
Fibonacci Quarternions 
By John Frederick Sweeney 

Abstract 

Pascal’s Triangle, originally Mount Meru of Vedic Physics, provides the perfect 
format for a combinatorial Universe, with its binomial coefficients, as well as 
its ease of determining Fibonacci Numbers. Matrix and Clifford algebras, in 
the form of the chart above, can be shaped into a form identical with Pascal’s 
Triangle. At the same time, a Romanian researcher has devised an algorithm 
for determining a Fibonacci Number as a quarternion. This paper poses the 
question as to whether the properties of Pascal's Triangle hold for a similar 
triangle constructed of Clifford Algebras. 
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Introduction 

Fibonacci  Numbers came into  Europe via  Italy and were  made known by 
Leonardo Fibonacci, who had translated them from Arabic into Italian. In the 
opinion of the author, the discovery of these numbers must be attributed to 
extremely ancient Hindu civilization, which is the source of most advanced 
mathematics in  the world.  Over  the  millennia,  this  Hindu math has slowly 
leaked from India and spread throughout  the world via translation into the 
languages of neighboring societies. 

In  its  desire  to  atomize  everything,  western  civilization  has  cut  off  the 
Fibonacci  Numbers  from Pisano Periodicity,  thereby giving  two  misleading 
names to mathematical concepts which should have never been separated in 
the first  place. Vedic Physics, the superior science of the remotely ancient 
past of 14,000 years ago, needs to be taught and learned in whole form, not 
chopped up piecemeal and lent out bit by bit to surrounding neighbors, but 
alas, such as proven the case. 

Now is the time to re – unite the various bits and pieces of Vedic Physics 
which  have leaked through to  the  west  and combine them into  a uniform 
whole which makes explicit sense as a complete theory. By so doing, it may 
prove possible to gain great advances in mathematical physics. 

This  paper,  based on the work  of  physicist  Frank “Tony”  Smith,  takes the 
heuristic construct of Pascal’s Triangle, to align matrix and Clifford Algebras, 
as Smith has done and as appears on a Wikipedia page. The paper then 
suggests that the same seemingly “magical” properties of Pascal’s Triangle 
hold true for the Clifford Algebra triangle. 

As events would transpire, Christina Flaut published a paper on the Archiv 
server a week before this idea arose with the author. This paper gives her  
version of Fibonacci Quarternions, and this paper adopts her introduction to 
demonstrate her algorithm. 
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Clifford Algebras 

In  mathematics,  Clifford  algebras are  a  type  of  associative  algebra.  As  K  -algebras  ,  they 
generalize  the  real  numbers,  complex  numbers,  quaternions and  several  other  hypercomplex 
number systems.[1][2] The theory of Clifford algebras is intimately connected with the theory of 
quadratic forms and orthogonal transformations. Clifford algebras have important applications in a 
variety of fields including  geometry,  theoretical physics and  digital image processing. They are 
named after the English geometer William Kingdon Clifford.

A Clifford algebra is a unital associative algebra that contains and 

is generated by a vector space V over a field K, where V is equipped 

with a quadratic form Q. The Clifford algebra Cℓ(V, Q) is the 
"freest" algebra generated by V subject to the condition[4]

where the product on the left is that of the algebra, and the 1 is 

its multiplicative identity.

The definition of a Clifford algebra endows it with more structure 

than a "bare" K  -algebra  : specifically it has a designated or 

privileged subspace that is isomorphic to V. Such a subspace cannot 

in general be uniquely determined given only a K-algebra isomorphic 

to the Clifford algebra.

If the characteristic of the ground field K is not 2, then one can 

rewrite this fundamental identity in the form

where

is the symmetric bilinear form associated with Q, via the 

polarization identity. The idea of being the "freest" or "most 

general" algebra subject to this identity can be formally expressed 

through the notion of a universal property, as done below.
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Quadratic forms and Clifford algebras in characteristic 2 form an 

exceptional case. In particular, if char(K) = 2 it is not true that a 

quadratic form determines a symmetric bilinear form, or that every 

quadratic form admits an orthogonal basis. Many of the statements in 

this article include the condition that the characteristic is not 2, 

and are false if this condition is removed.

As a quantization of the exterior algebra[edit]

Clifford algebras are closely related to exterior algebras. In fact, 

if Q = 0 then the Clifford algebra Cℓ(V, Q) is just the exterior 
algebra Λ(V). For nonzero Q there exists a canonical linear 

isomorphism between Λ(V) and Cℓ(V, Q) whenever the ground field K 
does not have characteristic two. That is, they are naturally 

isomorphic as vector spaces, but with different multiplications (in 

the case of characteristic two, they are still isomorphic as vector 

spaces, just not naturally). Clifford multiplication together with 

the privileged subspace is strictly richer than the exterior product 

since it makes use of the extra information provided by Q.

More precisely, Clifford algebras may be thought of as quantizations 

(cf. Quantum group) of the exterior algebra, in the same way that the 

Weyl algebra is a quantization of the symmetric algebra.

