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Solutions of Navier-Stokes Equations
plus
Solutions of Magnetohydrodynamic Equations

Abstract

In this paper, after nearly 150 years of waiting, the Navier-Stokes equations in 3-D for
incompressible fluid flow have been analytically solved. In fact, it is shown that these equations

can be solved in 4-dimensions or n-dimensions. The author has proposed and applied a new law,

the law of definite ratio for fluid flow. This law states that in incompressible fluid flow, the other
terms of the fluid flow equation divide the gravity term in a definite ratio and each term utilizes
gravity to function. The sum of the terms of the ratio is always unity. This law evolved from the
author's earlier solutions of the Navier-Stokes equations. By applying the above law, the hitherto
unsolved magnetohydrodynamic equations were routinely solved. It is also shown that without
gravity forces on earth, there will be no incompressible fluid flow on earth as is known (see p.23,
p-13). The difficulty in solving the Navier-Stokes equations has been due to finding a logical way to
split the equations. By using the most fundamental principle for dividing a quantity into parts, using
ratios, all hidden flaws in splitting the equations have been eliminated. The resulting sub-equations
were readily integrable, and even, the nonlinear sub-equations were readily integrated. The
preliminaries reveal how the ratio technique evolved as well as possible applications of the solution
method in mathematics, science, engineering, business, economics, finance, investment and
personnel management decisions. The coverage is as follows. The x—direction Navier-Stokes
equation will be linearized, solved, and the solution analyzed. The linearized equation represents,
except for the numerical coefficient of the acceleration term, the linear part of the Navier-Stokes
equation. This solution will be followed by the solution of the Euler equation of fluid flow. The
Euler equation represents the nonlinear part of the Navier-Stokes equation. The Euler equation was
solved in the author's previous paper. Following the Euler solution, the Navier-Stokes equation will
be solved, essentially by combining the solutions of the linearized equation and the Euler solution.
For the Navier-Stokes equation, the linear part of the relation obtained from the integration of the
linear part of the equation satisfied the linear part of the equation; and the relation from the
integration of the non-linear part satisfied the non-linear part of the equation. For the linearized
equation, different terms of the equation were made subjects of the equation, and each such equation
was integrated by first splitting-up the equation, using ratio, into sub-equations. The integration
results were combined. Four equations were integrated. The relations obtained using these terms as
subjects of the equations were checked in the corresponding equations. Only the equation with the
gravity term as subject of the equation satisfied its corresponding equation, and this only satisfaction
led to the law of definite ratio for fluid flow, stated above. This equation which satisfied its
corresponding equation will be defined as the driver equation; and each of the other equations which
did not satisfy its corresponding equation will be called a supporter equation. A supporter equation
does not satisfy its corresponding equation completely but provides useful information about the
driver equation which is not apparent in the solution of the driver equation. The solutions revealed
the role of each term of the Navier-Stokes equations in fluid flow. Most importantly, the gravity term
is the indispensable term in fluid flow, and it is involved in the parabolic as well as the forward
motion of fluids. The pressure gradient term is also involved in the parabolic motion of fluids. The
viscosity terms are involved in parabolic, periodic and decreasingly exponential motion of fluids.
As the viscosity increases, the periodicity increases. The variable acceleration term is also involved
in the periodic and decreasingly exponential motion of fluids. The convective acceleration term with
x as the independent variable produces square root function behavior. The other convective
acceleration terms produce fractional expressions containing square root functions.

For a spin-off, the smooth solutions from above are specialized and extended to satisfy the
requirements of the CMI Millennium Prize Problems, and thus prove the existence of smooth
solutions of the Navier-Stokes equations.
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The Navier-Stokes equations in three dimensions are three simultaneous equations in Cartesian
coordinates for the flow of incompressible fluids. The equations are presented below:

[ 92V, a2v a2v p V. v, IV, V.
u(&x 52 + —§+Px p( +V, 8X+V (9y+V Z) N
22V, 82V 82V op V, v, v, av,
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Equatlon (N ) will be the first equation to be solved; and based on its solution, one will be able to
write down the solutions for the other two equations, ( N. Vs and (N,).

Dimensional Consistency

The Navier-Stokes equations are dimensionally consistent as shown below:

2V 1V %V, p, V. IV, v,
(8x2+5’y2+ )—&x+pgx_p( +V(9x+Vo.,y

Using MLT
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Solutions of the Navier-Stokes Equations
Preliminaries

Option 1
Solution of the Linearized Navier-Stokes Equation
in the x-direction

The equation will be linearized by redefinition. The nine-term equation will be reduced to six terms.

] 2v. v. o2 v v v .
Given: (55 + ayV;+ /. —%);+pgx=p(—x+vx§x+V S W

d%v, d%v, Ve | Opy v, My My v,
N8x2 —H 2 .u az ok TP +pVy e +pV Yy +pV; o =P8y (B)

2 2
%y G+ e+ B ap T = g, ©

Plan: One will split-up equation (C) into five equations, solve them, and combine the solutions. On
splitting-up the equations and proceeding to solve them, the non linear terms could be redefined and
made linear. This linearization is possible if the gravitational force term is the subject of the
equation as in equation (B). After converting the non-linear terms to linear terms by redefinition,
one will have only six terms as in equation (C). One will show logically how equation (C) was
obtained from equation (B), using a method which will be called the multiplier method.

Three main steps are covered.

In main Step 1, one shows how equation (C) was obtained from equation (B)

In main Step 2, equation (C) will be split-up into five equations.

In main Step 3, each equation will be solved.

In main Step 4, the solutions from the five equations will be combined.

In main Step 5, the combined relation will be checked in equation (C). for identity.

Preliminaries
Here, one covers examples to illustrate the mathematical validity of how one splits-up equation (C).
Let one think like a child - Albert Einstein. Actually, one can think like an eighth

or a ninth grader. Suppose one performs the following operations:

Example 1: 10+20+25=55 (1)
_ 10 _ 2
10=55X55=55X; (2)
20=55x 3 =55%x % 3)
25=55XE=55X>3 4)
Equations (2), (3), and (4) can be written as follows:
10 =55a (5)
20 =55b (6)
25=>55¢ @) Observe also that a+b+c=1
One will call a,b and ¢ multipliers. (” + +_ 1_ =1)
Above, a = 121, b= 11, c=%




Solutions of the Navier-Stokes Equations
Preliminaries
Example 2: Addition of only two numbers
20+25=45 (8)
20=45Xx22=45X3 (9

25=45x2 =453 (10)
Equations (9), and (10), can be written as follows:
20=45a 1)
25=45b (12)
Rewrite (8) by transposition.
If 20-45=-25
Then 20=-25d (dis a multiplier)
—45=-25f ( fis a multiplier)
Above, d:&——%, f= —45_2

25" 2575
Observe also here that d+ f=1 (-%+2=3=1)
a+b=1 (§+3=9=1)

One can conclude that the sum of the multipliers is always 1.

More formally:

Let A+ B+C=S ,where A,B,Cand S.are real numbers. (for the moment), and
one excludes 0.

Let a, b, c be respectively, multipliers of the sum S corresponding to A, B, C.
Then A=Sa, B=Sb, C=Sc;and a+b+c=1

To show that a+b+c=1,

Sa+Sb+Sc=S.

S(a+b+c)=S (factoring out the §)

a+ b+ c=1.(Dividing both sides of the equation by §)



Solutions of the Navier-Stokes Equations
Preliminaries

Example 3: Solve the quadratic equation; 6x2+11x—10=0
Method 1 (a common and straightforward method)

By factoring, 6x? +11x—10=0
(3x—2)(2x+5) =0 and solving,
Bx—=2)=0o0or 2x+5)=0

2 _5 . 5 2
x=5,x=-3. Solution set: { 5 3}

Method 2: One applies the discussion in Example 2 | gten 2: 30042 — 12054 + 300 = 0
One will call this method the multiplier method. °p < “ a
) - 60a> —241a+60=0
Step 1: From 6x“ +11x—-10=0 (D) +J 2
6x% =10a; (Here, a is a multiplier) 120
x ’ ’ p _ 241++/43681
3x? =5a 2) a= 120
11x=10b (Here, b is a multiplier) a= %
Hx=100-a) (at+b)=1 2414209 _ 2414209 241209
l1x=10-10a 9T7120 T 120 120
x=10—-10a _ 450 32
11 =120 %" 120
(10 10“)2 Sa (Substituting for x in (2) _ %or %
100 — 200a +100a?) _
3( 1 =5a
. Qi _ _15 3 h —_11 —10(-11
Step 3: Since a+b =1, when a=7 or 35 Step 4: When b = 1 11x =10( 4)
3__53 11 —_3
b=1-33=-27or — 4 xX==7
when a=1s b_l_ﬁ_ﬁ When b 1150, 11x 10(125)
_1011y. ., _2
=115 ¥=3
Again, one obtains the same solution set {—% , %} as by the factoring method.
About the multipliers
. - _15 3 pop3 o 1., 4 ,_11
The values of the multipliers obtained were a = 4 or 3 T b=-2 7 or 4 ; 5 b= 5
It easy to understand, say, in 20 =45X 3—2 =45X %, that the multiplier 2 5 can be viewed as the

fraction of the multiplicand, 45 .
Later, one will learn that the multipliers are ratio terms as in Examples 5, 6 and 7, below.



Solutions of the Navier-Stokes Equations
Preliminaries

Example 4 Solve ax? + bx + ¢ =0 by completing the square and incorporating the multiplier
method.

