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Abstract. The decreasing cost of sensors is resulting in an increase in 

the use of wireless sensor networks for structural health monitoring. In 

most applications, nodes are deployed once and are supposed to operate 

unattended for a long period of time. Due to the deployment of a large 

number of sensor nodes, it is not uncommon for sensor nodes to 

become faulty and unreliable. Faults may arise from hardware or 

software failure. Software failure causes non-deterministic behavior of 

the node, thus resulting in the acquisition of inaccurate data. 

Consequently, there exists a need to modify the system software and 

correct the faults in a wireless sensor node (WSN) network. Once the 

nodes are deployed, it is impractical at best to reach each individual 

node. Moreover, it is highly cumbersome to detach the sensor node and 

attach data transfer cables for software updates. Over-the-air 

programming is a fundamental service that serves this purpose. This 

paper discusses maintenance issues related to software for sensor nodes 

deployed for monitoring structural health and provides a comparison of 

various protocols developed for reprogramming.  

Keywords: software maintenance, over-the-air programming, wireless 

sensor network, node deployment, structural health monitoring 
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1   Introduction 

Recent developments in the miniaturization of sensing, computing, and 

communication technology have made it possible to use a large number of sensors 

within a wireless sensor network. Their low cost makes it feasible to deploy them in 

significant numbers across large areas, and consequently, these devices have become 

a promising candidate for structural health monitoring (SHM) systems. Most 

monitored structures have sensors that measure several types of parameters. Some 

examples of applications are the Gotaalvbron bridge in Sweden, where more than 

70,000 sensors are installed in a single bridge (55,000 strain sensors and 11,000 

temperature sensors) [1], and the new I35 bridge in Minneapolis, which has more than 

350 sensors (150 strain gauge vibrating wires, 150 thermocouples, 10 potentiometers, 

20 accelerometers, 4 corrosions, and 12 long gauge optical fibers) [2, 3]. In the United 

States, 61 of California’s long span bridges have been instrumented with over 900 

sensing channels [4]. Small structures may require 10 to 15 sensor channels, while 

large bridges may need as many as 350 sensor channels [5]. 

In most applications, sensor networks are deployed once and expected to operate 

unattended for a long period of time.  The real challenge is how to manage and 

maintain this large scale network of wireless sensor nodes (WSN). Beutel et al. [6] 

discuss the real time problems encountered during the deployment of nodes; 14 

different projects were reviewed with different goals, requirements and levels of 

success in deploying the sensor network. The study analyzes each network’s behavior 

in detail. While concerning the issue of faults using WSN networks in SHM systems, 

a software crash was reported, which resulted in a complete loss of data during the 

monitoring of a building structure under study. In the deployment of wireless sensor 

nodes in a highway bridge over Big Sucker Brook, Waddington, NY, Whelan et al. 

[7] state that the only issue encountered was related to software. 

The limited computational resources available on a node impose some restrictions 

on the amount of processing that can be successfully performed at the node. If this 

limit is exceeded, processing tasks may not run to completion causing non-

deterministic behavior and various kinds of failures. The software embedded in the 

node may be corrupted. Pointers and memory locations may become corrupted, 

message buffers may be overwritten, and certain sensing and processing events might 

get lost. The node might even be forced into deadlock or livelock states from which it 

cannot recover on its own. Obtaining accurate data is the primary objective of the 

node. Even when any single node fails, resulting in non contribution to the aggregated 

data acquisition, it obviously increases the margin of error. The false sensor readings 

may lead to serious consequences for the analyzers. 

Mainstream software systems have repeatedly proven the need for adaptability and 

extensibility. While the nature and frequency of changes may differ in WSN 

networks, software artifacts will change after they have been deployed in the field, 

and a careless approach to software evolution will result in short-lived applications. In 

conventional systems, software maintenance accounts for 60-70% of software costs 

[8]. About 50% of this effort is perfective, 21% corrective, 25% adaptive and 4% 

preventive [9]. Thus, a variety of workarounds such as wrappers and patches are used 
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to enable modifications [10]. Therefore, there exists a need to maintain the system 

software in the WSN for long-term, efficient and reliable performance of the nodes.  

Over-the-air (OTA) programming is a fundamental service that is based on 

reliable broadcast communication. Over-the-air programming (OAP) eliminates the 

need for detaching the sensor nodes and attaching data transfer cables when updating 

the sensor software. Although existing OAP protocols have many merits, they suffer 

from fundamental limitations that can significantly impair their use in future systems. 

Mainly, the performance of existing OAP protocols quickly degrades as the network 

size and density increase, and even more so when packet loss is high. Unlike other 

protocols, these have to be designed very carefully; furthermore, the WSN has its own 

design and resource constraints. Resource constraints include a limited amount of 

energy, short communication range, low bandwidth and limited processing and 

storage space in each sensor node. 

This paper provides a brief overview of software maintenance, node deployment 

and maintenance issues, and provides a comparison of various OAP protocols 

developed for reprogramming nodes. 

2   Software Maintenance 

The IEEE definition for software maintenance is [11]: “Software maintenance is the 

process of modifying a software system or component after delivery to correct faults, 

improve performances or other attributes, or adapt to a changed environment.” This 

definition reflects the common view that software maintenance is a post-delivery 

activity: it starts when a system is released to the customer or user and encompasses 

all activities that keep the system operational and meet the user’s needs. This paper 

considers post deployment activity of sensor nodes in a WSN network.  

Lientz and Swanson [12] divide maintenance into three components: corrective, 

adaptive, and perfective maintenance. Corrective maintenance includes all the 

changes made to remove actual faults in the software. Adaptive maintenance 

encompasses the changes needed as a consequence of some mutation in the 

environment in which the system must operate, for instance, altering a system to make 

it run on a new hardware platform, operating system, DBMS, TP monitor, or network. 

Finally, perfective maintenance refers to changes that originate from user requests; 

examples include inserting, deleting, extending, and modifying functions, rewriting 

documentation, improving performances, or improving ease of use. Pigoski et al. [13] 

suggest joining the adaptive and perfective categories and calling them enhancements, 

as these types of changes are not corrective in nature, but are improvements. As a 

matter of fact, some organizations use the term software maintenance to refer to the 

implementation of small changes, whereas software development is used to refer to all 

other modifications. 

IEEE [14] redefines the Lientz and Swanson [12] categories of corrective, 

adaptive, and perfective maintenance, by adding emergency maintenance as a fourth 

category. The redefined IEEE definition is [14]: “Corrective maintenance: reactive 

modification of a software product performed after delivery to correct discovered 
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faults. Adaptive maintenance: modification of a software product performed after 

delivery to keep a computer program usable in a changed or changing environment. 

