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Abstract

During the 360 years of Fermat’s last theorem is to be proved, this
proposition was the presence appear full-length novel in ”The Lord of
the Rings”, such as the ”One Ring”. And finally in 1994, it was proved
completely by Andrew Wiles. However interesting proof is Fermat has
been is still unknown. This will be assumed in the category of algebra
probably.

introduction

　 Natural number X,Y and Z solution of 3 or more that this equation holds
Xn + Y n = Zn does not exist. Fermat is proven for the conditions of n = 4.
It is sufficient if n is examining the conditions of prime numbers greater than
or equal to 3 for this.

Theorem 1 Triangle the hypotenuse of Pythagorean theorem is z, can be ex-
pressed by the following relation by using the l and m.

(
l2 −m2

)2
+ 22 (lm)

2
=
(
l2 +m2

)2
x2 =

(
l2 −m2

)2
y2 = 22 (lm)

2

z2 =
(
l2 +m2

)2
(xyz ̸= 0)

To simplify the algebra as a real number M, and N.

M,N ∈ R l2 = M, m2 = N

(M −N)
2
+ 22MN = (M +N)

2
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Put X,Y, Z ∈ N prime number= p ≥ 3

Xp = (M −N)
2

Y p = 22MN

Zp = (M +N)
2

(XY Z ̸= 0)

Add the following conditions. X,Y, Z ∈ even number

Xp = 2pXp
1

Y p = 2pY p
1

Zp = 2pZp
1

(X1, Y1, Z1 ∈ N)

MN = 2p−2Y p
1 ∈ N

Thus M,N is a rational or irrational both.

1 M ,N is a condition of both rational

Xp = 2pXp
1 , Zp = 2pZp

1

M −N,M +N ∈ even number, and it will be a divisor of 2
p+1
2 at least.　

Consequently, Y p
1 ∈ even number so Xp

1 , Zp
1 ∈ even number. (1)

2 M ,N is a condition of both irrational

MN = 2p−2Y p
1

= 2p−2 (Zp
1 −Xp

1 )

= 2p−2

(√
Zp
1 +

√
Xp

1

)(√
Zp
1 −

√
Xp

1

)

Xp = 2pXp
1 , Zp = 2pZp

1

M =

(√
2p−2Zp

1 +
√
2p−2Xp

1

)
N =

(√
2p−2Zp

1 −
√
2p−2Xp

1

)
(M > N)

Put (c, d ∈ odd number h, i ∈ N)
M = 2

h
2 c

1
2 + 2

i
2 d

1
2 N = 2

h
2 c

1
2 − 2

i
2 d

1
2 (I)
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In addition, assuming that there is no difference and sum,

Put (U, V ∈ odd number)

M = 2
l
2U N = 2

m
2 V (II)

MN = 2p−2Y p
1 = 2

l+m
2 UV ∈ N

M, N because irrational both.therefore, l,m is odd number.

2.1 Conditions of (II)

2.1.1 Conditions of (Y p
1 ∈ odd number)

Y p
1 = Zp

1 −Xp
1

Zp
1 and Xp

1 are assumed to be coprime.Common divisor Rp( ∈ odd number),
if present in the Zp

1 and Xp
1 , is included as a common divisor of Rp also Y p

1 .

(
Y p
1

Rp ∈ N)
It is possible to remove common divisor, it is sufficient Zp

1 and Xp
1 is examining

the conditions of coprime.

MN = 2p−2Y p
1 = 2

l+m
2 UV (p− 2 = l+m

2 Y p
1 = UV )

Zp
1 , X

p
1 is the relationship of ”odd and even” or ”even and odd”.

Therefore,
l = p− 2　　m = p− 2 (l,m ∈ odd number U, V ∈ odd number)

Lemma 2 If not satisfied with the exception of these conditions, infinite descent
method can be applied.

Xp = (M −N)
2
=
(
2

p−2
2 U − 2

p−2
2 V

)2
= 2p−2 (U − V )

2

22Xp
1 = (U − V )

2
(U > V )

2
√
Xp

1 = U − V ・・・1⃝

Zp = (M +N)
2
=
(
2

p−2
2 U + 2

p−2
2 V

)2
= 2p−2 (U + V )

2

22Zp
1 = (U + V )

2
(U > V )

2
√
Zp
1 = U + V ・・・2⃝

Xp
1 , Z

p
1 is a square number U ± V because it is a natural number.
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Xp
1 = (Xp

II)
2

Zp
1 = (Zp

II)
2

(Xp
II , Z

p
II ∈ N)

simultaneous equation: 1⃝± 2⃝

U = Zp
II +Xp

II V = Zp
II −Xp

II

If U, V is not a coprime, and a common divisor r( ∈ odd number).

U = Zp
II +Xp

II = rf ・・・3⃝
V = Zp

II −Xp
II = rg ・・・4⃝

(U, V ∈ odd number f, g ∈ odd number)

simultaneous equation: 3⃝± 4⃝

2Zp
II = r (f + g)

2Xp
II = r (f − g)

Xp
II , Z

p
II comprises a common divisor r. but Xp

II , Z
p
II must also be coprime

Xp
1 , Z

p
1 is coprime. Thus U, V is coprime.