Step 1: From ax? +bx+c=0 b b\ ¢
0 _ 4+ (L) _C
ax? +bx =—c Step 2 “*24 _\(2a) a
Let ax?=—cd; (d is a multiplier) (D) b _, b2 _c
Let bx=—cf (f isamultiplier) ) 2T 142 a
(andd+f:1) x+£:+ i_ﬂ
ax*> +bx =—cd —cf (Adding equations (1) and (2) 2a "V4a® 44?
x2+hx:_—cd—£f :i\/b2—4ac
a a a 4a?
2 2
2,.b, (b)) _(b) —_c _ b, b2—4ac
* +ax+(2a) (Za) =gt Y=t 04
(completing thezsquare 02n the left-hand side)) - b+ \/ é)z _dac
b)Y _(b) _c _ a
(e da) =(3) -6 @rr=v O
One's interest is in equations (1), (2) and (3).

Example 5: A grandmother left $45,000 in her will to be divided between eight grandchildren,
Betsy, Comfort, Elaine, Ingrid, Elizabeth, Maureen, Ramona, Marilyn, in

1.1 1. 1.5.1.7.2 o1 1 1,5 1.7 2
theratlo%.18.12.9.36.6.36.9.(Note. 36+18+12+9+36+6+36+9_1)

How much does each receive?
Solution:

Betsy's share of $45.000 = ¢ % $45,000 = $1,250
Comfort's share of $45,000 = 1 x $45,000 = $2,500
Elaine's share of $45.000 = 5x$45.000 =$3,750
Ingrid's share of $45000 = g x $45,000 = $5,000
Elizabeth's share of $45.000 = 5 x $45,000 = $6,250
Maureen's share of $45,000 = % x $45,000 = $7,500
Ramona's share of $45,000 = % X $45,000 = $8,750

Marilyn's share of $45,000 = % x $45,000 = $10,000

Check; Sum of shares [= $45,000
Sum of the fractions = 1
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Preliminaries

2 2y
Example 6: Sir Isaac Newton left pg, units in his will to be divided between ,ua&x‘g , &&yz ,
d%v, odp v, v, v,
_'u&z2’8xp8t pV&x pV&y pV 1ntherat10abcdfhmn

where a+b+c+d+ f+h+m+n=1. Howmuchdoeseachreceive?

2y
Solution —,ua8 's share of pg, units = apg, units

—u %yz s share of pg, units = bpg, units

—u 8 2 's share of pg, units=cpg, units

%'s share of pg, units =dpg, units
v,
p—=> & 's share of pg, units= fpg, units

pV. %'s share of pg, units = hpg, units

pY, O—S;C 's share of pg, units = mpg, units
v,
PV, == P
Sum of shares = Note: a+b+c+d+ f+h+m+n=1

's share of pg, units=npg, units

Example 7: The returns on investments A, B, C, D are in the ratio a:b:c:d.If the total return
on these four investments is P dollars, what is the return on each of these investments?
(a+b+c+d=1)
Solution Return on investment A = aP dollars
Return on investment B = bP dollars
Return on investment C = ¢P dollars
Return on investment D = dP dollars

Check aP+bP+cP+dP=P
Pla+b+c+d)=P
a+b+c+d=1 (dividing both sides by P)
The objective of presenting examples 1, 2, 3,4, 5, 6, and 7 was to convince the reader that the

principles to be used in splitting the Navier-Stokes equations are valid.
In Examples 3 and 4, one could have used the quadratic formula directly to solve for x, without

finding a and b first. The objective was to convince the reader that the introduction of a and b did
not change the solution sets of the original equations.

For the rest of the coverage in this paper, a multiplier is the same as a ratio term
The multiplier method is the same as the ratio method.



Linearization of Non-Linear terms

Main Step 1

Linearization of the Non-Linear Terms

Step 1: The main principle is to multiply the right side of the equation by the ratio terms
This step is critical to the removal of the non-linearity of the equation.
pg, 1s to be divided by the terms on the left-hand--side of the equation in the ratio
atb:cidifithim:n (a+b+c+d+f+h+m+n=1
nonlinear terms

WV,

02
: =Py, ()

X

V. V.
o o X+ pV. x+pV

32
ox Yy oy

5‘y2
o . . . all acceleration terms
Apply the principles involved in the ratio method covered in the preliminaries, to the

nonlinear terms (the last three terms.)

L+ P
'uaz +p0~,t+pV

v, Vv,
e T P8y g
v
V.S =ng, 2
V. % = ng,. (One drops the partials symbol, since a single independent variable is involved)
dz AV,
g, . dz =ng, (V.= d , by definition)
dv,
vV, dv
Therefore, |V, sz = dtx =ng, 4)
Step 2: Similarly, g aa‘;x = mpg, g aa‘;x ) ()

g d d‘;x =mg, (One drops the partials symbol, since a single independent variable is involved)

dydv, _dy
dv, _
dv, dV
Therefore, [ V), dyx =7 =M (7)
v, . . . ;
e = hpg, where h is the ratio term corresponding to pV, o
av,
X &xx = hgx (8)
; d d‘;x = hg, (One drops the partials symbol, since a single independent variable is involved)
dx dv, _dx
dr dx =hg, (V= dl‘)
dv, _ 8Vx dvx —
a’tx =hg, ©) Therefore, |V, - d hg, (10)




Linearization of Non-Linear terms

From equations (4), (7), (10), V, % =V, % =V, % = %% ang
o4 o\ dv
K I (1)
Thus, the ratio of the linear term ;x i ; % +V % +V, %V—Z’C in

equation (1) is 1 to 3. Unquestionably, there is a ratio between the sum of the nonlinear

. ov. o . :
terms and the linear term 7’5 This ratio must be verified experimentally.

Note: One could have obtained equation (C) from equation (A) by redefining the nonlinear
terms by carelessly disregarding the partial derivatives of the nonlinear terms in equation (1).
However, the author did not do that, but logically, the terms became linearized.

Note also that the above linearization is possible only if pg,. is the subject of the equation,
and it will later be learned that a solution to the logically linearized Navier-Stokes equation is
obtained only if pg, is the subject of the equation.

Step 4: Substitute the right side of equation (11) for the nonlinear terms on the left- side of
nonlinear terms

82V %v, 22v, av. oV, v,
Hga ~H s —H gt %’;‘w& +pV, a;‘+pVy&yx+pV 5 =g, (12)

all acceleration terms
d%v, d%v, d%v, 81% 8V 8V
.ng_ 3y2_ 8z T +p8t +3P&x =P8,

all acceleration terms

Then one obtains

d%v, d%v, d%v, o,
—u 8x2 —-u 8y2 -u o aé;x +4p &tx =pg,| (simplifying) (13)

Now, instead of solving equation (1), previous page, one will solve the following equation

PV, PV, Ve 1V L
K Ka';yz K3+ pox 5 = & (k_ﬁ) (14)

ax2
Main Step 2

Step 5: In equation (14) divide g, by the terms on the left side in the ratio atbicid: f.

&2V 82V 82V 10dp _ 07V
Kga =as —K5a=bgss —K7gam=cgs or=dgs 4755 = fs
(a, b, c,d, faretheratlotermsand a+b+c+d+ f=1).
2
i _&. — 8. _ 8. Pox _ 8. 13
As proportions: =15 b =7 c =T g T 7T

One can view each of the ratio terms a, b, ¢, d, f as a fraction (a real number) of contributed
by each expression on the left-hand side of equation (14) above



Main Step 3

Step 6: Solve the differential equations in Step 5.
Solutions of the five sub-equations

Solutions of the five sub-equations

_Kézx—vz’c ag agy‘g =bg —K%Z—szzcg
k a;xxgx a8 K a;y\g = -bg K 8(92ng cs
=t A Ay
83;":—%x+cI %_ b]§y+c3 88‘;x=—%z+C5
Va=-3822+Ca+ G, v - 3§y2+c3y+c4 V=824 CtC
Main Step 4

Step 7: One combines the above solutions

Vo=V, 4V, +Va+Vy,

= 2kx +Cx+C, — gky +CGy+Cy— 2
= g§x2+C1x—g—ky +C3y—ﬁz2+C5z+fgt+C9
gixz—giyz—giz +C1x+C3y+Csz+%t+C9
% 2—[2?—iy2—gizz+C1x+C3y+C51+%t+C9
—ﬁ(ax +by? +cz2)+C1x+C3y+Csz+%t+C9
V.= —g—‘if(ax2 +by? +cz?) + Cix+Cy+Csz + fi" t+Cy
P(x)=dpg x

kZ +C52+C6+f_t+C7

4

Vx = Vxl +Vx2 + Vx3 +Vx4

4

Vo (x,y,z,t) = —g;izc(ax2 +by? +cz2) + Cix + C3y + Csz +&t+ Cy

P(x)=dpg x
For V.(x,t),let y=0,z=0
Then |V, (x,t) =— p(g‘;: ax? + Cix+ fi)‘

t+Cy

V. (x,0)=V2(x) =

p% ax + Clox + C9

10
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Checking in equation (C)

Main Step 5
Checking in equation (C)