Perfective maintenance: modification of a software product performed after delivery 

to improve performance or maintainability. Emergency maintenance: unscheduled 

corrective maintenance performed to keep a system operational.” 

WSN networks may operate in remote and harsh environments and, in this case, 

applications need to operate in an unattended way for long periods of time. These 

challenges introduce some difficulties. Firstly, the environment can evolve over time, 

so it is very difficult to anticipate how a sensor node must operate during its lifetime. 

Secondly, the application requirements can change. For example, due to technological 

advances or even a better understanding of the environment, it would be interesting to 

have different application behaviors. Thirdly, software bugs often result in node 

reboots; for example, bugs can cause failure to restart the watchdog timer of the micro 

controller. Furthermore, it has been observed that software bugs result in hanging or 

killing threads, such that only part of the sensor node software continues to operate 

[15].  

The aforementioned difficulties make WSN management and maintenance 

challenging tasks. Software maintenance that involves updating is a necessary 

requirement for a reliable service in order to maintain stability and enable 

modification of the characteristics of wireless sensor networks [16-19]. The following 

sections discuss node deployment issues and available techniques for efficient 

maintenance of system software. 

3   Node Deployment and Maintenance Issues 

As sensor networks move from research to deployment, from laboratory to the real 

world, issues of management and reconfiguration will grow in importance. A sensor 

network is composed of a large number of sensor nodes that are densely deployed 

either inside the phenomenon or very close to it. The position of sensor nodes need 

not be engineered or predetermined. This allows random deployment in inaccessible 

terrains or disaster relief operations. On the other hand, this also means that sensor 

network protocols and algorithms must possess self-organizing capabilities. Basically, 

operating system (OS) support is important to facilitate the development and 

maintenance of WSN networks [20-28]. As the number of devices in the monitoring 

systems increases, the amount of attention paid to networking, processing and 

maintenance also increases sharply. Various issues related to nodes are discussed 

below. 
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3.1 Features of Sensor Nodes  

A sensor node, also known as a 'mote' is a node in a wireless sensor network that is 

capable of performing some processing, gathering sensory information and 

communicating with other connected nodes in the network. Sensor nodes are fitted 

with an onboard processor. Instead of sending the raw data to the nodes responsible 

for the fusion, they use their processing abilities to locally carry out simple 

computations and transmit only the required and partially processed data. 

 The number of sensor nodes in a sensor network can be several orders of 

magnitude. 

 Sensor nodes are densely deployed. 

 Sensor nodes are prone to failures. 

 The topology of a sensor network changes very frequently. 

 Sensor nodes mainly use a broadcast communication paradigm. 

 Sensor nodes are limited in power, computational capacities, and memory. 

 Sensor nodes may not have global identification (ID) because of the large 

amount of overhead sensors. 

3.2 Hardware Constraints  

A sensor node is made up of four basic components, a sensing unit, a processing unit, 

a transceiver unit, and a power unit. They may also have additional application-

dependent components such as a location finding system, power generator, and 

mobilizer. Sensing units are usually composed of two subunits: sensors and analog-to-

digital converters (ADCs). The analog signals produced by the sensors based on the 

observed phenomenon are converted to digital signals by the ADC, and then fed into 

the processing unit. The processing unit, which is generally associated with a small 

storage unit, manages the procedures that make the sensor node collaborate with the 

other nodes to carry out the assigned sensing tasks. A transceiver unit connects the 

node to the network. One of the most important components of a sensor node is the 

power unit.   

All of these subunits may need to fit into a matchbox-sized module [29].The 

required size, however, may be smaller than even a cubic centimeter [30], which is 

light enough to remain suspended in the air. Apart from size, there are some other 

stringent constraints for sensor nodes. These nodes must consume extremely low 

power, operate in high volumetric densities, have low production cost, be dispensable 

and autonomous, operate unattended, and be adaptive to the environment [31]. 

3.3 Sensor Network Topology  

Hundreds to several thousands of nodes may be deployed throughout the sensor field. 

They are deployed within tens of feet of each other [29]. The node densities may be as 

high as 20 nodes/m3 [32]. Deploying a high number of nodes densely requires careful 
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handling of topology maintenance. The issues related to topology maintenance can be 

examined in three phases [33]: 

 Predeployment and deployment phase: Sensor nodes can be either thrown in 

as a mass or placed one by one in the sensor field. They can be deployed by 

dropping from a plane, delivered in an artillery shell, rocket, or missile, and 

placed one by one by either a human or a robot.  

 Post-deployment phase: After deployment, topology changes are usually due 

to change in a sensor node’s position, reachability (due to jamming, noise, 

moving obstacles, etc.), available energy, malfunction, and task details.  

 Redeployment of additional nodes phase: Additional sensor nodes can be 

redeployed at any time to replace malfunctioning nodes or due to changes in 

task dynamics. 

Cheng et al. [34] have discussed various deployment strategies for large scale 

deployment considering extension of the network lifetime. Various models and 

algorithms on node deployment can be found in [35-39]. 

3.4 Power Supply and Consumption  

A major challenge impeding the deployment of wireless sensor networks for 

structural health monitoring (SHM) is the development of a means to supply power to 

the sensor nodes in an efficient manner. The various schemes can be studied in [40-

45]. A wireless sensor node, being a microelectronic device, can only be equipped 

with a limited power source (< 0.5 Ah, 1.2 V). In some application scenarios, 

replenishment of power resources might be impossible. The sensor node lifetime, 

therefore, shows a strong dependence on battery life. In a multihop ad-hoc sensor 

network, each node plays the dual role of data originator and data router.  

The malfunctioning of a few nodes can cause significant topological changes and 

might require rerouting of packets and reorganization of the network. Hence, power 

conservation and power management take on additional importance. It is for these 

reasons that researchers are currently focusing on the design of power-aware 

protocols and algorithms for sensor networks. The main task of a sensor node in a 

sensor field is to detect events, perform quick local data processing, and then transmit 

the data. Power consumption can hence be divided into three domains: sensing, 

communication, and data processing [33]. 

