈ (0, 1). Set S(0) = SM , r = 1 and

L = max
1≤i≤M

|π(si+1)− π(si)| .

2. While G 6= 0:

(a) Find all the support points skj ∈ S
(n) such that ∣∣∣π(skj+1)− π(skj )

∣∣∣ ≤ δL, (8)

(b) S(r) = S(r−1) \ {sk1 , . . . , skG} where G = |{sk1 , . . . , skG}|.
(c) Set r = r + 1.

3. Return Sm = S(n) \ {s1}.

5.1. Optimal pruning strategy

The performance of a rejection sampler or an independent Metropolis algorithm is related to the L1 distance between the target
and the proposal [23],

Dp|π(R) =

∫ ∞

−∞
|p(x)− π(x)|dx. (9)

With the proposal procedure considered here, we can write

Dp|π(R) =

m∑

j=0

Dp|π(Ij),

where Dp|π(Ij) denotes the local L1 distance within the i-th interval (0 ≤ j ≤ m), i.e.

Dp|π(Ij) =

∫

Ij
|p(x)− π(x)|dx =

∫ sj+1

sj

|p(x)− π(x)|dx. (10)

Here, for the sake of simplicity, we are considering the (non-rigorous) definition s0 = −∞ and sm+1 = +∞, since
I0 = (−∞, s1] and Im = [sm,∞). Moreover, recall that s1 < s2 < . . . < sm.

The essential consideration is the following: when a support point is removed, the distance between the target and the
proposal generally will tend to increase, thus leading to a worse performance of the algorithm. Hence, an optimal criterion for
pruning support points is discarding those that lead to an increase, as small as possible, in the L1 distance between p(x) and
π(x). Since, in this work, the proposal p(x) is a piecewise constant function with values exp(wi) = exp(max [V (si), V (si+1)])
(with the exception of the tails), and considering a continuous target pdf, it is apparent that

Dp|π(Ij) ≤ Bj,j+1 = (sj+1 − sj)|π(sj+1)− π(sj)|.

i.e., Bj,j+1 is an upper bound for the L1 distance Dp|π(Ij). If the number m of used support points grows, then clearly
Bj,j+1 → Dp|π(Ij). Thus, the value Bj,j+1 can be considered as a rough approximation of Dp|π(Ij). This observation
is the theoretical basis of the pruning strategy detailed in Table 7: consider a generic interval [sj , sj+2]. Depending on the
approximation Bj,j+2 we decide if pruning sj+1 or not. Clearly, at each iteration at most R =

⌊
M−1

2

⌋
points can be removed.

The procedure is iterated until no more points are pruned, i.e., when all the upper bounds (br, in the notation of Table 7) are
greater than the threshold δ. Clearly, the algorithm could be stopped before.

6. NUMERICAL SIMULATIONS

In this section, we first test the performance of the FUSS algorithm comparing with other standard MCMC methods drawing
from univariate densities (Section 6.1). Then, we consider the application of the FUSS technique within the Gibbs sampling for
drawing from multidimensional pdfs (Sections 6.2-??).



Table 7. Pruning algorithm P4

1. Choose a value δ ∈ (0, 1). Given SM = {s1, ..., sM}, set S(0) = SM , m = M , n = 0 and

L = max
1≤j≤

⌊
m−1

2

⌋(s2j+1 − s2j−1)|π(s2j+1)− π(s2j−1)|.

2. For r = 1, . . . , R =
⌊
m−1

2

⌋
:

(a) Compute br = (s2r+1 − s2r−1)|π(s2r+1)− π(s2r−1)|.
(b) If br ≤ δL, set S(r) = S(r−1) \ {s2r} and n = n+ 1.

(c) Otherwise, if br > δ, set S(r) = S(r−1).

3. If n > 0 set n = 0, S(0) = S(R), m = |S(R)| and repeat from step 2.

4. Otherwise, if n = 0, return Sm = S(R).

6.1. Univariate densities

6.1.1. Unimodal target pdf: Nakami distribution

First of all we consider a Nakagami target distribution, i.e.,

π̄(x) ∝ π(x) = x2β−1 exp

(
− β

Ω
x2

)
, x > 0, β ≥ 0.5, Ω > 0. (11)

The Nakagami distribution is widely used for the simulation of fading channels in wireless communications [1, 15, 22]. When β
is an integer or half-integer(i.e., β = n

2 with n ∈ N), independent samples can be directly generated through the square root of
a sum of squares of n zero-mean i.i.d. Gaussian random variables. However, for generic values of β there is not direct method
to sample from it. Here, we consider the goal of estimating the expected value of X ∼ π̄(x), µ = E[X] =

Γ(β+ 1
2 )

Γ(β)

√
Ω
β , and

the variance, σ2 = Ω

(
1− 1

β

(
Γ(β+ 1

2 )

Γ(β)

)2
)

, with Ω = 1 and β = 4.6.