Step 8:  Find the derivatives, using

V.= —g—‘ii‘(ax2 +by? +cz22)+ Cix + Cyy + C5Z+%t+ Gy

N _ s Ny __Pe. V. _ P8,
= h e+ G S=h e+ G =
192V _apgx 5 |92Ve _ _bps; N a7
. axz .u . ayz ‘u J azz /.L s
P _ ool WV, _ for
4. &x - dpg 9 5. &t - 4
2 2
Step 9: Substitute the derivatives from Step 8 in —u( O;x‘; O;y‘; i Vx 50)+ 3Px +4p 0—2?/; =P8,
to check for identity (to determine if the relation obtained satlsfles the orlglnal equation).
92V, 82V 82Vx p IV, Scrapwork
THCGa T gn T )T TP T P v, __apg,
apg, _ bpg, pgx [ ox? T
B TR T TR +4ngx—pgx Pv,  bpg, .
? n? u
apg, +bpg, +cpg, +dpg, + Pfgx?ngx 92v, _cpg, .
agy +bg, +cg, +dg, + f8,=¢& 2% L
?
glatbt+c+d+f)=g, P _ gor | [V _ S8
? o 94pPs a4
g, (=g, (a+b+c+d+f=1)
?
8,=8, Yes

An identity is obtained and therefore, the solution of equation (C), p.96, is given by

J: 14 Cy; P(x)=dpg,x

Vo (x,y,2,t) = —g—%(ax2 +by? +cz2)+ Cix + C3y + Csz +

11



Solutions Summary

Solution Summary for v,, v, and v,

For v, a+b+c+d+f=1
d%v. 82 82 x _ dp, o, v, v, v,
H(ax 3y2 o +ng—P(—+Vx§+Vy@+Vza—z)
v, _ J% L1
-K 2 _K8y2 _K&Z pax+47—gx
Vx:Vx1+V2+Vx3+V
bg
= ka +Cx+C) — 2ky2+C3y+C4 2kz +C5z+C6+];t+C7+C8
a bg
= 2§x2+C1x—ﬁy2+C3y 2kz +C5z+]:‘ft+C9
gi 2 giﬁ—giz +C1x+C3y+C5z+Tt+C9
Vy(x,y,z,t):—%(ax +by +cz2)+C1x+C3y+C5z+fixt+C9
P(x)=dpgx
For V.(x,t),let y=0,z=0
Then Vx(x,t)=—g—%(ax2)+C1x+%t+C9

For V, h+j+m+n+g=1
v, 9%, azv op v, g , v,
‘Ll(é?xz ayz ) 3y+pgy p( +V ax-'_VyW-l_Vza_Z)
d%V. 32V 82\/ 1 dp
-K &xzy—Kayzy—K +E@+4__gy
hg Jg mg, ng,
‘/y:—z—kyxz-i-clx 2ky +C3y 2k Z +C5Z+Tt
Vy(X,y,z,t)=—g—fj(hx + jy* +mz )+Clx+C3y+C5z+%t+C
P(y)=npg,y
For Vv, r+s+u+v+w—1
92V 82V 82V 3V v ov.
“(ax ayz 7))~ g’? t P8, = P( 8xZ+VyWZ+VZa_ZZ)
82VZ 072VZ 1 &’p
TR -+ azz X3 ~a=s,
r's. S8, ug. wg.
V.= —2—kX2 +Clx—gy2 +C3y—7z2 +Csz+ 4=t
V.(x,y,2,1) =— g‘ij (rx? +sy* +uz?) + Cix+CGy+Csz+ wfz t+C
P(z)=vpg,z

12



Discussion About Solutions

Discussion About Solutions
d%v, 82V 8 Voo dp

A solution to equation ,u( o0 3y2 ) + + 4p(%) =pg, (C) is
Vi(x,y,2,0) = —g—%(axz +by? + czz) +Cx+ Gy +Csz+ fi" t+Cy

P(x)=dpg x; (a+b+c+d+f=1)

This relation gives an identity when checked in Equation (C) above.

One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, the first three
terms, the seventh term, and P(x) would all be zero be. This result can be stated emphatically that

without gravity forces on earth, there will be no incompressible fluid flow on earth as is known.
The above result will be the same when one covers the general case, Option 4.

The above parabolic solution is also encouraging. It reminds one of the parabolic curve obtained
when a stone is projected vertically upwards at an acute angle to the horizontal..

The author also tried the following possible approaches: (D), (E) and (F), but none of the possible
solutions completely satisfied the corresponding original equations (D), (E) or (F) .

2y 2y 2y
‘ua&xe +U8&yzx +u88 5+ P8y 4pi.‘;tx :% (D) (One uses the subject %

56’2VX+£82VX+£82V 18p+&_ v,
4 ox?2 4 2 4 g2 4pox

2 2 2 2
vy Oy P8y APy 1dp_ 0%y (F)  (One uses subject aax‘gx

(E), (One uses the subject o

T TR T uw Tua Tua ae
Integration Results Summary

9%V, 82V (92V
u e Sl e Laapin—p. (©

/8.

i t+Cy

Case 1:

Vo (x,y,z2,t) = —g;iz‘(azx2 +by? +cz?)+ Cx+Cy+Csz+
P(x)=dpg,x; (a+b+c+d+f=1)

2 2
Case 2: %xzx +u %y‘;x + U 0; Zx +pg, —4p %Vt % (D). (One uses the subject %

<----Solution

Vi(x,y,z.) = g—ﬁ(axz +by? +cz2)+ Cx+ A,x + Cyy + Csz —%t+ C

P(x)=1 pg.x

Ko*Vy KOV KPVe 1p g IV
Case 3: T o0 + 22 +T B, 4p8x+__

aV
(E). (One uses the subject &[x

—(22 _(y 2
V. (x,y,z,t) = (C coslxx+C2 sin A, x)e (A /ﬂ)t+(C3coslyy+C4sin/1yy)e 4y /w)t

+(Cscos Az + Cgsin lzz)e A g)t

P(x)=Ax =dpg,x

4ft+/1x+c8

13
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o d%v, J%v, P8y 4padv, 1dp 9%, . |9?V,

Case 4: — 2 2 + wa + Uor ™~ o (F). (One uses the subject 92
l\/a )x _(A«’\/ a )x
V. (x,y,2,t) = (Acos Ay + Bsin Ay)| C +De ~ a
b _Mb
+(Ecos Az + Fsin /lz(He( R Le( b )x] pg+u+ Ax+ B+ (A, cos Ax + B, sin dx)e— (A1)t
57 f x2+Cox+Cy)

P(x) = dpg.x
Note: Relations for equations with subjects g, and P are almost identical.

By comparing possible solutions for equations (C) and (D), A, = —pg, in relation for (D).

Ve(x,y,2,1) = g—;(axz +by? +cz2)+ Cx+ A,x + Cyy + Csz —%t+ C

P(x) =1 pg,x

The comparative analysis of the possible solutions when checked in each corresponding equation is
presented in the table below.

Equation| Number of terms of

Equation Subject | possible solutions not
satisfying original equation

PRV, PV, azv P

Case 1: —u(—=" 5+ )+ None
o 8y 8 Case 1 yields the solution
d%v, d%v, d%v, dp
Case2:,uax2 +u 2 + U o2 + P8y — PW_— x One term
9%V, %V, 9%V, av,
Case 3: Ij e +I§ 22 +I§ ) —%% % 8tx At least 2 terms
9%, 0%, P&y 4pdv,  1dp 92V,
Case4: — 8y2x — 8z2x " 77 Uor 8 2 At least 2 terms

Outcome 1: With g, included and with g, as the subject of the equation.

The solution is straightforward and the possible solution checks well in the original equation (C)
Also, if g, or pg, is not the subject of the equation, the linearization of the nonlinear terms could
not be justified.
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Discussion About Solutions

Outcome 2: With g, i i 8;" as the subject of the equation.

- Ve _ 1P M., &8 9V | 8t
There are two problems when checking . 1. For d - dpox — dpd’ 2. A= AT

With d and f in the denominators, the multipliers sum a+b+c+d+ f =1 is false.

Outcome 3 : With g, , 8;" as the subject of the equation, there is one problem:

1 8]? 8‘/ _ M
4po7x & - 4pd .With d in the denominator a+b+c+d+ f =1 is false

2
Outcome 4 : With g, included, and a&x‘gx as the subject of the equation, there are at least, two

problems in the checking with the multipliers ¢ and f in the denominators.
Checking for a+b+c+d+ f =1 is impossible.

Characteristic curves of the integration results

Equation
Equations Subject Curve characteristics
9%V, 82V 82V
Case 1: —u( 8x2 8y2 5-)+ g + 4p( x) P8, g Parabolic and Inverted
d%v. d%v 82\/ v,
Case 2: u 8x2x + U (9y2x + U X 5+ P8y — p7 = % %1; Parabolic
9%V, 9%V, 9%V, . dV, av,
Case 3: Ij 8x2 Ij &yz Ij ) —%% gz=7x 8;6 Periodic and decreasingly
exponential
2 2 2 22
ased: — - - +L-=t 4= 0 eriodic, parabolic, an
Case 4 &\;x %gx P8 4p%vtx 1% (Pa\;x &xx Periodi bolic. and
oy < o H H x exponential

The following are possible interpretations of the roles of the terms based on the types of curves
produced when using the terms as subjects of the equations.

l. g, and 07p are involved in the parabolic motion of fluids..

2
Vy and % are involved in the parabolic, periodic and decreasingly exponential motion.

2.&

3. g, is responsible for the forward motion.

15



Definitions and Classification of Equations

9%V,
812

92V,
&)62

92V,
8))2

L1
p&x

-K -K -K

8t

One may classify the equations involved in Option 1 according to the following:

Discussion About Solutions

g
(k—p)

Driver Equation: A differential equation whose integral satisfies its corresponding equation.

Supporter equation: A differential equation which contains the same terms as the driver equation
but whose integral does not satisfy its corresponding equation but provides
useful information about the driver equation.