Aggressive research is being conducted into the development of self powered 

sensors for SHM applications, which could be a potential solution to the problem and 

enable permanent unattended sensor installations. Sazonov et al. [46] have presented a 

prototype of a novel self-powered wireless system for applications in SHM of bridges, 

which relies on harvesting the energy of bridge displacements created by passing 

traffic to produce power. 
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3.5 Node Localization  

Wireless sensor networks (WSN) owe their success mainly to the modern 

technological advancements in recent years that have enabled the production of low-

cost, low-power and minute sensor nodes. When deployed at random, the wireless 

sensor networks can be treated as a class of ad-hoc self configuring networks which 

operate without the help of any dedicated base station. One of the main challenges in 

such an ad-hoc configuration is the localization of sensor nodes upon deployment in 

some area of interest. Because of the deployment of a large number of sensor nodes, it 

is often not possible to hand place these sensor nodes.  

Localization of sensor nodes is important in many respects in a wireless sensor 

network; first, it informs the remote end user of the precise location within a network 

where the specific “event’ of interest took place. Second, in case of node failure, 

identification of the affected area within the sensor network can be made. Similarly, 

the known location of sensor nodes helps in determining efficient routing paths to the 

sink, either mobile or static, thus conserving energy and time. In wireless sensor 

networks, the capabilities of individual sensor nodes are extremely limited, and thus, 

collaboration is required with minimum energy expense. Localization, therefore, 

plays an important role. The estimation of localization in wireless sensor networks 

can be further studied in [47-50]. 

3.6 Node Maintenance  

A wireless sensor network is a system of small, wirelessly communicating nodes, 

where each node is equipped with multiple components. Due to the deployment of a 

large number of sensor nodes in uncontrolled or even harsh or hostile environments, it 

is not uncommon for the sensor nodes to become faulty and unreliable. Fault is an 

incorrect state of hardware or a software program resulting in failure of a component 

[51]. Ko et al.[52], while sharing their experience in long-term bridge monitoring 

systems, express that the utmost care must be taken to protect the data acquisition unit 

(DAU). At least two health monitoring systems out of the 20 that were under study 

were found with malfunctions due to improper DAU protection. DAUs must be 

designed to resist a variety of environmental conditions, such as temperature, 

humidity, lightning and electromagnetic interference.  

The failure of sensor nodes, however, should not affect the overall task of the 

sensor network. This is the reliability or fault tolerance issue. Fault tolerance is the 

ability to sustain sensor network functionalities without any interruptions due to 

sensor node failures [53, 54]. Some of the faults result from system or communication 

hardware failure and the fault state is continuous in time. For example, a node may 

die due to battery depletion. Faults occurring due to energy depletion are continuous 

and, as time progresses, these faults may increase, resulting in a non-uniform network 

topology [55, 56]. 

Problems that can occur due to sensor node failure are: loss in connectivity, delay 

due to the loss in connection, and partitioning of the network due to the gap created 

by the failed sensors. Therefore, to overcome sensor node failure and to guarantee 



International Journal of Computer Engineering Science (IJCES) 

Volume 3 Issue 2 (February 2013)              ISSN : 2250:3439 

https://sites.google.com/site/ijcesjournal      http://www.ijces.com/ 

 

8 

 

system reliability, faulty nodes should be detected and appropriate measures to 

recover connectivity must be taken in order to compensate for the faulty nodes. 

Coverage maintenance arises when sensor nodes die due to battery drain or 

environmental causes. The area that was covered by the dead node may be left 

uncovered, which is a potential point of vulnerability in the field. Hence, coverage 

maintenance is required to make up for the death of the node [57-59]. 

As far as the issue of energy conservation is concerned, many protocols have been 

developed. Clustering is one such attempt to control energy dissipation for sensor data 

dissemination in a multihop fashion [60-67]. Also, the power supply on each sensor 

node is limited, and frequent replacement of the batteries is often not practical due to 

the large number of nodes in the network. The issue related to maintenance or 

replacement of batteries, whether primary or secondary, can be studied in detail in 

[68, 69]. The worst case, in which the nodes have gone out of order, is that they have 

to be replaced, which is known as redeployment [70, 71]. 

There are two widely different node failure models used to study the fault 

tolerance of nodes: the isolated failure model and the geographically correlated failure 

model [72, 73]. In order to diagnose and detect faults, Huang et al. [74] proposed a 

technique called Sympathy, which is a diagnostic tool for detecting and debugging 

failures in sensor networks. It is specifically designed for data-collection applications, 

where nodes periodically send data back to a centralized base station or sink. 

Sympathy detects failures in a system by selecting metrics such as connectivity, data 

flow, node’s neighbor and next hops. Connectivity metrics provide connectivity 

information from every node in the network. Sympathy collects every node’s current 

routing table with information for the next hop and path quality. Flow metrics provide 

the network’s traffic load as well as its connectivity. Sympathy collects packet level 

information transmitted and received from each node. In addition, Sympathy also 

maintains information for packets transmitted from the sink to the nodes. Based on 

these metrics, Sympathy detects when nodes are not delivering sufficient data to the 

sink and locates the cause of the failure.  

Sympathy can identify three types of failures: self, path, and sink. In self failure, 

the node itself has failed due to a crash, re-boot, bug in software code, or connectivity 

issue. In path failure, a node along the path fails causing other nodes to fail, or there 

are collisions along the path. In sink (base station) failure, the whole network appears 

to be failing. Failure at the sink may be due to bad sink placement, changes in the 

environment after deployment, or connectivity issues. The software in the nodes is a 

necessary requirement for reliable service. It is also necessary to maintain the stability 

and enable modification of the characteristics of wireless sensor networks [16-19]. 

Once the nodes are deployed, however, it is impractical to reach each individual node. 

Moreover, it is highly cumbersome to detach a sensor node and attach data transfer 

cables for software updates. Thus, a scheme is required to wirelessly reprogramme the 

nodes. 

Whelan et al. [75] conducted a study on the integral abutment of a highway 

bridge. Their test results describe a small loss of data because of a software bug, 

which crept into the embedded software code.  Stajano et al [76] discuss 3 sites where 

WSN monitoring was deployed. The first site is the north anchorage chambers of the 

Humber Bridge, which is a major suspension bridge that crosses a river estuary in 
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East Yorkshire. Each of the four underground anchorage chambers have 

dehumidification units to ensure that the exposed unprotected steel strands of the 

main suspension cables of the bridge do not corrode while exposed to the air in the 

chamber. A 12-node WSN was installed in the north chambers to verify whether these 

dehumidification units were operating correctly. The second site is a reinforced 

concrete bridge, known as the Ferriby Road Bridge, located several hundred meters to 

the north of the Humber Bridge. A seven-node WSN was installed, with three nodes 

measuring changes in crack widths, three nodes measuring changes in bearing 

inclination, and a final node measuring temperature. The third site is a London 

underground tunnel on the Jubilee Line. There, a network of 26 nodes was set up to 

measure changes in displacement, inclination, temperature, and relative humidity in 

the 180 m-long stretch of concrete-lined tunnel.  The study discusses the practical 

difficulties of node deployment and suggests a technique in relation to the issue of 

software maintenance, known as over-the-air (OTA) programming technique, by 

virtue of which a whole network of nodes can be reprogrammed by uploading a new 

code image into them. 