Weyl algebras and Clifford algebras admit a further structure of a *-

algebra, and can be unified as even and odd terms of a superalgebra, 

as discussed in CCR and CAR algebras.

Universal property and construction[edit]

Let V be a vector space over a field K, and let Q: V → K be a 

quadratic form on V. In most cases of interest the field K is either 

the field of real numbers R, or the field of complex numbers C, or a 

finite field.

A Clifford algebra Cℓ(V, Q) is a unital associative algebra over K 
together with a linear map i : V → Cℓ(V, Q) satisfying i(v)2 = Q(v)1 

for all v ∈ V, defined by the following universal property: given 

any associative algebra A over K and any linear map j : V → A such 

that

j(v)2 = Q(v)1A for all v ∈ V
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(where 1A denotes the multiplicative identity of A), there is a 

unique algebra homomorphism f : Cℓ(V, Q) → A such that the following 

diagram commutes (i.e. such that f ∘ i = j):

Working with a symmetric bilinear form <·,·> instead of Q (in 

characteristic not 2), the requirement on j is

A Clifford algebra as described above always exists and can be 

constructed as follows: start with the most general algebra that 

contains V, namely the tensor algebra T(V), and then enforce the 

fundamental identity by taking a suitable quotient. In our case we 

want to take the two-sided ideal IQ in T(V) generated by all elements 

of the form

for all 

and define Cℓ(V, Q) as the quotient algebra

Cℓ(V, Q) = T(V)/IQ.

The ring product inherited by this quotient is sometimes referred to 

as the Clifford product[5] to differentiate it from the inner and 

outer products.

It is then straightforward to show that Cℓ(V, Q) contains V and 
satisfies the above universal property, so that Cℓ is unique up to a 
unique isomorphism; thus one speaks of "the" Clifford algebra Cℓ(V, 
Q). It also follows from this construction that i is injective. One 

usually drops the i and considers V as a linear subspace of Cℓ(V, Q).

The universal characterization of the Clifford algebra shows that the 

construction of Cℓ(V, Q) is functorial in nature. Namely, Cℓ can be 
considered as a functor from the category of vector spaces with 

quadratic forms (whose morphisms are linear maps preserving the 

quadratic form) to the category of associative algebras. The 

universal property guarantees that linear maps between vector spaces 
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(preserving the quadratic form) extend uniquely to algebra 

homomorphisms between the associated Clifford algebras.

Basis and dimension

If the dimension of V is n and {e1, …, en} is a basis of V, then the 

set

is a basis for Cℓ(V, Q). The empty product (k = 0) is defined as the 
multiplicative identity element. For each value of k there are n 

choose   k   basis elements, so the total dimension of the Clifford 

algebra is

Since V comes equipped with a quadratic form, there is a set of 

privileged bases for V: the orthogonal ones. An orthogonal basis is 

one such that

where ⟨·,·⟩ is the symmetric bilinear form associated to Q. The 
fundamental Clifford identity implies that for an orthogonal basis

This makes manipulation of orthogonal basis vectors quite simple. 

Given a product of distinct orthogonal basis vectors of 

V, one can put them into standard order while including an overall 

sign determined by the number of pairwise swaps needed to do so (i.e. 

the signature of the ordering permutation).
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Examples: real and complex Clifford algebras

The most important Clifford algebras are those over real and complex 

vector spaces equipped with nondegenerate quadratic forms.

It turns out that every one of the algebras Cℓp,q(R) and Cℓn(C) is 

isomorphic to A or A⊕A, where A is a full matrix ring with entries 

from R, C, or H. For a complete classification of these algebras see 

classification of Clifford algebras.

Real numbers

The geometric interpretation of real Clifford algebras is known as 

geometric algebra.

Every nondegenerate quadratic form on a finite-dimensional real 

vector space is equivalent to the standard diagonal form:

where n = p + q is the dimension of the vector space. The pair of 

integers (p, q) is called the signature of the quadratic form. The 

real vector space with this quadratic form is often denoted Rp, q. The 

Clifford algebra on Rp, q is denoted Cℓp, q(R). The symbol Cℓn(R) means 

either Cℓn,0(R) or Cℓ0,n(R) depending on whether the author prefers 

positive definite or negative definite spaces.

A standard orthonormal basis {ei} for Rp,q consists of n = p + q 

mutually orthogonal vectors, p of which have norm +1 and q of which 

have norm −1. The algebra Cℓp,q(R) will therefore have p vectors that 

square to +1 and q vectors that square to −1.

Note that Cℓ0,0(R) is naturally isomorphic to R since there are no 

nonzero vectors. Cℓ0,1(R) is a two-dimensional algebra generated by a 

single vector e1 that squares to −1, and therefore is isomorphic to 
C, the field of complex numbers. The algebra Cℓ0,2(R) is a four-

dimensional algebra spanned by {1, e1, e2, e1e2}. The latter three 

elements square to −1 and all anticommute, and so the algebra is 
isomorphic to the quaternions H. Cℓ0,3(R) is an 8-dimensional algebra 

isomorphic to the direct sum H ⊕ H called split-biquaternions.
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Fibonacci Clifford Algebras 
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Pascal Triangle of Clifford Algebras 
(Wikipedia) 

Of all matrix ring types mentioned, there is only one type shared between 
complex and real algebras: the type C(2m). 