We performs the FUSS methods using different pruning procedures P2, P3, P4 with different values of the threshold
parameter δ. We use an initial set SM = {0.01, 0.02, 0.03, . . . , 103} with M = 105 points. We also test a standard MH
technique [14, 23] with a random walk proposal p̄(xk|xk−1) ∝ exp{−(xk−xk−1)2

2σ2
p

} with different values of σp. Finally, we
consider another well-known methodology the slice sampling technique [23, Chapter 8]. For as fair as possible comparison of
the wasted time, we have used for both the corresponding Matlab functions directly provided by MathWorks (mhsample.m
and slicesample.m).

For all these techniques, we choose x0 ∈ U [0, 10], set K = 5000 and consider all the generated samples without removing
any burn-in period. We have performed 3 · 104 independent runs and the results are shown in Tables 8-9. These tables provides
the Mean Square Errors (MSE) in the estimation of µ and σ2, the linear correlation at lag-1 (ρ(1)) among the samples, the
acceptance rate (0 ≤AR≤ 1) in the rejection sampling (RS) step, the number of points m after the pruning and the spent time.
The time values are normalized w.r.t. the time spent by the MH method. Due to only FUSS-RC has an RS step, in the other
algorithms AR is considered 1 since no samples are discarded. This means, the total number of iterations if FUSS-RC are
greater K = 5000 (depending on the acceptance rate), whereas for the other methods are exactly K = 5000.

We can see that both FUSS algorithms always outperform the standard MH and slice techniques and they are also faster.
Both FUSS algorithms virtually reaches the performance of an exact sampler in the estimation of µ using independent

samples, that is

MSE(µ) ≥ MSEind(µ) =
σ2

K
= 1.0560 10−5,

FUSS-MH clearly is always faster than FUSS-RC since the lack of rejection sampling test. On the other hand, for the same
reason FUSS-RC provides better results (with some exceptions with the pruning P2)1. Note that, in spite of the greater number

1FUSS-RC always has less correlations among samples than FUSS-MH and, as a consequence, less variance in the estimation, but in some cases it can have
more bias.



FUSS-MH FUSS-RC
Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01 δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 1.1466 0.4067 0.0501 1.09 10−5 1.1621 0.4444 0.0513 1.05 10−5

MSE(σ2) 0.8679 0.1692 0.0171 1.05 10−6 0.8692 0.1835 0.0172 1.09 10−6

ρ(1) 0.9315 0.6880 0.1720 0.0046 0.8791 0.6837 0.1406 -3.08 10−4

AR 1 1 1 1 0.5211 0.8912 0.9516 0.9829
m 22 55 72 138 22 55 72 138

Time 0.6683 0.6742 0.6781 0.6875 1.2776 0.7947 0.7527 0.7328

P3

MSE(µ) 0.0026 1.66 10−4 1.21 10−4 1.06 10−5 0.0019 3.00 10−4 8.23 10−4 1.05 10−5

MSE(σ2) 6.51 10−4 5.94 10−5 6.11 10−5 1.13 10−6 3.02 10−5 1.09 10−6 8.56 10−5 1.10 10−6

ρ(1) 0.0317 0.0141 0.0089 0.0053 0.0091 2.95 10−4 4.42 10−4 -2.14 10−4

AR 1 1 1 1 0.9570 0.9630 0.9787 0.9830
m 50 88 106 166 50 88 106 166

Time 0.6712 0.6816 0.6859 0.7019 0.7676 0.7408 0.7424 0.7426

P4

MSE(µ) 1.10 10−5 1.09 10−5 1.06 10−5 1.06 10−5 1.10 10−5 1.09 10−5 1.05 10−5 1.05 10−5

MSE(σ2) 1.19 10−6 1.14 10−6 1.12 10−6 1.10 10−6 1.13 10−6 1.10 10−6 1.09 10−6 1.08 10−6

ρ(1) 0.0133 0.0096 0.0078 0.0053 1.27 10−4 -6.41 10−4 -2.45 10−4 -2.62 10−4

AR 1 1 1 1 0.9666 0.9769 0.9800 0.9832
m 71 109 121 177 71 109 121 177

Time 0.6849 0.6937 0.6957 0.7105 0.7339 0.7397 0.7380 0.7502

Table 8. Results of FUSS methods with different pruning procedures, K = 5000 and the Nakagami target with β = 4.6 and
Ω = 1.