Joel Koshy et al   [18] discussed the reasons why it is necessary to remotely 

reprogram sensor nodes. First, the scale and distributed nature of WSN applications 

makes it difficult to get things right the first time. Bug fixes, run-time application 

adaptation and other software maintenance concerns can be addressed only by 

employing a reprogramming mechanism. Secondly, application specialization to 

optimize energy usage and performance for network longevity may be possible only 

during run-time. WSNs tend to be highly sensitive computing environments in which 

small local changes can result in significant global consequences. Normally, an ideal 

configuration can only be attained empirically at run-time, because it is not possible 

to anticipate every application scenario. For example, it may be necessary to choose a 

routing protocol from a protocol suite at run-time, suited to prevalent conditions [77]. 

Similarly, knobs such as power management, radio frequency modulation and 

dynamic voltage scaling algorithms may need to be adjusted at run-time. Thirdly, it is 

likely that some WSNs will be deployed for long periods of time and provide 

different services at different times. Due to storage constraints, it is unfeasible to load 

all these services into the nodes prior to deployment. Instead, applications and 

services could be swapped in and out, depending on contexts of use, such as current 

time, location, user input, and environmental stimuli. Run-time service composition is 

also useful in context-aware pervasive computing environments with small computing 

devices [78]. 

3   Over-The-Air (OTA) Programming     

Over-the-air programming (OTA) is a fundamental service that depends on reliable 

broadcast communication. OTA programming eliminates the need for detaching the 

sensor nodes and attaching data transfer cables when updating the sensor software. 

The desirable characteristics of OTA protocols for reprogramming are firstly, the time 

and space complexity of algorithms in reprogramming should be well fitted to the 
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capacity profile of a sensor node, since they are generally small in size with limited 

hardware capacities. Secondly, reprogramming should be energy-efficient; sensor 

nodes are usually battery powered and can hold/gain limited amounts of energy. 

Among computing, communication, and sensing functions, communication consumes 

a large portion of the energy. Thirdly, reprogramming requires the program code to be 

delivered in its entirety. However, wireless communication is unreliable due to 

possible signal collisions, interferences, and packet contentions. Fourthly, scalability 

is crucial for large-scale sensor network deployment. Scalability has two requirements 

for a widely applicable reprogramming service: scale for number of nodes, from tens 

up to hundreds or even thousands of nodes, and scale for varying node density, from 

sparse to dense networks. Fifthly, there are several programming support limitations 

in current TinyOS [79]. 

Ideally, maintenance operations should not degrade the reliability and the structure 

of the subject system; neither should they degrade its maintainability. Moreover, the 

activity of maintenance should be effective, convenient, and as far as possible should 

incur the least overhead costs. Several protocols have been designed and studied in 

the past few years; a brief review is given below.  

In contrast to the traditional way of reprogramming microcontrollers using In-

System Programming (ISP), sensor networks need a way to update the node’s 

firmware without human intervention.  Consequently, the University of California at 

Berkeley developed XNP [80], a one-hop protocol that offers firmware updates 

through a wireless link. XNP (Crossbow Network Programming) is the network 

programming implementation for TinyOS that was introduced with a 1.1 release 

version. The XNP implementation  provides the basic capability of network 

programming; it delivers the program code to the sensor nodes remotely. XNP 

provides single hop solution; however, it has some limitations. First, XNP does not 

scale to a large sensor network. It disseminates program code only to the nodes that 

can be directly reached by the host machine. Thus, the nodes outside the single hop 

boundary cannot be programmed. Second, XNP has low effective bandwidth 

compared to ISP; when XNP updates the program code with another version, it sends 

the whole program code rather than the difference. This incurs the same programming 

time even when the difference is small. If the sensor nodes can build program code 

images incrementally using the previous code image, the overall programming time 

can be reduced [81]. 

Reijers et al. [82] proposed an energy-efficient code distribution scheme to 

wirelessly update the code running in a sensor network. Energy is saved by 

distributing only the changes to the currently running code. The new code image is 

built using an edit script of commands that are easy to process by the nodes. A small 

change to the program code can cause many changes to the binary code because the 

addresses of functions and data change.  The scheme is resilient to missing packets in 

that it can continue processing the following packets and start a recovery procedure in 

a later phase. Updating all software on the nodes is possible, including the operating 

system and the code distribution scheme itself. The scheme distributes binary native 

code, so the programmer is not bound to a virtual machine, but can do all low level 

optimizations necessary when programming for wireless sensor networks. The 

scheme significantly reduces the amount of communication compared to simply 
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transferring the binary code. Nevertheless, the algorithms lack speed and a lot of 

overhead is incurred when splitting the script. 

MOAP is a multihop network programming mechanism developed by 

Stathopoulos et al. [83]. The main contributions of MOAP are its code dissemination 

and buffer management. One of the challenges of multihop network programming is 

propagating program codes over multiple sensor nodes without saturating the 

network; so they used ripple dissemination protocol to regulate the network traffic. 

Ripple protocol disseminates the program code packets to a selective number of nodes 

without flooding the network with packets. For buffer management, they used a 

sliding window scheme. Sliding window schemes maintains a window of program 

codes and allows lost packets within the window to be retransmitted. Sliding windows 

take small footprints so that packets can be processed efficiently in on-chip RAM. 

While MOAP advances the data dissemination problem, it still ignores many design 

decisions. MOAP requires nodes to receive the entire code image before making 

advertisements. It does not allow the use of spatial multiplexing to leverage the full 

capabilities of the network. Methods for intelligent sender selection are not 

considered. While the authors mention the possibility of using forward error-

correction techniques, no evaluation is provided to show their usefulness. 

Jeong et al. [84] proposed an incremental approach in which the host program 

generates the difference of the two program images using the Rsync algorithm [85], 

and then sends the difference to the sensor nodes as script messages. The sensor nodes 

rebuild the program image based on the previous program version and the received 

script messages. The Rsync algorithm compares the two binary files and finds the 

matching blocks even though they are located in an arbitrary location within the files. 