Theorem 3 (Y p
1 = UV ) U, V is at a coprime, which is a power of a prime

number.

U = Up
II , V = V p

II Y p
1 = (UIIVII)

p

Substitute Up
II , V

p
II for 3⃝, 4⃝.

Up
II = Zp

II +Xp
II V p

II +Xp
II = Zp

II (2)

2.1.2 Conditions of (Y p
1 ∈ even number)

It is equivalent to Xp
1 because it is odd number.

MN = 2p−2Xp
1 = 2

l+m
2 UV (p = l+m

2 + 2 Xp
1 = UV )
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Proposition 4 xp + yp = zp

xp(or yp) and zp is a square number, both when this condition is satisfied.

Put e, f, c ∈ N prime number = p ≥ 3

ep + fp = c2p

Theorem 5

(a+ b)2 + (a− b)2 = 2(a2 + b2)

(M −N)
2
+ 22MN = (M +N)

2

Corollary 6

st =

(
(st)

1
2 (s− t)

s+ t

)2

+

(
2st

s+ t

)2

st =

(
s+ t

2

)2

−
(
s− t

2

)2

Put st = a+ b = M −N

a =

(
(st)

1
2 (s− t)

s+ t

)2

b =

(
2st

s+ t

)2

M =

(
s+ t

2

)2

N =

(
s− t

2

)2

・・・5⃝

Put 22MN = fp

(M −N)
2
= ep

(M +N)
2
= c2p

M −N = e
p
2 ・・・6⃝ M +N = cp ・・・7⃝

7⃝± 6⃝

M =
cp + e

p
2

2
N =

cp − e
p
2

2
・・・8⃝
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ep = (M −N)
2
= (st)

2
=

(
s2 + t2

2

)2

−
(
s2 − t2

2

)2

f
p
2 = a− b =

(
(st)

1
2 (s− t)

s+ t

)2

−
(

2st

s+ t

)2

=
st (s− t)

2 − 22 (st)
2

(s+ t)
2 ・・・9⃝

By referring to the 5⃝ and 8⃝,(
s+ t

2

)2

=
cp + e

p
2

2

(
s− t

2

)2

=
cp − e

p
2

2

s+ t

2
=

√
cp + e

p
2

2
・・・10⃝ s− t

2
=

√
cp − e

p
2

2
・・・11⃝

10⃝±11⃝

s =

√
cp + e

p
2

2
+

√
cp − e

p
2

2
t =

√
cp + e

p
2

2
−

√
cp − e

p
2

2

s2 =
cp + e

p
2

2
+

cp − e
p
2

2
+ 2

√
c2p − ep

22

= cp +
√
c2p − ep

t2 =
cp + e

p
2

2
+

cp − e
p
2

2
− 2

√
c2p − ep

22

= cp −
√
c2p − ep

s2 − t2 = 2
√

c2p − ep = 2f
p
2 s2 + t2 = 2cp ・・・12⃝

By referring to the 9⃝,12⃝,

f
p
2 =

st (s− t)
2 − 22 (st)

2

(s+ t)
2

=
st
(
s2 + t2 − 2st

)
− 22 (st)

2

s2 + t2 + 2st

=
e

p
2

(
2cp − 2e

p
2

)
− 22ep

2cp + 2e
p
2

=
e

p
2

(
cp − e

p
2

)
− 2ep

cp + e
p
2

=
e

p
2 cp − 3ep

cp + e
p
2
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fp =

(
e

p
2 cp − 3ep

cp + e
p
2

)2

= ep
(
cp − 3e

p
2

cp + e
p
2

)2

= ep

((
cp − 3e

p
2

) (
cp − e

p
2

)(
cp + e

p
2

) (
cp − e

p
2

) )2

= ep

((
cp − 3e

p
2

) (
cp − e

p
2

)
c2p − ep

)2

=
ep
(
c2p + 3ep − 4e

p
2 cp
)2

(c2p − ep)
2

=
ep

(c2p − ep)
2

((
c2p + 3ep

)2
+ 42epc2p − 2 · 4e

p
2 cp

(
c2p + 3ep

))
if fp, cp is a natural number, e must be a square number.

ep + fp = c2p ・・・14⃝

Corollary 7 When the following equation is satisfied, xp and zp is a square
number.

xp + yp = zp (x, y and z are disjoint.) (xp , yp , zp ∈ N)

And multiplied by zp to both sides.

zpxp + zpyp = z2p

By applying the 14⃝, since “zpxp” is also a square number,

xp = (xp
1)

2
, zp = (zp1)

2

(
x2
1

)p
+ yp =

(
z21
)p

(x1, y and z1 are disjoint.)

By referring to the (2),

Up
II = Zp

II +Xp
II V p

II +Xp
II = Zp

II

(2UII)
p
= (2ZII)

p
+ (2XII)

p
(2VII)

p
+ (2XII)

p
= (2ZII)

p

(2ZII)
p
< Zp = (2Z1)

p
(2XII)

p
< Xp = (2X1)

p

Thus the lemma has been shown.

xn + yn ̸= zn (xyz ̸= 0 n ≥ 3)

7