σp= 0.2 σp= 0.5 σp= 0.8 σp= 1 σp= 2 σp= 3 σp= 4

MH

MSE(µ) 0.0021 3.95 10−4 1.98 10−4 1.52 10−4 1.43 10−4 1.90 10−4 2.52 10−4

MSE(σ2) 0.0513 0.0091 0.0039 0.0027 9.20 10−4 6.18 10−4 5.69 10−4

ρ(1) 0.8935 0.7495 0.7433 0.7611 0.8389 0.8808 0.9043
AR 1 1 1 1 1 1 1

Time 1 1 1 1 1 1 1
Slice sampling

MSE(µ)= 1.24 10−5 MSE(σ2)= 2.27 10−5 ρ(1)= 0.0229 AR=1 Time= 2.5037

Table 9. Results of the standard MH and slice sampling methods, K = 5000 and the Nakagami target with β = 4.6 and Ω = 1.

of iterations owing to the rejected samples, FUSS-RC is faster than the standard MH and the slice sampling. The time spent in
FUSS-MH always increases (almost linearly) with m, whereas in FUSS-RC the computational cost can also decrease when m
grows due to an improvement in the acceptance rate. where σ2 is the variance of the target in Eq. (11). The pruning procedures
P3 and P4 performs clearly better than P2. The best one, in terms of pruning performance, is P4, as expected. Indeed, P4
chooses the final support points in a better way: it can be seen comparing the time values, i.e., FUSS-RC-P4 is always faster
than FUSS-RC-P3, even if more points are used. The reason is that the points are better located so that the L1 distance between
target and proposal is smaller and the acceptance rate greater. It can be noted observing also that FUSS-RC-P4 with δ = 0.9
uses only m = 71 points and obtained AR= 0.9666, whereas FUSS-RC-P3 with δ = 0.5 uses m = 88 achieving AR= 0.9630.
Namely, FUSS-RC-P3 even with more points can have an AR smaller than FUSS-RC-P4. Thus, FUSS-RC-P4 results be faster
than FUSS-RC-P3. On the other hand, FUSS-MH-P3 works lightly faster than FUSS-MH-P4, providing similar performance.

6.1.2. Multimodal target

Now we consider a multimodal target density, specifically a mixture of 6 Gaussian pdfs,

π̄(x) =

4∑

i=1

N (x;µi, σ
2
i ),

where µ1 = −7, σ1 = 0.1, µ2 = 0, σ2 = 1, µ3 = 8, σ3 = 0.2, and µ4 = 15, σ4 = 0.1. It clearly presents 4 modes as shown
in Figure 2(a), and three of them are tight, so that this target becomes even more challenging. We consider first only K = 200
as total number of iterations of the chain, taking in account all the generated samples to make the estimation (without removing
any burn-in period). We again test the performance of FUSS algorithm, the standard MH method with a Gaussian random walk
proposal pdf and the slice sampling, as in the previous example. For the sake of simplicity we have considered only the FUSS-
MH, in this case.2 The initial state x0 of the chain is chosen uniformly in [−10, 20], i.e., x0 ∈ U([−10, 20]). As in the previous

2As shown in the previous numerical example, FUSS-RC provides in general better results wasting slightly more computational time.



example, we have used the Matlab functions directly provided by MathWorks (mhsample.m and slicesample.m). For
FUSS-MH, we use an initial set SM = {−103,−103 + 0.01, . . . , 103 − 0.01, 103} then M = 2 105 + 1 points.

The MSEs in the estimation of the mean (µ) and variance (σ2) of the target are shown in Table 10 for FUSS-MH and in
Table 11 for the standard MH method, using K = 200 samples for both algorithms. We also provide the linear correlation at
lag-1 (denoted as ρ(1)), the number of points after pruning (m) and the spent time normalized w.r.t. the time wasted by MH
using K = 200. The results are averaged over 3 · 104 runs. Note that, in this case, the theoretical bound for the MSE(µ) ≥ σ2

K

is σ2

K = 68.765
200 = 0.3438, achievable via Monte Carlo using independent samples. Furthermore, in Table 12 we give the MSE

obtained using MH and slice sampling, increasing the total number K of iterations of the Markov chain. Figures 2(b)-(c) depict
respectively the log-MSE and log-time of MH and slice sampling as function of K.

