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Abstract. Nowadays, prediction of runoff is very important in water resources 
management and their permanent development. Along with scientific advances 

in recent years, various intelligent methods and regression and mathematical 
methods have been presented to estimate the runoff. In this paper, Two different 
methods are used, Chaos analysis and genetic programming. The performances 
of models are analyzed and result showed that runoff have had chaotic 

behavior. Application of genetic programming models in estimating the runoff 
is also studied in this paper. The data that has been used has chaotic behavior 
and a mathematical model of genetic programming with rainfall and runoff as 
model inputs was result. 
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1   Introduction 

Chaotic behaviors refer to the time history of a single variable of a deterministic 

dynamical system undergoing a loss of temporal correlation in response to small 

perturbations in initial conditions. Hydrologic and other water-related time series have 

been modeled by chaos theory over the past two decades and specific applications 

outlined as follows. (a) The presence of low-dimensional deterministic behaviors in 

the river flow processes were investigated by Jayawardena and Lai [1], Porporato and 

Ridolfi [2], Krasovskaia et al. [3], Stehlik[4], Sivakumar et al. [5]. (b) Nonlinear 

deterministic approaches were used to detect the presence of chaos and achieve more 

accurate river flow predictions by Islam and Sivakumar [6], Lisi and Villi [7], Liu et 

al. [8]. (c) Alternative mathematical formulations have been developed to investigate 
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water-related problem, e.g. Qingfang and Yuhua who developed a new local linear 

prediction model for chaotic river flow series [9].  Genetic Programming (GP) is 

among heuristic algorithms all of which are based on Darwin's evolution theory. The 

mentioned algorithms define a target function in the shape of qualitative standards 

and then make use of the mentioned function to measure and compare different 

solution methods in a step by step process of data source correction and finally 

present the appropriate solution method. Kalra and Deo applied the GP for the 

completion of missing data in wave records along the west coast of India [10]. 

Ustoorikar and Deo used the GP for filling up gaps in datasets of wave heights [11]. 

Aytek and Kishi used GP approach to suspended sediment modeling for two stations 

on the Tongue River in Montana, USA, and  indicate that the GP formulation 

performs quite well compared to sediment rating curves and multi linear regression 

models [12]. Gaur and Deo applied the GP for real-time wave forecasting [13]. 

 

2   Materials and Methods 

2.1   Chaos 

Chaos theory is a method of nonlinear time series analysis and involves a host of 

methods, essentially based on the phase-space reconstruction of the process, from 

scalar or multivariate measurements of physical observables.  

Phase Space Reconstruction. One way of characterizing dynamical systems is by the 

concept of phase-space, according to which given a set of physical variables and an 
analytical model describing their interactions where each of its points corresponds to 
a state of the system. The delay embedding method reconstructs phase-space from a 

univariate or multivariate time series, which is assumed to be generated by a 
deterministic dynamical system [14]. The Takens theorem states that the underlying 
dynamics can be fully recovered by building a m-dimensional space wherein the 

components of each state vector tY


 are defined through the delay coordinates: 

(1)                             )1(2 ,...,,,  mttttt XXXXY


 

where m is known as embedding dimension,   as delay time and Xt={x1, x2, ...xN} 

with N-observed values. This delay-embedding method is sensitive to both embedding 
parameters of   and m, which are unknown a-priori. As suggested by Cellucci et al 
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[15], Average Mutual Information (AMI) is used to estimate . AMI defines how the 

measurements X(t) at time t are related, from an information theoretic point of view, 
to measurements X(t + ) at time t + . The average mutual information is defined as 

[16]: 

(2)                           
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where the sum is extended to the total number of samples in the times series. 
P(X(i)) and P(X(i + )) are the marginal probabilities for measurements X(i) and 

X(i+ ), respectively, whereas P(X(i), X(i+ )) is their joint probability. The optimal 

delay time   minimizes the function I( ): for t =  , X(i+ ) adds the maximum 

information on X(i). 

Correlation Dimension. Correlation dimension is a nonlinear measure of the 

correlation between pairs lying on the attractor. For time series whose underlying 
dynamics is chaotic whereas for stochastic systems it is infinite. For an                   
m -dimensional phase-space, the correlation function Cm(r) is defined as the fraction 

of states closer than r  [17, 18]: 
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where H is the Heaviside step function, iY


 is the i
th

 state vector, and N is the 

number of points on the reconstructed attractor. For stochastic time series 
m

m rrC )(  holds, whereas for chaotic time series the correlation function scales 

with r  as:  

(4)                                                  2)(
D

m rrC  

where D2, correlation exponent, quantifies the degrees of freedom of the process, 
and defined by: 
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and can be reliably estimated as the slope in the )(ln rCm  vs. )ln(r  plot. 