Note that the driver equation and a supporter equation differ only in the subject of the equation.

# of terms of

Equation -
Equation Subject | Type of | relationnot
equation satisfying original
equation
9%V, 82V o'? V, av,
Case 1: —u( 8x2 (9y2 +—55) +to0 P +4p &x = g, Driver | None
Equation
d%v. d%v. %, v,
Case 2: u 8x2x +u 0-;yzx + U % 2x +pg. —4p—- 8t 3xp % Supporter | One term
equation
%V, 9%V, 9%V, av, av,
Case 3: Ii 8x2 Ij (9y2 Ij p, —%% % th 9tx Supporter At least 2 terms
equation
2 2 2y o2V Supporter
Cased: — %y‘;x - %Z‘;x - p‘ix + AZ) %Vtx + %% a&x &xzx equation | Atleast 2 terms
d2v, J%v, P8y 4padv, 1dp J%, v,
Case5: — -3¢ -~ FZx 120 L Su ter | At least 2 terms
2 2 2 pporte
o oz H Hoor o pox > o equation
22V, J2V. P8 4p IV, 1 dp _d%V, %V,
Case 6: — X — X _ X P ey L o X = Su ter | At least 2 terms
2 2 2 2 pporte
dy ox HoH G TuokT & o equation

One can apply the above definitions in solving the magnetohydrodynamic equations.
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Discussion About Solutions

Applications of the splitting technique in science, engineering, business fields

The approach used in solving the equations allows for how the terms interact with each other.
The author has not seen this technique anywhere, but the results are revealing and promising.
Fluid flow design considerations:

1. Maximize the role of g, forces, followed by; 2. % ; .a;t/x

(Make g, happy by always providing a workable mgsin@) .

For long distance flow design such as for water pipelines, water channels, oil pipelines. whenever
possible, the design should facilitate and maximize the role of gravity forces, and if design is

p

impossible to facilitate the role of gravity forces, design for e to take over flow.

2y,
—— should be studied further, since its role is the most complicated: periodic,

ox

parabolic, and decreasingly exponential.

Tornado Effect Relief
Perhaps, machines can be designed and built to chase and neutralize or minimize tornadoes during
touch-downs. The energy in the tornado at touch-down can be harnessed for useful purposes.

Business and economics applications.
1. Figuratively, if g, is the president of a company, it will have good working relationships with all

The performance of

the members of the board of directors, according to the solution of the Navier-Stokes equation. If g,
is present at a meeting g, must preside over the meeting for the best outcome.

p

2.If g, is absent from a meeting, let P preside over the meeting, and everything will workout well.

However, if g, is present, g, must preside over the meeting.

To apply the results of the solutions of the Navier-Stokes equations in other areas or fields, the

p

properties, characteristics and functions of g, i 7* must be studied to determine analogous

terms in those areas of possible applications. Other areas of applications include investments choice
decisions, financial decisions, personnel management and family relationships.

Option 2
Solutions of 4-D Navier-Stokes Equations (linearized)

One advantage of the pairing approach is that the above solution can easily be extended to any
number of dimensions.

2
If one adds u%s—‘zlx and pV, 88& to the 3-D x—direction equation, one obtains the 4-D Navier--

. v, o'?zv 82\/ 07 V. Vv,
Stokes equation —u( o 8y2 ) oy P + 4p(— s = P8y
2 2 2

After linearization, —u( O;XV 0;;; + 07 Vx + 07 Vx ) + 81? + 5p( vy )= P8y and its solution is

V. (x _ P82 2 J&:

(X,,2,8,1) = 2 (ax® + by +cz> +es?) + Cix + C3y + Csz+ Cos + s+ Cy

P(x)=dpg,x (a+b+c+d+e+f=1)

For n—dimensions one can repeat the above as many times as one wishes. |Back to Options |
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Solutions of the Euler Equations

Option 3
Solutions of the Euler Equations of Fluid flow

In the Navier-Stokes equation, if ¢ =0, one obtains the Euler equation. From

d%v 82Vx v, op v, v, v, v, .
(8x2 2 + o7 _a"'ng:P(W"‘VxW"'VyW"'Vza_Z)’One()btams
(= 0) P Ve oy Vo vy My I
Euler equation : (1 =0) o P8 = p( +V, o T |4 8y +V, s ) or
p( o, +V, &6"3 +V %‘;‘ +V, x ) + pr = pg, <---driver equation.
v v, v, L1 &‘p

X _ X _ X o 1 1
Euler equation (1 =0): +V, e +V, Yoy +V 07 Do g, <---driver equation

Split the equation using the ratio terms f,, h,, n,, q,, d,,,and solve. (f, +h,+n,+q,+d, =1)

3" v, IV, v, 19p_
fgx Vi &XX: egx 8}] l’legx . 8 j— qegx 5- p 8x - dggx
f 8.1t dv. dv, dv,
eSx x X = = 1 8p
Vx4 = fg.t X dx h.g Y dy N8 x 2 dz =4q.8x EE =d,g,
VidV, = h,g.dx | V,dV, =n,g,dy V.dV, =q,8,dz; P
sz ViVe=n.g8y+y,(V) V Vi=q.8:2 +y.(V.) ox d.pg.
=ng.x or _
22 V., = n,8xy + l//y(vy) Vx7 = qeéx + WZ‘E.V) p= depgxx + C7
‘/x = 2hegxx x6 — V. \% Z Z
Ve=t2hgx | V,#0

egxy q.8xZ WY(V ) l//z(V)
Vo(x,y,2t)= f.gt+ 2h,g x + V. v +—y v +C

y Z

P(x)=d,pg x (fe+he+ne+qe+de=l)Vy¢0,VZ¢0

Find the test derivatives to check in the original equation.

OW = f.g.| 2. V. =2h,8,x; 2V, % = 2h,g x; '%:% .%m:_qi}g_x 5'%:%%
y Z "
F= Vo hE0 V=0
N, v, v L

I I Iy . )
o +V, o +V, 8y + V 32 p Pt (Above, v, (V) and y_(V,) are arbitrary functions)
?

f.8.+ Vs heg’“+V ‘”“;’7" +V, qilgx +pdePgA
y Z
()

fo8x +h8 + g +q,8, +d,g =g,
9
& (fo+h +n,+q,+d,H=g,
?
gx(l):gx (f;)+he+ ne+qe+de:1)

?
8x=8x Yes
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Solutions of the Euler Equations

The relation obtained satisfies the Euler equation. Therefore the solution to the Euler equation is

AT v,(V)) oy (V)
174 = / ngyy | 48xZ yiy \Vs
(X, y,2,1) = fgt £ 2hg x + v, + V. + g + . +C

arbitrary functions

P(x)=dpg. x |4 #0,V, 20

The above is the solution of the driver equation. There are 5 supporter equations which will not be
solved here.

Question: Has the Euler equation of fluid flow been solved for the first time?

Note: So far as the solutions of the equations are concerned, one needs not have explicit

expressions for V,, V), and V..
The impediment to solving the Euler equations has been due to how to obtain sub-equations from
the six-term equation. The above solution was made possible after pairing the terms of the equation
using ratios (by way of multipliers). The author was encouraged by Lagrange's use of ratios and
proportion in solving differential equations. One advantage of the pairing approach is that the
above solution can easily be extended to any number of dimensions.

Extra:
Linearized Euler Equation: If one linearizes the Euler equation as was done in Option 1, one
obtains

J&.

7)‘ + [1) %7; = 8,3 whose solution is V, =751+ C;  P(x) =dpg,x. (see Option 1 results)

Results for the Euler equatlons are presented below: for V., V) and V,

a}’ &VX 8Vx x —
For V, : (9x+p (% L+ pV, o +pV,— s +pV, Z)—pgx

ngy gg.z Yy v (V)

Vx(x’yazat) = fgxt i '\/’ﬁzhgxx + V + V I V I V ; P(-x) = dpgx'x
’ : Y < x-direction
arbitrary functions
Vi#0,V, 20
P , M, v,
For V, 8y+ ) at &x 8y o = P8y
Ae8, X 82w (V) |y (V)
— + + Y + 8Oy + X\ "'x z z/ . —
Vy(x,y,2,0) =Asg 1 £24,8.y V. TV [ A P(y) = 2A,pg,y y-direction
V.20,V #0

o, v, o, v,
For sz%ﬂ)#ﬂ)vxjﬂyv &yZ+pV % = Ps:

Bsg.x  B:8.y, W (Vo) W, (V)
V.(x,y,2,t) = t+/2 oL o oes P X Xy ; P(2)=
(X,y,2,1) = Bs&. Bs8.2 V. V, vV V. (z) = B,pg.z z-direction
Vi#0,V,#0

Note:
By comparison with Navier-Stokes equation and its relation, a relation to Euler equation can be

found by deleting the Navier-Stokes relation resulting from the u-terms.  |[Back to Options
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Solutions of the Navier-Stokes Equations (Original)

Option 4

Solutions of the Navier-Stokes Equations
(Original)
As it was in Option 1 for solving these equations,the first step here is to split-up the equation into
eight sub-equations using the ratio method. One will solve only the driver equation, based on the

experience gained in solving the linearized equation. There are 8 supporter equations.
nonlinear terms

d%v, d%v, 3px V. V. V. _
—H 8)6 —Hu 3)72 ,u az +P 8[ +pV; o +pV, Yy +pV; o7 = P8y (A)
v, v, IV, 1o"’p Vv, v, v, v, u
_K(9x2 _K8y2 _Ka2+p8x 8t+V<9x+V8y+V(9 =g, (K_F) B)

Step 1: Apply the ratio method to equation (B) to obtain the following equations:
2 2
A%V, 8 V. ) 6’ V. 4 1 P _ dg ; 5. vV,

1 —szagx; 2. - 3y2 ~=bg; 3. - 82 =c8.; o s ~=/8,
A v, A
6. Vi r=hgy 7. v oy 48y 8.Vza—z=ngx

where a, b, c,d, f, h, n, g are theratioterms and a+b+c+d+ f+h+ n+qg=1

Step 2: Solve the differential equations in Step 1.