Observing the results, it is apparent that FUSS methodology speeds up the convergence of the Markov chain, indeed:

• FUSS-MH always outperforms MH and slice sampling, providing an improvement at least of 41% in the MSE, and
≈ 98% with the P4 pruning procedure.

• Table 11 also shows the importance of using an adaptive or self-tuned method: the results vary considerably with the
choice of σp and, even in the best case, the MSE is much higher than in the worst case of FUSS-MH. This is owing to
FUSS-MH is able to adapt the entire shape of the proposal pdf according to the target.

• FUSS-MH using the pruning P4 virtually reaches the theoretical bound for the MSE, i.e., 0.3438, obtainable using
independent samples. This remarkable result is also achieved almost independently on the choice of the threshold δ.

• Observing Table 12 and Figures 2(b)-(c), we can see that in order to obtain the same performance of FUSS-MH using
a standard MH method, we need to use between K = 15000 and K = 20000 iterations, wasting at least +50% more
of computational time, comparing with FUSS-MH-P4 with δ = 0.9. With the slice sampling we need to use between
K = 15000 and K = 20000 iterations as well, speeding at least +125% more of computational time.

FUSS-MH
Pruning δ= 0.9 δ= 0.5 δ= 0.3 δ= 0.01

P2

MSE(µ) 11.38 7.33 4.30 0.4680
MSE(σ2) 409.02 288.35 211.78 19.52
ρ(1) 0.9142 0.8917 0.8419 0.1468
m 18 46 103 662

Time 1.03 1.04 1.06 1.17

P3

MSE(µ) 1.7683 1.1368 0.8686 0.3679
MSE(σ2) 78.96 49.82 35.92 15.3513
ρ(1) 0.6693 0.5284 0.4224 0.0296
m 61 99 135 497

Time 1.20 1.27 1.31 1.35

P4

MSE(µ) 0.3786 0.3662 0.3638 0.3526
MSE(σ2) 15.53 15.31 15.10 14.53
ρ(1) 0.0446 0.0306 0.0247 0.0093
m 145 195 223 605

Time 1.23 1.26 1.28 1.40

Table 10. Results of FUSS-MH with different pruning procedures andK = 200, drawing from the mixture of Gaussians target.

σp= 2 σp= 8 σp= 14 σp= 20 σp= 25 σp= 30

MH

MSE(µ) 34.92 24.64 19.62 19.46 19.80 20.57
MSE(σ2) 4.43 103 1.36 103 1.13 103 1.09 103 1.37 103 1.51 103

ρ(1) 0.7481 0.9465 0.9425 0.9424 0.9445 0.9459
Time 1 1 1 1 1 1

Table 11. Results of the standard MH method with K = 200, drawing from the mixture of Gaussians target. The best results
are obtained with σp = 20, but the MSE is always greater than using FUSS-MH.



K = 200 K = 103 K = 2 · 103 K = 5 · 103 K = 104 K = 1.5 · 104 K = 2 · 104

MH MSE(µ) 19.46 6.16 3.16 1.35 0.6735 0.4540 0.3341
σp= 20 MSE(σ2) 1.09 103 263.36 123.37 44.69 22.48 14.45 10.79

Time 1 4.55 8.75 21.51 41.48 61.44 81.06

Slice
MSE(µ) 22.13 6.08 3.25 1.26 0.6136 0.4177 0.2911

MSE(σ2) 1.10 103 171.13 68.91 23.98 10.48 7.40 5.85
Time 2.37 11.04 21.62 52.66 103.78 154.38 204.57

Table 12. Results of the slice sampling and the standard MH method with σp = 20, varying the total number K of iterations of
the chain, drawing from the mixture of Gaussians target.
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Fig. 2. (a) The multimodal target pdf π(x). (b) Log-MSE as function of K
103 for the slice (triangles) and the MH (squares)

methods (with σp = 20). The solid line shows the log-MSE, log(0.3526) = −1.0424, of FUSS-MH-P4 with δ = 0.9, achieved
using only K = 200. (c) The spent log-time as function of K for the slice (triangles) and the MH (squares) methods. The solid
line corresponds to FUSS-MH-P4 with δ = 0.9 and K = 200.