2.2   Genetic Programming 

The GP is similar to Genetic Algorithm (GA) but employs a ―parse tree‖ structure for 

the search of its solutions, whereas the GA employs bite strips. The technique is truly 

a ―bottom up‖ process, as there is no assumption made on the structure of the 

relationship between the independent and dependent variables but an appropriate 

relationship is identified for any given time series. The relationship can be logical 

statements or it is normally a mathematical expression, which may be in some 

familiar mathematical format or it may assemble a mathematical function in a 

completely unfamiliar format. The construction of the relationship is made possible 

by two components: (i) a parse tree, which is a functional set of basic operators and 

those selected in this study are: 

(6-a)                                                    { , , }   

(7-b)                                                
2{ , , , , }x x                

which emulates the role of RNA; and (ii) the actual components of the functions 

and their parameters (referred to as the terminal set), which emulates which emulates 
the role of RNA.  

2.3   Study Area and Data 

The runoff time series of Lighvan basin, Iran ( 46 20 30   to 46 27 30    east 

latitude and 37 42 55   to 37 49 30   north longitude) was used in the study. 

This watershed with a drainage area 76.19 Km
2
 is important part of the catchment of 

Talkheh River watershed. The maximum and minimum elevations of the area are 

around 3500 and 2000 m, respectively. The length of longest stream is 17 km. The 
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average stream slope is 11%. The Lighvan River drains into Talkheh River and Urmia 

Lake, respectively. 

For the present investigation, rainfall-runoff data observed for composed storm. 
Figure 1 shows the variations of rainfall-runoff data. The entire dataset was divided 

into two parts. The first 80% of data was used in training for the phase space 
reconstruction, but the subsequent 20% of data was used as observed data in the 
prediction phase.  

 

 

Fig.  1. Time series plot of runoff data in the Lighvan basin 
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3   Results 

Two methods are used to identify a possible existence of chaos in the runoff time 

series in the Lighvan basin. Using the AMI method, the delay time,   is estimated for 

the time series in the Lighvan basin as the intercept with the x-axis of the curves by 

plotting the values of the AMI evaluated by the TISEAN package against delay times 

progressively increased from 1 to 100 [19]. As shown in Figure 2 this method shows 

well-defined first minima at delay time of 10. 

 

 
 

Fig.  2. Average mutual information function of runoff data from the Lighvan basin 

The correlation function is calculated for the dataset using the delay times   
( =10), determined by the AMI method in the previous section, and embedding 

dimensions, m, by allowing it to vary from 1 to 20. Figure 3-a shows the relationship 
between correlation function C(r) and radius r (i.e. lnC(r) versus ln(r)) for increasing 
m, whereas Figure 3-b shows the  relationship between the correlation dimension 
values  D2(m) and the embedding dimension values m. It can be seen from Figure 3-b. 

that the value of correlation exponent increases with the embedding dimension up to 
certain value and then saturates beyond it. The saturation of the correlation exponent 
is an indication of the existence of deterministic dynamics. The saturated correlation 
dimension is 1.5, (D2=1.5). The value of correlation dimension also suggests the 
possible presence of chaotic behavior in the dataset. 
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Fig.  3. a) Convergence of logC(r) versus log(r) b) Saturation of correlation dimension D2(m) 
with embedding dimension m—saturation signifies chaotic signals in the Lighvan basin 

Two different combinations of arithmetic function set were used to this problem: a) 

The first set { , , }   ; b) The second set
2{ , , , , }x x   . Genetic programming with two 

combination of arithmetic function set and three different combination of runoff time 
series;1: {Pt, Pt-1, Qt-1, Qt}; 2: {Pt, Pt-1, Pt-2, Qt-1, Qt} and 3: {Pt, Pt-1, Pt-2, Qt-1, Qt-2, Qt} 
applied for training and testing data. Comparison of the statistical parameters 
(RMSE=0.1446, R

2
=0.9989) of GP resulted from training and testing step shows that 

combination no.3 of runoff time series with first (6-a) arithmetic function set is the 
best combination of input data and arithmetic function where shown in Table 1. The 
comparison between observed and computed runoff from GP model is shown in 
Figure 4.    

Table 1. The results of GP model for the training and testing steps 

Model Operators  R
2 

RMSE 

1
 

{ , , }  
 

Train 0.9948 0.7158 

Test 0.9891 0.4584 

2
 

Train 0.9947 0.7205 

Test 0.9891 0.4584 

3
 

Train 0.9992 0.2720 

Test 0.9989 0.1446 

1
 

2{ , , , , }x x  
 

Train 0.9948 0.7119 

Test 0.9891 0.4584 

2 
Train 0.9947 0.7182 

Test 0.9891 0.4568 

3
 

Train 0.9992 0.2733 

Test 0.9989 0.1446 
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Fig.  4. Comparison between observed and computed runoff time series by GP model 

The mathematical model that obtained by GP, According to Equation 7 is 
combination of the best input and output parameters with Pt, Pt-1, Pt-2, Qt-1, Qt-2 as 
input and Qt as output parameters. 

(7)                           2

1 1 2 1 22 0.007843( 0.007843 )t t t t t tQ Q P P Q Q         

4   Conclusion 

This paper investigated possible chaotic behaviours in the runoff time series of the 

Lighvan basin. The analysis was performed on runoff time series records on an event. 

The analysis was based on using phase space reconstruction, correlation dimension 

method. The correlation dimension value is 1.5. Predictions of these time series using 

a GP are found to be acceptable. In addition, results obtained from GP were compared 

with observed data. It was documented that prediction with GP is good. 
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