This approach speeds up the transmission time. It assumes no prior knowledge of the 

program code structure (hardware independent), and overhead is incurred only in 

calculating the rolling checksum in the Rsync algorithm. 

Levis [86] proposed an algorithm called Trickle, for propagating and maintaining 

code updates in wireless sensor networks. Trickle uses a “polite gossip” policy, where 

motes periodically broadcast a code summary to local neighbors but stay quiet if they 

have recently heard a summary identical to theirs. When a mote hears an older 

summary than its own, it broadcasts an update. Instead of flooding a network with 

packets, the algorithm controls the send rate so each mote hears a small trickle of 

packets, just enough to stay up to date. With this simple mechanism, Trickle can scale 

to thousand-fold changes in network density, propagate new codes in the order of 

seconds, and impose a maintenance cost on the order of a few sends an hour. The 

behavior of trickle is almost the inverse of protocols such as SPIN [87], which 

transmits metadata freely but controls data transmission. One limitation of Trickle is 

that it currently assumes motes are always on. To conserve energy, long-term mote 

deployments often have very low duty cycles (1%). Correspondingly, motes are rarely 

awake, and rarely able to receive messages. 

Chlipala et al. [88] proposed Deluge, a reliable data dissemination protocol for 

propagating large amounts of data (more than can fit in RAM) from one or more 

source nodes to all other nodes over a multihop, wireless sensor network. To achieve 

robustness against lossy communication and node failures, an epidemic approach was 

adopted. Representing the data object as a set of fixed-sized pages provides a 
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manageable unit of transfer, which supports spatial multiplexing and provisions for 

incremental upgrades. Due to the large data size, it identifies a set of possible 

optimizations and evaluates their effectiveness. Deluge algorithm reliably distributes 

data across an increasingly sized multi-hop network, while maintaining a constant 

amount of local state. And the energy required to distribute this data is within the 

allowable per-mote energy budget. Deluge is similar to SPIN-RL [89] in that it makes 

use of a three-stage (advertisement-request-data) handshaking protocol. SPIN-RL is 

designed for broadcast network models and provides reliability in lossy networks by 

allowing nodes to make additional requests for lost data.  The interaction between 

nodes is kept strictly local and avoids the need to maintain neighbor tables. This 

property allows Deluge to be robust to widely varying connectivity scenarios. Since 

there is no need to maintain state about all neighboring nodes, nodes may move and 

connectivity can vary without requiring nodes to adapt to such changes. Enabling 

spatial multiplexing through per-page pipelining decreases the time to complete and 

transmit messages. 

Kulkarni and Wang [90] proposed a multihop network reprogramming protocol 

(MNP), which provides a reliable service to propagate new program codes to all 

sensor nodes in the network over radio. In multihop reprogramming, any node that 

has the new code image is a potential sender. It is likely that too many senders are 

transmitting at the same time. Sender selection mechanism is proposed, in which 

source nodes compete with each other based on the number of distinct requests they 

have received. This effectively solves the concurrent sender problem.  One of the 

problems in reprogramming is the issue of message collision. To reduce the problem 

of collision, a sender selection algorithm is proposed that attempts to guarantee that in 

a neighborhood there is at most one source transmitting the program at a time. The 

sender selection is greedy in that it selects the sender that is expected to have the most 

impact. It uses pipelining which enables fast data propagation. It is energy efficient 

because it reduces the active radio time of a sensor node by putting the node into 

“sleep” state when its neighbors are transmitting a segment that is not of interest. In 

MNP, sensor nodes do not need to have any location information or maintain 

neighbor status. Sensor nodes make local decisions independently and, hence making 

the protocol scalable. 

Arumugam et al. [91] proposed Infuse, a time division multiple access-based 

(TDMA) reliable data dissemination protocol. Infuse takes two input parameters: the 

choice of the recovery algorithm to deal with unexpected channel errors (e.g., 

message corruption, varying signal strength), and whether a sensor should listen only 

to a subset of its neighbors to reduce the amount of active radio time. He considered 

two recovery algorithms based on the sliding window protocols that use implicit 

acknowledgments: go-back-N and selective retransmission. Since Infuse uses a 

TDMA-based MAC protocol, sensors need to listen to the radio only in the slots 

assigned to their neighbors. In the remaining slots, sensors can turn off their radio. 

Moreover he proposed an algorithm to reduce messages receptions and the active 

radio time further by using the notion of preferred predecessors. 

Naik [92] presented Sprinkler, a reliable data dissemination service for wireless 

embedded devices that are constrained in energy, processing speed, and memory. 

Sprinkler embeds a virtual grid over the network whereby it can locally compute a 
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connected dominating set of the devices to avoid redundant transmissions and a 

transmission schedule to avoid collisions. To reduce energy consumption, Sprinkler 

computes a subset of nodes as senders. The subset is connected and every node in the 

network has a neighbor in the subset. The problem of selecting the minimum number 

of senders is computing a minimum connected dominating set (MCDS) of the graph 

induced by the wireless network, which is known to be NP hard even for a unit disk 

graph [93]. Sprinkler effectively manages the latency by computing a near optimal 

schedule using a local D-2 coloring algorithm [94]. As a cluster-based approach, 

Sprinkler divides the whole WSN area into square-shaped clusters, and one node is 

selected in each cluster as the cluster head. It maintains hierarchy, which is the 

concept of super nodes or cluster head nodes. A connected dominating set (CDS) is 

calculated from the cluster head set. The nodes in CDS will be selected to receive and 

rebroadcast the data in the first phase in Sprinkler. In the second phase data will be 

transmitted from CDS nodes to all non-CDS nodes. Compared to the other schemes, 

the CDS algorithm is centralized and causes extra overhead.  

Levis et al. [95] proposed the Firecracker protocol for data dissemination in 

wireless sensor networks. Firecracker uses a combination of routing and broadcasts to 

rapidly deliver a piece of data to every node in a network. To start dissemination, the 

data source sends data to distant points in the network. Once the data reaches its 

destinations, broadcast-based dissemination begins along the paths, like a string of 

firecrackers. By using an initial routing phase, Firecracker can disseminate at a faster 

rate than scalable broadcasts, while sending fewer packets. The selection of points to 

route to has a large effect on performance, indicating possible requirements for any-

to-any routing protocols in wireless sensor networks. It maintains hierarchy, which is 

the concept of super nodes or cluster head nodes. Super nodes in Firecracker are 

nodes in each corner, or are randomly selected. With this hierarchy approach, 

Firecracker achieves threefold speedup, using one-third the transmission cost of 

Trickle [86]. 