Note that after splitting the equations, the equations can be solved using techniques of ordinary
differential equations.

One can view each of the ratio terms a, b, c, d, f, h, n, g as a fraction (a real number) of

contributed by each expression on the left-hand side of equation (B) above.

Solutions of the eight sub-equations

92V, 2V, 92V, 19p
1. —k axz =ag 2. — 8y2 =bg 3. -K 8z2 =cg 4. 5$=dg
22V, 2 %V,
K2 =8 K —8,9;" =—bg Koz =8 %% =4
82Vx _a 92V 82Vx —__C 8p
92 kS =R EZa T o = dps
‘98‘3: e Mo __bg a;;xz_clfz Cs p:adpgx+c7
d  k 3 s WV _
a C =
Va=-gpx GGl =B yicyc Vis = =552+ Csi+ G a K
x2 2k 3 4 Vx4 = fgt
aV, aV, av, .
6. V.5t =hg, TV o=, 8.V, %5 =4g, Note:
v, i v,(V). w (V)
L gy = CESE o
. u ’
Vi fv = hg.dx VidV, = ng.dy V.dV, = qg,dz; (integration
| - V-V =q8:z +w (V) | constants)
= hg x ViVe=ng,y +y (V)
2 : . w,(V,) v =482 V. (V) v 20
Vis =%y 2hg.x Vi = ‘%I/xy yV oV V. V. £0
y y ’
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Solutions of the Navier-Stokes Equations (Original)

Step 3: One combines the above solutions
Vix.y,2.) =V + Vo + Vg + Vi + Vis + Vig + Vg

__ag, bg, cg, oo ngy 98z V,(V)  w (V)
=—57% T 25 & Csz+ [t £\ 2hg X + v, + V. + v, + V.

relation for linear terms relation for non - linear terms

ng.y 482  V,(V)) w.(V)
+ + . + C

9
Vy |2 v |2

x? +Cx - y2+Cyy—

_%(wﬂ +by? +¢z2) + Cx + Cyy+ Csz + fot = [2hg x+

arbitrary functions

P(x)=dpg.x; (a+b+c+d+f+h+n+qg=1) Vy;tO, v, #0

Step 4: Find the test derivatives

Test derivatives for the linear part Test derivatives for the non-linear part
PV, | PV, | v, | dp_ | v, _ |V =2hex N, _ng, | Ve _ 48,
N2 | T | a2 T | ox o |y e oy d V| & V
d R Tt
_apg. | bpg, | _cps. P8y | S8« L
Ell s Aot

Step 5: Substitute the derivatives from Step 4 in equation (A) for the checking.

2V, J?V. 92V, dp, . IV, V. V. V.
TR THG A T g TP PV Y T TP = g (A)
a b c h n ?
(- 28 PR+ dpg + fpg, + p(V, )+ pVi §yx>+pn<q5ZX>=pgx

9

apg. +bpg, +cpg, +dpg, + fpg, + hpg, + npg, + apg.=ps,

?
ag, +bg, +cg, +dg +fg.+ hg + ng. +qg =8,
)

ga+tb+c+d+f+h+n+q)=g,
)

g (D=g, Yes (a+b+c+d+f+htn+qg=1)

Step 6: The linear part of the relation satisfies the linear part of the equation; and the non-linear
part of the relation satisfies the non-linear part of the equation.(B) below is the solution.

Analogy for the Identity Checking Method: If one goes shopping with American dollars and
Japanese yens (without any currency conversion) and after shopping, if one wants to check the cost
of the items purchased, one would check the cost of the items purchased with dollars against the
receipts for the dollars; and one would also check the cost of the items purchased with yens against
the receipts for the yens purchase. However, if one converts one currency to the other, one would
only have to check the receipts for only a single currency, dollars or yens. This conversion case is
similar to the linearized equations, where there was no partitioning in identity checking.
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Solutions of the Navier-Stokes Equations (Original)

Summary of solutions for v,, v. ( P(y)=A,pg,y , P(z)=B,pg.z)

ng.y . 48z, ¥y w (V)
/A A +Cy (B)
P(x)—dpgx, (a+b+c+d+h+n+g=1) vy¢0,vZ¢O

pgx (ax2+ by?+cz?)+ Cix + C3y + Csz + fg, t + . /2hg, x+

A8 X As8\Z
Vi= _&()ﬂxz"' Aoy + Mz W Cpxt Cay + Csz + Asg t +,/22,8,y+ 65’ + Séy fo‘gv N WZ‘(/V 2)
Z X Z

P(y) = Mpgyy v, 20, v, %0

28 o i Bs8eX Brgy v .(v) ¥y (V)
V. v v, %

X y X y

V.=~ sz (ﬁ1 2+ ﬂ2y2+ ﬁzz )+ Cix+ Ciy+ Csz+ Big t £ 2ﬁ8g2
v, #0, Vy #0

Option 5
Solutions of 4-D Navier-Stokes Equations

One advantage of the pairing approach is that the above solution can easily be extended to any
number of dimensions.

VX
S Js
the 4-D Navier-Stokes equation
2 2 2 2
u(agx‘; %y‘g ’ V +9 Vx)+8p+p'33t/ +pVy 'g’“ Yy ‘g" +pV, %V pV; 88‘;)‘ = P8y
whose solution is glven by
Vo(x,y,2,8,t) =

ngyy 48: 185,
i V% N
vy v (V) v (V)

V T V T V T 9

y b4 s

_%(ax% by*+ cz* +es? i+ Cixt Cyyt Csz + Costfg, 1, 2hg X+

arbitrary functions

P(x)=dpg,x (at+b+c+d+e+f+h+n+qg+r=1) vV, #0, vy;tO, v, #0,

For n—dimensions one can repeat the above as many times as one wishes.

Extra: Two-term Linearization of the Navier-Stokes Equation
(Equation contains one nonlinear term)

By linearization as in Option 1, if one replaces pV, %‘y/ +pV, %V by 2p 8&‘; in
d%v, d%v, 8px V. V. av. _ .
,u&x2 u&yz 'u8z 8x+p8t pV. O.}x+pV ay+pV % = pg, one obtains
2y 2
8 0—) £ i V 5’ V" 5) + P + 3p(7") + pV, %/ = pg,» whose solution is

_ P8 2,4 2 .2 N -
Viwy.zn==l3 i (ax> by*+ e2®) + Gt Gy + Cize 35 £ 2hg v+ G IBack to Optiong
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Conclusion

Conclusion

Since one began solving the Navier-Stokes equations by thinking like an eighth grader, and one was
able to find a ratio technique for splitting the equations and solving them, perhaps, it is appropriate,
after a few months of aging, to think like a ninth grader in the conclusion. One will reverse the
coverage approach and begin from the general case and end with the special cases.

Solutions of the Navier--Stokes equations (general case)
x—direction Navier-Stokes Equation (also driver equation)

9%V, %V, 9%V, ; v, av, Vv, aV, o
—U o —-u 22 —-u o +5apx +p o +pV, o +pV, X +pV, % = pg,| x—direction

Vx(x’y’Z9t) =
solution for linear terms solution for non - linear terms
4%
—gﬁ(ax2 +by? +cz2)+ Cix + Cyy + Csz + fg, t +./2hg x+ n“g;‘y + Qf/xZ + 1//}‘(/ y)+ WZ‘(/Vz) + G
/.t y Z y Z

arbitrary functions

P(x)=dpg x; (a+b+c+d+h+n+qg=1) Vy;tO, V,#0

One observes above that the most important insight of the above solution is the indispensability of
the gravity term in incompressible fluid flow. Observe that if gravity, g, were zero, the first three

terms, the 7th term, the 8th term, the 9th term, the 10th term and P(x) would all be zero.

This result can be stated emphatically that without gravity forces on earth, there will be no
incompressible fluid flow on earth as is known. The above is a very important new insight, because
in posing problems on incompressible fluid flow, it is sometimes suggested that the gravity term is
zero. Such a suggestion would guarantee a no solution to the problem, according to the above
solution of the Navier-Stokes equation.

The author proposed and applied a new law, the law of definite ratio for incompressible fluid flow.
This law states that in incompressible fluid flow, the other terms of the fluid flow equation divide
the gravity term in a definite ratio and also each term utilizes gravity to function. This law was
applied in splitting-up the Navier-Stokes equations. The resulting sub-equations were readily
integrable, and even the nonlinear sub-equations were readily integrated.