6.2. Toy example within Gibbs

In order to show the importance of the use of an adequate MCMC technique “within Gibbs”, in this section we provide a simple
example using different methods for drawing from the full-conditional pdfs: the results provided by the Gibbs sampler vary
considerably depending on the technique used “within Gibbs”. Let us consider the bivariate target density

π̄(x1, x2) ∝ π(x1, x2) = exp

(
− (x2 −A+By)2

4
− x2

2σ2
1

− y2

2σ2
2

)
,

with A = 16, B = 10−2, and σ2
1 = σ2

2 = 104

2 . Densities of this analytic form have often been used in the
literature [17, 9] to evaluate the performance of different Monte Carlo algorithms. We apply a Gibbs sampler to draw from
π̄(x1, x2). To generate from the full conditional pdfs, we use FUSS-MH-P4 with δ = 0.9, starting with a uniform grid
SM = {−104,−104 + 0.01, . . . , 104 − 0.01, 104} ,i.e., M = 2 · 105 + 1. In order to compare the performance, we also
apply the standard ARMS method [6]: this technique uses an interpolation procedure to build the proposal using a set of
support points, similarly to FUSS. However, unlike FUSS, the ARMS method starts with few support points and adds new
ones adaptively. We choose for ARMS the initial set {−10,−6,−4.3,−0.01, 3.2, 3.8, 4.3, 7, 10}. Finally, we also consider a
standard MH algorithm with a random walk proposal π̄(xt|xt−1) ∝ exp((xt − xt−1)2/(2σ2

p)) with σp ∈ {1, 2, 10} (initial
state x0 ∈ U([−5, 5])). We use NG = 2000 iterations of the Gibbs sampler, using all the samples to estimate four statistics that
involve the first four moments of the target: mean, variance, skewness and kurtosis. In each iteration, we draw K samples from
each full-conditionals, take the last one and continue in the Gibbs cycle.

Table 6.2 provides the numerical results (averaged over 1000 runs) for the Mean Absolute Error (MAE) and the time
required by the Gibbs sampler. The time is normalized by considering 1 to be the time elapsed by using ARMS within Gibbs
and K = 50. Figure 3(a) illustrates the target π̄(x) whereas Figures 3(b)-(c) depict the MAE and the spent time of ARMS and
FUSS-MH-P4 as function of K.

Observing Table 6.2 and Fig. 3(b), we notice that FUSS-MH-P4 outperforms ARMS for all values of K in the estimations
of the four central moments: FUSS-MH-P4 achieves always MAEs close to zero. As shown also in Fig. 3(c), due to the pruning
procedure, FUSS-MH-P4 is a slightly slower than ARMS for K = 3, 5, 10. However, the computational time FUSS-MH-P4



MAE
Technique K Mean Variance Skewness Kurtosis Time

3 0.0735 0.0365 0.0369 0.0022 0.343
FUSS-MH-P4 5 0.0735 0.0361 0.0367 0.0022 0.343
δ = 0.9 10 0.0724 0.0354 0.0365 0.0021 0.345

50 0.0721 0.0355 0.0364 0.0021 0.348

3 3.408 11.580 3.384 11.572 0.077
5 3.151 9.839 2.650 7.079 0.116

ARMS 10 2.798 7.665 2.024 4.124 0.223
50 1.918 3.407 1.134 1.292 1.000

MH

σp = 1 100 3.509 12.308 3.671 13.666 0.540
σp = 2 100 1.756 3.077 0.9782 0.9633 0.540
σp = 10 100 0.0756 0.0376 0.0368 0.0025 0.540
σp = 1 1000 3.508 12.302 3.665 13.624 3.229
σp = 2 1000 1.601 2.560 0.8741 0.7691 3.229
σp = 10 1000 0.0743 0.0360 0.0363 0.0021 3.229

Table 13. MAE in the estimation of four statistics (first component) of π̄(x1, x2) and normalized simulation time. All the
techniques are used within a Gibbs sampler (NG = 2000 total iterations), performing K iterations for each full-conditionals.

remains virtually constant with K whereas in ARMS it increases with K, since ARMS adds new support points for improving
the proposal pdf, hence becoming more costly. Regarding the use of the MH algorithm within Gibbs, the results depend largely
on the choice of the variance of the proposal, σ2

p, showing the needed of adaptive or self-tuned MCMC strategies. Indeed, for
an inadequate scale parameter (e.g., σp = 1 or σp = 2), even the use of K = 1000 provides bad results. On the other hand,
when a good σp is selected (i.e., σp = 10), MH with K = 100 and K = 1000 provides virtually the same performance of
FUSS-MH-P4 but obviously wasting more computational cost.
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Fig. 3. (a) Contour plot of the target pdf π̄(x1, x2). (b) MAE in estimation of the kurtosis (first component) as function of K,
using ARMS-within-Gibbs (squares) and FUSS-within-Gibbs (circles). (c) Normalized spent time as function of K for ARMS
(squares) and FUSS (circles) within the Gibbs sampler.