Phillips [96] presented Aqueduct, which establishes “aqueducts” of intermediate 

nodes between source nodes and target nodes. Data is only propagated along these 

aqueducts.  Aqueduct adheres to four primary design principles: (1) dynamic network 

reprogramming for heterogeneous WSNs with diverse hardware, software, and 

application roles, (2) efficiency in terms of reduced code overhead by limiting 

involvement in forwarding, (3) robustness to spatially irregular, time-varying RF links 

by constructing symmetric links, (4) and incorporation of new capabilities into the 

framework provided by Deluge [88]. Aqueduct adds new capabilities to Deluge, 

modifying its state machine and state transitions, while also adding a new forwarding 

state. Aqueduct offers a practically useful code propagation protocol for 

heterogeneous WSNs that has been evaluated over a real test bed and has shown to 

incur significantly lower overhead than Deluge [88]. While reprogramming a partial 

network, scope selection approach of aqueduct saves energy across the whole 

network.  

Marron et al. [97] proposed the TinyCubus project in order to solve three key 

issues to provide efficient management and configuration of applications and system 

software in sensor networks: the distribution and management of roles within the 

network, efficient code distribution algorithms, and efficient on-the-fly code update 
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algorithms for sensor networks. The first issue is motivated by the increasing 

heterogeneity of sensor network applications and their need for more complex (non-

homogeneous) network topologies and structures. The second one is motivated by the 

intrinsic energy constraint issues and, in general, the resource limitation of sensor 

networks. Finally, the third one is needed due to the nature of monitoring applications 

and optimization needs from applications that should be able to efficiently incorporate 

code updates so that the network can adapt to its surroundings on the fly. 

However, most current code update algorithms always transmit the complete code 

image (including the operating system), which usually amounts to several kilobytes, 

or blindly divide the code image into blocks without considering the structure of the 

code. Examples of these two approaches are XNP [80] and Deluge [88]. XNP is 

included in TinyOS 1.1. It lacks the ability to forward code in a multi-hop network 

and simply broadcasts the complete code image in a single-hop network. Deluge has 

been included in more recent TinyOS releases to replace XNP. It allows for 

incremental updates by dividing the code into fixed-sized pages. In addition, it 

includes functionality to disseminate the update in a multi-hop network, while 

keeping the number of network packets low. 

Reijers and Langendoen [82] use a diff like approach to compute an edit script that 

transforms the installed code image into a new one. Likewise, the incremental 

network programming protocol presented by Jeong and Culler [84] uses the Rsync 

algorithm [85] to find variable-sized blocks that exist in both code images and then 

only transmits the differences. However, both of these approaches just compare the 

bytes of the code without using knowledge about the application structure. In some 

cases this leads to inefficient behavior. 

In all of these approaches, all nodes will eventually have installed the same code 

image without support for adaptation. However, in order to reduce the number of 

packets, it might be desirable to install the required components only on those nodes 

that need it and store the other ones, if they are received at all, for later adaptation in a 

free part of flash memory, which typically is less constrained than program memory. 

Therefore, the solution uses knowledge about the application structure by grouping 

codes into packages of components. It offers more flexibility than simply replacing 

arbitrary pieces of codes because it makes it possible to dynamically change the 

current set of installed packages through adaptation. That way the sensor nodes can 

possess several components even though they only need one of them for their current 

role. When the role changes or other factors make it necessary, the node can easily 

exchange the currently used component. 

TinyCubus proposes a flexible description language and uses a role concept in 

scope selection. It reprograms nodes with a particular role via nodes in a specific role 

(e.g., reprogramming all temperature sensors via vibration sensors). However, 

TinyCubus faces efficient code dissemination problems because it cannot guarantee 

that all target nodes can be reached and reprogrammed. 

Lee et al. [98] proposed a transaction-based approach to solve the version 

inconsistency problem of OTA programming. A multinode OTA programming 

procedure is modeled as a transaction, such as a database transaction, and the 

programming of each individual node is modeled as a sub transaction. When the 

update is finished, the system and the manager could commit or abort the transaction 
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according to the result of the sub transaction. The commit and abort actions 

synchronize the software version and thus the version inconsistency problem would 

never occur. The system was implemented on a zigbee [99] platform developed by 

Industrial Technology Research Institute (ITRI) Hsinchu, Taiwan. The transaction-

based update system is managed by command line and a TCL scripting interface 

[100,101]. Most computation power required by the system relies on the base station, 

thus a more powerful base station is required. 

Hagedorn et al. [102] proposed a scheme known as Rateless Deluge, based on 

rateless codes, which significantly improves OAP in such environments by drastically 

reducing the need for packet rebroadcasting. Rateless codes provide an efficient 

means of addressing channel contention in sensor networks, while at the same time 

minimizing control messages, such as those contributing to the ACK/NACK 

implosion problem. Two rateless OAP protocols were designed and implemented, 

rateless Deluge and ACKless Deluge, both of which replace the data transfer 

mechanism of the established OAP Deluge protocol with rateless analogs. Compared 

to Deluge [88], one of the most widely used OAP protocols at present, these 

implementations (i) reduce communication on both the data and control planes, (ii) 

reduce latency at moderate levels of packet loss, (iii) are more scalable to dense 

networks, and (iv) generally consume far less energy, a premium resource in wireless 

sensor networks. Although ACKless Deluge adds communication on the data plane, it 

is particularly efficient on the control plane as it almost completely eliminates the 

needs for retransmission requests by receiving nodes and packet retransmissions by 

sources. Since it is unlikely that nodes will request packets belonging to a previous 

page, ACKless Deluge is able to take full advantage of pre-coding and speed-up data 

transfer. A simple mathematical approach is provided to determine the number of 

extra packets needed by ACKless Deluge in order to guarantee with high probability, 

such that all the nodes receive enough packets to decode a page. Overall, the rateless 

Deluge, augmented with FEC mechanism, achieves excellent performance with 

respect to almost all the metrics relevant to wireless sensor networks.  

Panta et al. [103] presented a protocol called Stream that greatly reduces the 

number of bytes transmitted over the wireless medium for reprogramming. The 

application image together with the reprogramming protocol image is transferred. 

Using the facility of having multiple code images on a node and switching between 

them, Stream pre-installs the reprogramming protocol as one image and the 

application program equipped with the ability to listen to new code updates as the 

second image. This consequently, reduces the reprogramming time, the number of 

bytes transferred, the energy expended, and the usage of program memory. 