The x—direction Navier-Stokes equation was split-up into sub-equations using ratios. The sub-
equations were solved and combined. The relation obtained from the integration of the linear part of
the equation satisfied the linear part of the equation and the relation obtained from integrating the
nonlinear part of the equation satisfied the nonlinear part of the equation. By solving algebraically
and simultaneously for V., V| and V,, the (ng,y/V,) and (qg,z/V,) terms would be replaced by
fractional terms containing square root functions. One may note that in checking the relations
obtained for integrating the equations for possible solutions, one needs not have explicit
expressions for V., Vy ,and V_, since these behave as constants in the checking process. The above

solution is the solution to the driver equation. There are eight supporter equations (see below and
see also Option 1 solution, p110). Only the solution to the driver equation completely satisfies its
corresponding Navier-Stokes equation.. A supporter equation does not completely satisfy its

corresponding Navier-Stokes equation. The above x—direction solution is the solution everyone has
been waiting for, for nearly 150 years. It was obtained in two simple steps, namely, splitting the

equation using ratios and integrating. The task for the future is to solve the equations for V., Vy

and V, simultaneously. and algebraically. in order to replace two implicit terms of the solution.
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Conclusion

Supporter Equations

9%V, 9%V, 9%V, 8px aV, aV, dV,
THe TH 8}}2 —H o2 a +,D at -+ pVY, Y Iy +pV, o T P8 =PVi o
82V 82V 82V o aV, aV, vV, v,
8x2 - 8y2 - 8z 85 +pV, o ~+pV, Y +pV, % +pg, =p—="- o
a2v a2v RV, 9, v, vV, v, o

3. - 8x2 - &‘y2 —-u 2 tPy + pV, o +pVY, Y oy +pV, e P8 =0

RV, V. op, v, V. v, 2V,
.uayz ”82 %px"'p&t"‘pv 8x"+pV ayx"'pva T P8y = 'LL8X2

Explicit Functions for V., V,,and V_,
For explicit functions for V., Vy ,and V_, one has to solve (algebraically) the simultaneous system
of solutions for V., V|, and V..

System of Navier — Stokes relations to solve for V,_, Vy ,VZ simultaneously (algebraically).

V.
(=

:f' ;

ax?+ by>+cz?) +Cyx+ C3y+Csztfg,t £2hg )V, V.+[qg,z + y (V)IV,Hng y+y, (V)IV,
A%

Vy:

(- p—(ﬂ,lx2+ﬂ,2y +2322 HC x+C3y+Csz+Asg, 1t 2l7g Y WVVHAgg, 2ty (VOIViHAcg X+ (V)IV,
V.V,

VZ:

(—g—%(ﬂlx2+ﬁ2y2+ﬁ3z2)+cl x+C3y+Csz4Psg 11 238, 2V Vi HB g Xty (VOIV,H B g v+ (V)IV,
V.V
xVy

Special Cases of the Navier-Stokes Equations

1. Linearized Navier--Stokes equations

One may note that there are six linear terms and three nonlinear terms in the Navier-Stokes
equation. The linearized case was covered before the general case, and the experience gained in the
linearized case guided one to solve the general case efficiently. In particular, the gravity term must
be the subject of the equation for a solution. When the gravity term was the subject of the equation,
the equation was called the driver equation. A splitting technique was applied to the linearized
Navier-Stokes equations (Option 1). Twenty sub-equations were solved. (Four sets of equations
with different equation subjects). The integration relations of one of the sets satisfied the linearized

Navier-Stokes equation; and this set was from the equation with g, as the subject of the equation.
In addition to finding a solution, the results of the integration revealed the roles of the terms of the
Navier-Stokes equations in fluid flow. In particular, the gravity forces and dp/dx are involved

mainly in the parabolic as well as the forward motion of fluids; dV, /or and 9%V, / ox? are involved
in the periodic motion of fluids, and one may infer that as u increases, the periodicity increases.
One should determine experimentally, if the ratio of the linear term 0V, /dt to the nonlinear sum

V, (9V, /%) + V, (V, [y) + V.(9V, 02) s 1 to 3.
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Conclusion

Solution to linearized Navier— Stokes equation

Vo (X,9,2,0) = —%(axz +by? +cz2) + Cpx + Cy + Csz +%t+ C, ; P(x)=dpg.x

Linearized Equation

v, v v ., _
THon THG THga T TP T Py

2. Solutions of the Euler equation
Since one has solved the Navier-Stokes equation, one has also solved the Euler equation.

Euler equation (1 = 0): &Vx +V, %‘3 +V, %‘;C "‘V 8z ,l)g

n8:y , 4.8z, VsV w (V)
V.(x,y,2,0) = fg.t £ 2hgx+ Vv vty Vv +C

y Z y b4

x-direction

arbitrary functions

P(x)=d,pg x (fu+h,+n,+q,+d, =)V, #0,V,#0

A Euler solution system to solve for Ve, Vy V.
(f.8.t £\ 2hg X)V,V, +1q.8.2 +v_ (VIV, +[ngy+w (V)IV,

V.=

V.V,
vz
_ (/I’Sgyt iJZ}Wng)VxVZ + [Aggyz + WZ(VZ)]VX + [)VGgyx + ll/x(‘/,\)]‘/z
v = V.V,
(Bt 2882V, +IBgx+w (VO +[B gy +y,(V)IV,
- V.V
Xy

Overall Conclusion

The author was encouraged by Lagrange's use of ratios and proportions in solving differential
equations. However the use of ratios in this paper is much more direct. One very interesting fact is
that after using ratios to split the equation with the gravity term as the subject of the equation, the
integration was straightforward. The author believes that if the ratio or proportion method of
splitting the equations could not yield the solution, no other method can even come close, since use
of ratios is the most fundamental principle in the division of any quantity into parts.
Finally, in fluid flow, the indispensable term or factor is gravity, according to the above solutions.
For any fluid flow design, one should always maximize the role of gravity for cost-effectiveness,
durability, and dependability. Perhaps, Newton's law for fluid flow should read "Sum of everything
else equals pg" ; and this would imply the proposed new law that the other terms divide the gravity
term in a definite ratio, and also that each term utilizes gravity force to function in fluid flow.

Determining the ratio terms

In applications, the ratio terms a, b, ¢, d, f, h, n, g and others may perhaps be determined using
information such as initial and boundary conditions or may have to be determined experimentally.
The author came to the experimental determination conclusion after referring to Example 5, page 6..
The question is how did the grandmother determine the terms of the ratio for her grandchildren?
Note that so far as the general solutions of the N-S equations are concerned one needs not find the

specific values of the ratio terms. | Back to Options |
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CMI Millennium Prize Problem Requirements

Option 6

Spin-off: CMI Millennium Prize Problem Requirements
Proof 1

For the linearized Navier-Stokes equations
Proof of the existence of solutions of the Navier-Stokes equations

Since from page 13, it has been shown that the smooth equations given by

Vi(x,y,2.0) = —g;‘;f(ax2 +by? +cz2)+ Cix + Cyy + Csz + fix t+ Cy ; P(x) = dpg x|are solutions

2 2
aax‘;x %y\; 92 Vx)+07px +4p0’2?/t =P8 , it has been shown that

smooth solutions to the above differential equatlon exist. and the proof is complete.

of the linearized equation, —u(

From, above, if y=0, z=0,|V,(x, t)——piz‘ax +C1x+fgxt+C9

1 ; P(x)=dpgx+Cy

Therefore, V,(x,0) = V°(x) = p% ax? + Cipx + G
Finding P(x,t)
1. V.(x,1) = —%(axz) +Cpx+ %t +Cy; P(x)=dpgx 2. % = dpg;

Required: To find P(x,t) (thatis, find a formula for P in terms of x and ¢)

dp _ dp dx

dt ~ dx dr

dp _dp dx _

T G =W

dp d,
E=dpgx(—&(ax2)+C1x+ fﬁx t+C, ) (%2 = dpg,)
dp _ adp’g; 2

df Pug x% + Cdpg,x + pé]:g t+ Codpg,

2
P(x,t)= J.( adp’ adpg; —5-2%x2 + Cydpg, x + pich t+ ngpgx) dt

2
P(x,t)= —ag—‘ugxxzt + C,dpg Xt + %tz + Cydpg,t + Cj

2u

For the corresponding coverage for the original Navier-Stokes equation, see the next page

—dpgx( aP8x (24 4 Cyxt + %tz + Cgt) +Cy
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CMI Millennium Prize Problem Requirements

Proof 2

For the Non-linearized Navier-Stokes equations (Original Equations)

Proof of the existence of solutions of the Navier-Stokes equations
From page 23, if y=0,z=0in

Solution to Linear part
Vv
Vx(x,y,z,t)= pgx (ax2+ by2+CZ2) + Cx+ C y+ C 7+ fgxt + 2hgxx+n‘g;xy+quz+W)"(/ V)+l//z‘(/‘/z)
contlnuedl Y : ! -
solution of Euler equation
P(x) =dpg,x

one obtains

V.(x,0)= p(g;f ax? + Cix + fg t £ 2hg x + Cy;  P(x) = dpg x;

V. (x,0)=V2(x) = ,Dg/’j ax? + Cyx £ 2hgxx +Cy; P(x)=dpg x;
Since previously, from p.113, it has been shown that the smooth equations given by
V.(x,t)=- p(‘ng ax®> +Cyx + fg, 1+ \/2th)£ +Cy: P(x)=dpg x; are solutions of

2
—-u 807)6‘; + %px + p & + pV, %V = pg, (deleting the x—and y— terms of (A)), p.112, one has

shown that smooth solutions to the above differential equation exist, and the proof is complete.
Finding P(x,t):

1. V.(x,t)=- p“g;f ax® +Cyx + fg,t £ 2hgxx +Cy; P(x)=dpg x; 2. %zdpg;

dp _dp dx

dr ~ dx dt

dp _dp dx _
G- Cg =W

d Pg g,
lezdpgx(_ 2 x (ax2)+C]xi4/2hgxx + fg, 1+ C ) (d—];:dpgx)