7. CONCLUSIONS

In this work, we have introduced a novel extremely efficient MCMC sampler for drawing from univariate densities. The
achieved performance are close to an exact sampler yielding i.i.d. samples. The novel technique outperforms (in terms of
performance and speed) other wide-used MCMC methodologies as the Metropolis-Hastings (MH) method, the slice sampling
and the ARMS algorithm. The time comparison has been realized using their MATLAB MathWorks implementation (i.e.,
mhsample.m and slicesample.m). Numerical simulations also show the clear advantage of use the FUSS algorithm
within a Gibbs sampler. Moreover, although the performance are remarkable, the new technique is not an adaptive MCMC,
hence there are not issues with the ergodicity.
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A. TAILS

The choice of the tails is important for two reasons: (a) to accelerate the convergence of the chain to the target (in the case, for
instance, of heavy-tailed target distributions) and (b) to increase the robustness of the method w.r.t. the initial choice of the set
SM .

In general, the construction of tails with a bigger area below them reduces the dependence on a specific choice of the initial
support points. When it is impossible, a good choice is to build tails such that p(x) ≥ π(x) for x ∈ I0 and x ∈ Im. This
is always possible when the target pdf has light tails (i.e., convex tails in the log-domain) as we have shown in Figure 1 and
explained below.

A.0.1. Light Tails

In this case, we use two exponential pieces

p(x|Sm) = eh0x+b0 , ∀x ∈ I0; p(x|Sm) = ehmx+bm , ∀x ∈ Im.
The linear function, w0(x) = h0x + b0 is the straight line passing through the points (s1, V (s1)) and (s2, V (s2)), whereas
the second linear function wm(x) = hmx + bm is the straight line passing through (sm−1, V (sm−1)) and (sm, V (sm)). Note
that we can easily compute analytically the area below each piece, and we can also easily draw from each exponential tail by
inversion method [23].

A.1. Heavy Tails

For heavy tails, there are also several possibilities. For instance, here we propose to use Pareto pieces with the analytic form

p(x|Sm) = eρ0
1

|x− µ0|γ0
, ∀x ∈ I0; p(x|Sm) = eρm

1

|x− µm|γm
, ∀x ∈ Im,

directly in the pdf domain with γj > 1, j ∈ {0,m}. In the log-domain, this is equivalent to

w0(x) = ρ0 − γ0 log(|x− µ0|), for x ∈ I0,

wm(x) = ρm − γm log(|x− µm|), for x ∈ Im,
Fixed the parameters µj , j ∈ {0,m}, the remaining ρj and γj are set in order to satisfying the passing conditions through
the points (s1, V (s1)), (s2, V (s2)), and through (sm−1, V (sm−1)), (sm, V (sm)), respectively. The parameters µj can be
arbitrarily chosen by the user, fulfilling the inequalities

µ0 > s2, µm < sm−1.

Values of µj such that µ0 ≈ s2 and µm ≈ sm−1 yields small values of γj (close to 1) and, as a consequence, fatter tails. Greater
differences |µ0 − s2| and |µm − sm−1| yields γj → +∞, i.e., lighter tails. In the limit case, they coincide with the exponential
construction presented above. Different examples of construction are illustrated in Figure 4.

As in the previous case, we can compute analytically the integral of p(x|Sm) in I0 and Im. We can also easily draw from
each Pareto tail by inversion method [23].
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Fig. 4. Example of construction of heavy tails in the log-domain of the pdf. (a) Example with a specific choice of the parameters
µ0 > s2 and µm−1 < sm−1 (m = 10 in figure). (b)-(c) Alternative right log-tail constructions, decreasing the parameter µm−1.
For µm−1 → −∞, the log-tail tends to be a straight line passing through (sm−1, V (sm−1)), (sm, V (sm)). (d) Construction of
the right log-tail with µm−1 ≈ sm−1. In this case, µm−1 → sm−1, it tends to be a constant line.