Krasniewski et al. [104] proposed a protocol called Freshet for optimizing the 

energy for code upload and speeding up the dissemination if multiple sources of codes 

are available. A fundamental insight used in Freshet is that nodes can be put to sleep 

by making the advertisement-request-data handshake happen only at certain points in 

time. The energy optimization is achieved by equipping each node with limited 

nonlocal topology information, which it uses to determine the time when it can go to 

sleep since code is not being distributed in its vicinity. The protocol to handle 

multiple sources provides a loose coupling of nodes to a source and disseminates code 

in waves, each originating at a source with a mechanism to handle collisions when the 
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waves meet. Freshet functions in three phases for each new code image: Blitzkrieg, 

Distribution, and Quiescent. It aggressively conserves energy by putting nodes to 

sleep between the blitzkrieg and the distribution phases as well as the quiescent phase. 

Freshet introduces a scheme to disseminate code from multiple originators, use 

location information, and reduce control message overhead. Freshet uses spatial 

multiplexing to transfer the code. This implies that a node can transfer the code to a 

neighbor before it has received all the pages for a given version. In effect, the node 

can initiate transfer once it has the first page for the version. This makes the delay 

proportional to the sum of the network diameter and the code size rather than the 

product of the two. 

Rossi et al. [105] presented a reprogramming system for WSNs called SYNAPSE, 

which was designed to improve the efficiency of the error recovery phase. SYNAPSE 

features a hybrid ARQ (HARQ) solution where data is encoded prior to transmission 

and incremental redundancy is used to recover from losses, thus considerably 

reducing the transmission overhead. For the coding, digital Fountain Codes were 

selected. In fact, a Fountain Code (FC) [106], specifically designed to meet the needs 

of sensor network reprogramming, is used at the heart of the data 

dissemination/recovery process. This code is designed to maintain high efficiency, in 

terms of overhead, in the face of small packet sizes and typical program lengths. 

These codes were selected due to their desirable properties: FCs are rateless and have 

a low computational complexity, as encoding and decoding are performed efficiently 

through XOR operations. 

State of the art protocols, such as Deluge [88], implement error recovery through 

the adaptation of standard Automatic Repeat reQuest (ARQ) techniques. These, 

however, do not scale well in the presence of channel errors and multiple receivers.  

They use three-way handshakes as per the ADV-REQ-CODE paradigm. They 

implement randomization when sending advertisements, exploit broadcast 

transmissions for the code, NACKs to request missing data and implement the method 

proposed in Stream [103].  

Heo et al. [107] proposed a novel program updating mechanism considering 

resource constraints of sensor nodes. The proposed mechanism was designed for 

sensor nodes with the NOR flash memory. This is generally used to store program 

images. It was designed to minimize the number of flash write/erase operations, 

which consume a great deal of energy, and to provide wear-leveling for the NOR 

flash memory, by setting a function as the basic unit of program updating, and 

partition a function into fixed-sized blocks that can be separately relocated in 

memory. A paragraph was defined as a basic unit of writing. The mechanism provides 

a method similar to the paging technique for sensor nodes without MMU (Memory 

Management Unit), which is necessary for implementing the paging technique in 

general operating systems. Jeong et al. [84] proposed the Incremental approach in 

which the host program generates the difference of the two program images but did 

not consider wear-leveling for the NOR flash memory. Consequently, there was the 

memory wastage because of the number of write/erase operations. 

Kim et al. [108] proposed a new Commissioning and Deployment Method for 

WSNs, by introducing a partial download procedure of node program for efficient 

node commissioning. The basic idea is the same as that for Efficient Partial Node 
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Update for Wireless Sensor Networks Using a Simulated Virtual Node [109], where 

the concept of a virtual node is used for finding near optimal smallest partial updating 

way. When a newer sensor node is out-of-the-box and turns on the power switch, the 

sensor node sends the initial node information including attached sensor types, 

processor type, program memory size, and RF capability, which is called pre-

commissioning.  The commissioning server also receives the operating network 

information from a profile server, which manages sensor networks.  

ZigBee alliance provides some procedure for initial procedure of commissioning 

for small wireless nodes [99]. The commissioning server decides what the best role of 

this sensor node will be. ZigBee alliance suggests three role types for nodes, 

coordinators, routers, and end devices. The four major steps are: step 1- 

commissioning server receives the specification of a newer sensor node, and analyzes 

the best role for this node, considering the management information of the operation 

network, step 2- commissioning server optimizes a source code for the assigned role 

of this sensor node, compiles the source code; then the newly compiled executable 

code is compared with the pre-programmed code in the node, and the difference is 

generated as a partial node updating rule, Step 3- commissioning server sends the 

partial updating rule to the node and the received node reflects the rule into the 

program memory, Step 4- ZigBee commissioning procedure is optionally performed 

for setup of the network parameters after resetting the node. Experimental results 

show that the partial update method can dramatically reduce the communication 

overhead for the node update by up to 72.5%. 

Maia et al. [110] used small world features to improve over-the-air programming. 

The small world-based protocol takes into account the communication workflow of 

sensor networks to create shortcuts toward the sink, thus improving the 

reprogramming process. The endpoints of these shortcuts are nodes with more 

powerful hardware, resulting in a heterogeneous wireless sensor network. The goal 

was to improve and assess the OAP Deluge protocol [88] applied to a network with 

small world features. Therefore, this work presents a new in-network algorithm called 

OAP-SW that combines the shortcut creation with OAP to improve network 

reprogramming. It enabled pipelining by dividing a program into fixed-sized 

segments, which in turn are divided into packets. Such an approach results in a 

desired characteristic for network reprogramming, known as spatial multiplexing, 

which enables different parts of the network to do the reconfiguration process at the 

same time. The OAP-SW protocol transmits fewer messages when compared with the 

Deluge [88]. This occurs because the small world infrastructure, provided by 

OAPSW, reduces the minimal average path length of the network. 

Shaikh et al. [111] proposed a protocol that divides the code image into 

application and reprogramming support. It pre-installs the reprogramming protocol as 

one image and the application program is equipped with the ability to listen to new 

code updates as the second image. Three substantially more sophisticated protocols 

are: Deluge [88], MNP [90], and Freshet [104]; they focus on transferring the image 

of the entire reprogramming protocol together with the minimally necessary part. As a 

point of optimization, the stream AS-RS approach keeps the basic mode of transfer 

the same as in Deluge; that is it transfers just what is needed, which is the application 

code (or the code of the updates to the application). It transfers close to the minimally 
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required image size by segmenting the total program image into an application image 

and the reprogramming image. Application image refers to the user application and 

reprogramming image refers to the protocol component for protocol, such as MNP 

[90], Deluge [88] or Freshet [104]. An application is modified by linking it to a small 

component called Application Support (AS) while Reprogramming Support (RS) is 

pre-installed in each node. Overall, the design principle is to limit the size of the AS 

and to provide it the facility to switch to RS when triggered by a code update related 

message. 