P8

P(x,t) = Ja’pgx( (ax?)+Cyx £\ 2hg x + fg t+ Cg) dt

P(x.,t) = —dpgx( pflx X2t + Cpar (| 2hg x )t + L S1e2 4 cgr) +Cyp

| Back to Options |
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Magnetohydrodynamic Equations

Option 7
Solutions of the Magnetohydrodynamic Equations
This system consists of four equations and one is to solve for V,, Vy V. B, By’ B,
Magnetohydrodynamic Equations

AL av . :
1. 8x 8y + =0 < - - continuity equation

Navier-Stokes

2. p%+pvx%+pv 8;;’“+pv 8&V %+%(Vx3)x3+pgx

Lorentz force

3. p%lf Vx(VxB)+nV?B

pL=VxWxB+n L+ %yf +28)

(n = magnetic d1ffusw1ty)

4. VeB=0
dB, , 9B, o'?BZ_O
o 8y
Step 1:
1. If p is constant : (for incompressible fluid)
80.‘}; a&y i =0 < - - continuity equation
Navier - Stokes Lorentz force
V. IV, av, Vv, ap 1
2. p—=* 5 L+ pV, e +pV, Yoy pV, % —§+E(VXB)XB+pgx
aV, V. V. V. _@ 1 oB,
p& +PV B +PV ay +PV 8 ax+‘u(BZ( Z a ) B( ay)+pgx
IV, Vv, v, v, P, dB, OB 8By B,
pgt+pV&x+pV8y+pV8_ P #(Bé’ BzgxZ Y8x+B )+ g,
3. p%g=V><(V><B)+nVZB
2
%= 5. (VB ~V,B) =G (V.B, - ~V,B)+n( %L + %yf +28)
pdB_dyp 0 ) ) 9*B, , J°B, 9B,
&t &yVB &yVB 8VB +(9VB+17&X2 +1781V2 +n82
4, VeB=0
B, 8B OB,

Y
8x 8y+ ~=0
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Magnetohydrodynamic Equations

i’tftgrzt:he "vector juggling" one obtains the following system of equations which one will solve.
1. %‘; &Qy V. _

2. pao.‘; +pV, %xvx +pV, %‘;x +pV, azx +%—ﬁ3z ag;x +1p Ogi ﬁBy%— T yag; = pg,
i'an v oB, B, WV, . an N, \, 9B, p Iy nd°B, _nd’B, nd’B,_,
dFdy 9y 9y 3y By Vo By ~am noz:  noz2

4. %B;x 85; 9B, =0

At a glance, and from the experience gained in solving the Navier-Stokes equations, one can identify
equation (2) as the driver equation, since it contains the gravity term, and the gravity term is the
subject of the equation. However, since the system of equations is to be solved simultaneously and
there is only a single "driver", the gravity term, all the terms in the system of equations will be
placed in the driver equation, Equation 2. As suggested by Albert Einstein, Friedrich Nietzsche, and
Pablo Picasso, one will think like a child at the next step.

Step 3: Thinking like a ninth grader, one will apply the following axiom:

Ifa=band c=d, thena+c=b+d;and therefore, add the left sides and add the right
sides of the above equations . That is, (1) + (2) + (3) +(4) = pg,

oV, 8 av IV, IV, V, ap 1 . 9B, B, 1, 9B
>t 8y +p o + pV, > =+ pV, Yy +pV 8 MBZ B + Bzﬁ’LﬁBW
JB pa B, o, B IV aB av B, V., _
B P B G B VB VB
2 2 2 oB
Lngxf L nj&ygx — nn%;; . 85; + 8yy aBZ = pg, (Three lines per equation)
Step 4: Writing all the linear terms first
Vv, 8 av oy o Wa , I pIB, MI’B, nd’B, 1d’B, B, 8By 8B
>t t Pt o a2z nar ma Tyt
v, av v, JB, B, 1 , 9B, dB, aB v,
<+pVx&x+pVW ngz /JBZ’ 8z+ Bz&xz+uBy&x /JByQy any By8y
+V, 85;" +B, 8y 83 x%‘; -V, 832 B, 03; = pg, (Three lines per equation)

(Since all the terms are now in the same driver equation, let pg, "drive them" simultaneously.)

Step 5: Solve the above 28-term equation using the ratio method. (27 ratio terms)
The ratio terms to be used are respectively the following: (Sum of the ratio terms = 1)

Bi. B> ﬁ3’a b, e, d, f,m, q, TS, O, @), 03,004,055, O, Ay, Ay A3, Ay, As, /16’/17’ A5, Ag

aV 6’V av,
ﬁlpgx ay ﬁ2pgx 3. 5% ﬁ?}pgx 4. P al‘x =apgy
dV dV
ﬁlpgx dV ﬂngx ﬂ3pgx a;x =ag,
Vx ﬁpgxx+c V Bpng+C V. = t+C
! 0 Vi = ﬁngxy +Cyy ’ 8 x = A8 T
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Magnetohydrodynamic Equations

5. 6. 7.
OB J2B
% =bpsx P35 =cPs: N7 = 4psx
dp _ JB d’B d
E — bpgx atx = ng dxzx —_—— l;]gx
P(x)=bpg,x +C | 4B dB, _ dpg.x
dt =C8y dx = — 1 + C2
Bx —ngt+C1b d x2
B, =- p%] +Cx+C,
8. 9. 10.
J’B J0’B oB
N = IPex Nt = Mpg; Sx=qpg,
2 2 Bx
d’B, _ _ Jpg, d B;x __mpg, ", = gps,
dy d a ! B, =qpg.x+C
dB, _ _ fpg.y i dB, _ _mpg,z “C, x x 19
dy n 4 dz n
2 mpg.z
B =——fp§;‘7y +Cy+Cs Be=—"75— +CX+C7
11. 12. 13. 14.
OB oB Vv, Vv,
gy =rpg, g = 5Pgy p‘;vax = 0,8, Vs gy = @2P8:
ddi = rpgx dZZ - spgx V d_x = wlgx “;y;l/vx_: a)zgxcj?) V
y BZ = Spng+ C21 V dV a)lgxdx yrx — 0,8,y l1l/y( y)
_rpgxy+C20 Vz v = 0,8,y llfy(Vy)
X —mo.x xT Ty + v
2 lgx y y
V.2 =2m,8,x V,#0
Vo=t 2o + G
15. 16 17.
av, oB 8
PV~ = 3Py B, ~5 == 0414pg; B =5 = wslpg,
dVy _ B.dB, = ~w,pg,dz 5 9B,
VZ d_z - w3gx BZBx — _(U4,Upng + l//z (Bz) a’x wS;upgx
Vsz = 38,2+ l//Z(VZ) x Bz I BZ Ei
Vo= @82 W.(V) | B 20 2 = wSupgxx
;o v B.” =2wspipg,x
V. =0 B, i\/2a)5‘upgxx+C
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Magnetohydrodynamic Equations

18. 19 20
oB oB
ByWy = W6 P8 x ‘U )’ &y llpgx _y = )IQng
dB dB, dB
Byd_xy WP By d_y - _1l‘upgx V dv = _Zﬁpgx
By(ziBy - w6uupgxdx Byde = _)]’lﬂpgxdy V dB = ﬂapgxdy
BL = WPg,X Bysz —)q.upgxyﬂ;”y (BBy) VxBy = _/’[ngxy + l//x(vx)
22 B =— ll,Llpgxy+‘//y( y) B = _A'Zpgxy + l//x(Vx)
By = 2w6‘upgxx . By By y Vx Vx
B, =+ 20supg,x+C B, #0 V. #0
21. 22. 23.
V. OB, v,
-B, i P8, Vi o A4P8yx B, Wy = Aspg.
dv, dB dv,,
'y dy = _ﬂ’_v‘pgx Vy 7 l4pgx x dy ),Spgx

B dV = _A’Bpgxdy

V dB l4pgxdy

B.dV, = Aspg,dy

Bny = _;legxy + l)l/y(By)
308,y 4 Yy(By)

VyBx = A4pgy + ¥, (Vy)

vay = 15pgxy + l//x(Bx)

Aapgy ¥y (Vy) A B
V,=- B, = X 4 — 5P8xY Wx( x)
x B, B, x 4 124 Vi B, + B,
By 0 Vy 0 B, #0
24. 25. 26
OB OB
z (9_x = 2’6pgx B, 81 ;l’7pgx -V 84 = ;LSng
dB, dB,
v dZ = A6P8. B, dZ = A7P8x Vi dz =—AgP8;x
V.dB, = A¢pg . dz B.dV, = A;pg . dz V.dB, = —Agpg.dz
Vsz = A6pgxZ + l//Z(VZ) Bsz = ﬂ’7pgxZ + l//x(Bx) = _ASngZ + l//x(vx)
Ag P82 V A z (B,) A3Pg 2 (V.)
_ 6Fox W( ) V. = 7P8x +Wx X B =— P8x +Wx X
B, = V. + v, z B, B, z V. V.
V. #0 B, #0 V. #0
27.