In Freshet [104], to save energy the sleeping time of the node is estimated 

beforehand and this estimation if often found inaccurate due to the variability of the 

wireless channel; however, the stream AS-RS Approach protocol achieves this goal 

by rebooting the node from Stream-RS only when a new node arrives at one of its 

neighbors. Thus the user application running on the node can put the node to sleep 

until the time to reboots. This opportunistic sleeping feature conserves energy in 

resource-constrained sensor networks. 

In Deluge [88], once a node’s reprogramming is over, it keeps on advertising the 

code image it has; hence radio resources are continuously used in the steady state. In 

the stream AS-RS Approach, Stream-AS does not advertise the data it has. The 

benefit of this protocol is that a lower number of bytes are transferred over the 

wireless medium leading to increased energy savings and reduced delays for 

reprogramming 

The reprogramming system can be classified according to several, criteria, such as 

single-hop and multihop. Single hop disseminates codes only within the radio 

communication range of a base station. Examples are XNP [80], Reijers approach 

[82] and Incremental approach [84]. Multihop code dissemination protocols are 

epidemic in nature. Almost all recent protocols are developed to support multihop 

communication. During encoding, most reprogramming systems disseminate the 

compiled program image across the network. The overhead is usually large in cases 

when only minor changes occur between the new and old versions. Some use the delta 

patches like Incremental [84]; however, Mate virtual machine can be used instead of 

native nesC compiled codes since Mate scripts are much smaller and simpler to write. 

An example is Trickle [86]. Since carrier sense multiple access medium access 

control (CSMA MAC) is in the TinyOS release, most reprogramming systems use 

CSMA. TDMA demands careful scheduling of time slots, and its implementation on a 

sensor platform is much more complex than CSMA. Sprinkler [92] and Infuse [91] 

use TDMA. 

The approach of sending the codes in which super nodes/head nodes reprogram 

other nodes in their local areas is thought to be maintaining hierarchy. Firecracker 

[95] and Sprinkler [92] maintain such hierarchy. Pipelining is done through 

segmentation; a program is divided into several segments (called pages) each of 

which contains a fixed number of packets. Instead of completely receiving a whole 

program before forwarding it, a node becomes a source node after it receives only one 

complete segment. Most reprogramming systems only disseminate one program to the 

whole network. Therefore, the scope selection function allows administrators or the 

network to dynamically select any particular nodes to be reprogrammed. Approaches 

that employ such selection are Aqueduct [96] and TinyCubus [97]. 
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The various protocols studied above are summarized in Table I. [79]. 

  

Table 1.  Summary of Various Reprogramming Protocols 

 

Name Encoding/decoding MAC Hop Scope Hierarchy Pipelining 

XNP Complete program CSMA Single hop Whole network no no 

Reijers Platform-dependent patch CSMA Single hop Whole network no no 

Incremental Platform-independent patch CSMA Single hop Whole network no no 

Trickle Mate script CSMA Multihop Whole network no no 

MOAP Complete program CSMA Multihop Whole network no no 

Deluge Complete program CSMA Multihop Whole network no yes 

MNP Complete program CSMA Multihop Whole network no yes 

Sprinkler Complete program TDMA Multihop Whole network yes no 

Firecracker Complete program CSMA Multihop Whole network yes no 

Infuse Complete program TDMA Multihop Whole network no yes 

Aqueduct Complete program CSMA Multihop Selected nodes no yes 

TinyCubus Modular update CSMA Multihop Selected nodes no no 

Transaction-

based 
TCL script CSMA Multihop Whole network no no 

Rateless Complete program CSMA Multihop Whole network no yes 

Stream Complete program CSMA Multihop Whole network no yes 

Freshet Complete program CSMA Multihop Whole network no yes 

Synapse Complete program CSMA Multihop Whole network no yes 

Flash Memory Modular update CSMA Single hop Whole network no no 

Commissioning Modular update CSMA Multihop Whole network no no 

Small World 

Concept 
Complete program CSMA Multihop Whole network no yes 

Stream AS-

RS* 
Complete program CSMA Multihop Whole network no yes 

*(AS) Application Support  (RS) Reprogramming Support 
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5   Conclusion  

As sensor networks move from research to deployment, from laboratory to the real 

world, from small scale to large scale, issues of maintenance will be challenging. It is 

not easy to predict all the problems that may arise while installing the sensor nodes 

before deploying a sensor network.  Reprogramming is necessary to fix bugs, update 

codes, and manage application requirement changes. When nodes are densely 

deployed in a hostile area, such as a tunnel or bridge structure, it is highly 

cumbersome to physically reach all nodes and provide necessary maintenance. 

Software maintenance is a major phase in the software development cycle that plays a 

significant role in reliable performance. Thus, with respect to software maintenance 

issues, robust, efficient and tested codes should be installed in the sensor network 

before deployment. Corrective, adaptive, and perfective maintenance should be 

provided by relevant software updating at required times.  Ideally, maintenance 

operations should not degrade the reliability and the structure of the subject system, 

and neither should they degrade its maintainability.  

Reprogramming is important in facilitating the management and maintenance of 

WSNs, as well as enabling adaptive sensor applications. It becomes a crucial service 

to the success of currently employed WSNs. There are many new hardware platforms, 

new operating systems (TinyOS, SOS), and new applications (well-controlled bridge 

monitoring, randomly deployed nodes in tunnel monitoring) that keep on emerging in 

the process of the WSN revolution. However, many problems need further 

investigation to make reprogramming highly usable and efficient. Aggressive research 

is being done on code dissemination. However, design trade-offs and impact factors 

have not been fully understood. Design and implementation of energy-efficient 

routing and one-to-many communication protocols for WSN are a continuing focus of 

research.  

Over-the-air (OTA) programming eliminates the need of detaching sensor nodes 

and attaching data transfer cables when updating the sensor software. Many protocols 

have been designed for efficient software maintenance in the deployed area. Various 

protocols have been discussed; however, unlike other protocols, WSN has its own 

design and resource constraints. Aggressive research is going on to make 

reprogramming highly usable and efficient. Such light weight  and scalable protocols 

are required that can embed intelligence in sensor node system software, which can 

sustain the capability of the system to provide a reliable service with least over head 

under all real time constraints. 
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