5
- z 8_Z = }’9pgx

BdV

Z dz = _)«9ng
B.dV, =—-Apg.dz
Bzvx = _A9pgxZ + l//z(Bz)

v _hapc V(B

Z Z
B, #0
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Magnetohydrodynamic Equations

Step 6: One collects the integrals of the sub-equations, above, for V,, Vy V. B,, By’ B,

V.(x,y,z,t) = (sum of integrals from sub - equations #1, #4,#13,#14,#15,#21,#27)
B)) v,(V)) v.(B,)
L e ca @28y Apgy, 0382 Aopgiz W (V) Wy (By) ¥y(Wy) w (B) |
Bipg,xt+ag t = \2m,8 x 4 B, v, B, v, B, v, B, If
arbitrary functions

(integral from sub—equation #5)
P(.Xf) = bpgxx + C2

(sum of integrals from sub—equations #2,#23)

A B
Vy(y)=ﬂngxy+—sgf"y + —W"é g

X

.%f_/ .
arbitrary function

(sum of integrals from sub—equations #3, #25)

A B
V@)= Bypgea+ TEEE s VB,
! *

arbitrary function

(sum of integrals from sub - equations #6, #7, #8, #9, #10, #16,#19, #22, #24)
Bx(x’yﬁzﬁt):

B, = —g;‘;;f(dx2 + i+ mz%) + gpg x + Cyx + Cpy + Cyzt +cg it — MM g Ecy l4€gxy - awgp Exly
Yy Yy b4
APz W (B) ¥y(By) v, (V) (V)
+ 5t + + 2=+ C
v B, B, vy v ’

arbitrary functions

(sum of integrals from sub—equations #11,#18,#20)
8xY V)
B, =rpg,y .\ 206Hpg X~ AQ"ZX + vax =+ G

| —

arbitrary
function

(sum of integrals from sub—equations #12,#17,#26)

_Mpgez o W (V)
v, v,

X
—

arbitrary function

B, = spg. 2t 20s11pg X +Cy
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Step 7: Find the test derivatives for the linear part

Magnetohydrodynamic Equations

1. 2. 3. 4. 5. 6.
AV, aV, V. av, dB,
o = Bipeo | Zr=(Bapgo | g = (Papgy | 5 = (agy) % =(bpg,) | —g; =(c8x)
7. 8. 9. 10. 11. 12.
0?B,_ dpg. | 9*B.__ fpg.| I*B,_ mpg 9B 9B,
8)(,'2 = — n &yz == n azz = n = ] = qpP8y Wy: rpg, 31 = SP8x
Test derivatives for the nonlinear part
13. 14. 15. 16 17.
aVx_ W8 aVx _ W8y an _ 38y an_ 604,Upgx %_ WsHPG,
oV, Rz d VY oz B ox B,
18. 19. 20. 21. 22.
B, _weupg, | Be __hppg. | By,  Aypg, | Mo Japg. | 9B, _ Aps,
ox By, oy By dy Vi oy By oy Vs
23. 24, 25. 26. 27.
WV, Aspg, | 9B _ P8y | V. _ AP, | 9B, _ _Apg. | Vi Aopg,
d ~ B, oz 2 oz B, oz Vi oz Z

Step 8: Substitute the above test derivatives respectively in the following 28-term equation

JdB, OB

AV, N &VZ N dV, o'?p poB, nd?B, nd*B, nd*B, IB, LB
PR ay ETPd Tt o a2 e Tk Ty T
v, v, IV, OB, B, 1,98, | _ 0B, ,IB 9V,
1+PV, 8 +§V > 8z HBZ T sz%uBy&x ,UBy 8y any Bygy
v 8 8V oB V.,
y B . :
8y oy + V B, B -V o B, 8z = pg, (Three lines per equation)

(ﬁlpgx> +(Bypg,) +(Bspg,) + plag,) +(bpg,) + plcg,)—n(-

(gpg.) +(rpg.) + (spgy) + PV (HLEx lg")+pV (228 2g")+pV(

w3gx) 1

Z

4,‘1/38 x

B, (- )+

PgX) (- fpgx) (- mPgX)+

B ( SZng)_i_ (w6.upgx) ( /ll:upgx) V( ﬂqux) B ( A’3pgx )+V (2’4pgx)+

(Four lines per equation)

A A l A
Bx( SB{)gx)_i_ Vz( 6‘[/)gx )+Bx( 7B{)gX)_Vx(_ A’S‘egX)_ Bz(_ 9ggX):pgx
X Z

BiPS, + BaP8y + P38y +apg, +bpg, +cpg,+dpg, + P8 +MPSqpgy +rPgy + SPgx + 1P,
+03P8, + WsPg, + VP8, + MUPE, + A2 P8 + A3P8xHAsP8xt AsPEy + W2P8 + D308,
9

(Three lines per equation)

|+ 6P8+A108, + AP +A9Pg, = PS.:
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Magnetohydrodynamic Equations

{ﬁlgx + :B2gx + ﬁng + agy + ng + C8y + dgx + fgx + mg,q8, + r8x + S8 + wlgx + w3gx + ngx
?

+w6gx + )'lgx + A’ng + )‘3gx+)‘4gx+ Z“ng + W8« + 38y + )“6gx+)‘7gx + )'ng+)‘9gx igx (2 lines)

{gx(ﬁ1+ﬁ2 +B3t+a+b+ctd+ frm+qg+r+s+o;+03+ 05+ L4+ As + 0, + 03+ A +44

+wg+ 4+ A, + 18+/19); 8y (Two lines per equation)
8 (1)i 8 (Sum of the ratio terms = 1)
8 ;gx Yes
Since an identity is obtained, the solutions to the 28-term equation are as follows
V.(x,y,z,t) = (sum of integrals from sub - equations #1, #4,#13,#14,#15,#21,#27)
Bupg,x+ ag,t £ 20,8, +szng _ lsggxy N w%gxz _ /lgggxz g/fz‘(/Vz) J’yéBy) J’yé"y) +‘//21ng) .q|

y Y z z z y y

<

arbitrary functions

(integral from sub—equation #5)
P()C) = bpgxx + CZ

(sum of integrals from sub—equations #2,#23)

ﬂ/ X xB.x
Vy = Bapg.y + ngy"‘ Wé )

X

+ Gy

.H_J .
arbitrary function

(sum of integrals from sub—equations #3, #25)
g q
/17/)ng l//x(Bx)
t—p t B

X X

Vz = ﬁ3pgxz +Cy

| S—
arbitrary function

(sum of integrals from sub - equations #6, #7, #8, #9, #10, #16,#19, #22, #24)
Bx(x’y’ZJ):

B, = —&(dx2 + 2+ mz?) + qpg x+Cx+C,y+ Cizt+ tcg, t —

2n By Vy
Aspgyz  W.(B) V(B v (V,) y.(V.)
A S T T A

arbitrary functions

MUPSLY | AaP8rY _ D4liPgyZ

B

Z

(sum of integrals from sub—equations #11,#18,#20)
V,
By =TpP8yYy x oY 2w6‘u'pgxx_ Zﬁ‘efxy + Wx‘gx X) + C8

arbitrary
function

(sum of integrals from sub—equations #12,#17,#26)

PP z V)
B, = spg 2t 20s1pg,x ~ ﬂgf}% + —va 2 +Cy

X
—

arbitrary function
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Magnetohydrodynamic Equations

Supporter Equation Contributions

Note above that there are 28 terms in the driver equation, and 27 supporter equations, Each supporter
equation provides useful information about the driver equation. The more of these supporter
equations that are integrated, the more the information one obtains about the driver equation.
However, without solving a supporter equation, one can sometimes write down some characteristics
of the integral of the supporter equation by referring to the subjects of the supporter equations of the
Navier-Stokes equations. For example, if one uses (79?B, /dx?) as the subject of a supporter

equation here, the curve for the integral obtained would be parabolic, periodic, and decreasingly
exponential.

Determining the ratio terms
In applications, the ratio terms S, B8,. 55 a ,b, ¢, d, f, m, q, r, s, @, ®,, and others may perhaps
be determined using initial and boundary conditions, or may have to be determined experimentally.

Note that so far as the general solutions of the equations are concerned, one needs not find the
specific values of the ratio terms.

Comparison of Solutions of Navier-Stokes Equations
and
Solutions of Magnetohydrodynamic Equations
Navier-Stokes x—direction solution

V.
Vixy.zn= —&(ax2+ by*+cz?) + Cix +C3y + Csz +fgt \|2hgx+ ngy | 482, v, (1) + (V)
: 24 A A A

arbitrary functions

P(x) =dpg.x

For magnetohydrodynamic solutions, see previous page
1. V, for MHD system looks like the V, for the Euler solution.
2. P(x)) for N-S and MHD equations are the same.
3.V} and V, for MHD are different from those of N-S equations.

4. B, is parabolic and resembles V, for N-S, except for the absence of the square root function.
S. B, and B, resemble the Euler solution.

Conclusion
The author proposes a law of definite ratio. This law states that in magnetohydrodynamics, all the
other terms in the system of equations divide the gravity term in a definite ratio and each term
utilizes gravity to function. As in the case of incompressible fluid flow, one can add that without
gravity forces, there would be no magnetohydrodynamics on earth as is known, according to the

solutions of the magnetohydrodynamic equations. |Back to Options |

References:

For paper edition of the above paper, see Chapter 11 of the book entitled "Power of Ratios"

by A. A. Frempong, published by Yellowtextbooks.com.

Without using ratios or proportion, the author would never be able to split-up the Navier-Stokes
equations into sub-equations which were readily integrable. The impediment to solving the Navier-
Stokes equations for over 150 years (whether linearized or non-linearized ) has been due to finding
a way to split-up the equations. Since ratios were the key to splitting the Navier-Stokes equations,
and also splitting the 28-term system of magnetohydrodynamic equations, and solving them, the
solutions have also been published in the " Power of Ratios" book which covers definition of ratio
and applications of ratio in mathematics, science, engineering, economics and business fields.
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