For example, Cℓ2(C) and Cℓ3,0(R) are determined as C(2). There is a difference 
in the classifying isomorphisms used. 

Since Cℓ2(C) algebra is isomorphic via a C-linear map (which is necessarily R-
linear), and Cℓ3,0(R) algebra is isomorphic via an R-linear map, 

Then: Cℓ2(C) and Cℓ3,0(R) are R-algebra isomorphic.

A table of this classification for p + q ≤ 8 follows: Here p + q 

runs vertically and p  − q runs horizontally (e.g. the algebra 

Cℓ1,3(R) ≅ M2(H) is found in row 4, column 2).−
8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8

0 R
1 R2 C
2 M2(R) M2(R) H
3 M2(C) M2

2(R) M2(C) H2

4 M2(H) M4(R) M4(R) M2(H) M2(H)

5 M2
2(H) M4(C) M4

2(R) M4(C) M2
2(H) M4(C)

6 M4(H) M4(H) M8(R) M8(R) M4(H) M4(H) M8(R)

7 M8(C) M4
2(H) M8(C) M8

2(R) M8(C) M4
2(H) M8(C) M8

2(R)

8 M16(R) M8(H) M8(H) M16(R) M16(R) M8(H) M8(H) M16(R) M16(R)

 
ω2 + − − + + − − + + − − + + − − + +

Symmetries
There is a tangled web of symmetries and relationships in the above table.

Going over 4 spots in any row yields an identical algebra.

From these Bott periodicity follows:

If the signature satisfies p − q ≡ 1 (mod 4) then

(The table is symmetric about columns with signature 1, 5, −3, −7, and so 
forth.) Thus if the signature satisfies p − q ≡ 1 (mod 4),
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The Fibonacci Series is found in Pascal’s 
Triangle

Pascal’s Triangle, developed by the French Mathematician Blaise Pascal, is 
formed by starting with an apex of 1.  Every number below in the triangle is 
the sum of the two numbers diagonally above it to the left and the right, with 
positions outside the triangle counting as zero.

The numbers on diagonals of the triangle add to the Fibonacci series, as 
shown below.

Pascal’s triangle has many unusual properties and a variety of uses:

• Horizontal rows add to powers of 2 (i.e., 1, 2, 4, 8, 16, etc.)

• The horizontal rows represent powers of 11 (1, 11, 121, 1331, etc.)

• Adding any two successive numbers in the diagonal 1-3-6-10-15-21-
28… results in a perfect square (1, 4, 9, 16, etc.)
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Conclusion 

Christina  Flauta  has found a single  Clifford  Algebra  with  a relation  to  the 
Fibonacci Numbers. In an email to Ms. Flauta, the author attempted to draw 
links between her work and the Clifford Algebra triangle, to no avail. 

The Wiki  description of  the Clifford Pyramid indicates that  the author  was 
aware of special properties therein. This paper suggests that there may exist  
many more such special properties, which require further research. 

It lies beyond the scope of this paper to perform the calculations necessary to 
prove that the properties of Pascal’s Triangle pertain to the Clifford Algebra 
triangle. We leave that as a task for the reader, in the hope that this heuristic 
suggestion will lead to further insights into Clifford Algebras. 
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Appendix 

where M(n, C) denotes the algebra of n×n matrices over C.

Cℓ0(R) R Real Numbers Cℓ0,0(R)  is  naturally  isomorphic 
to R since there are no nonzero 
vectors.

Cℓ0(C) ≅ C Complex 
Numbers

Cℓ0,1(R)  is  a  two-dimensional 
algebra  generated  by  a  single 
vector  e1 that  squares  to  −1, 
and  therefore  is  isomorphic  to 
C,  the  field  of  complex 
numbers.

Cℓ1(C) ≅ C ⊕ C Bi-complex 
numbers

Cℓ2(C) ≅ M(2, C) Bi Quarternions Pauli Matrices 

Cℓ2(R) ≅ Quarternions Cℓ0,2(R)  is  a  four-dimensional 
algebra spanned by {1,  e1,  e2, 
e1e2}. The latter three elements 
square  to  −1  and  all 
anticommute,  and  so  the 
algebra  is  isomorphic  to  the 
quaternions H

Cℓ3(R) ≅ Split 
Bi - Quarternions

Cℓ0,3(R)  is  an  8-dimensional 
algebra isomorphic to the direct 
sum H  ⊕ H called  split-
biquaternions.

Cℓ5(C) ≅
Cℓ6(C) ≅
Cℓ7(C) ≅

In abstract algebra, the biquaternions are the numbers w + x i + y j + z k, 
where w, x, y, and z are complex numbers and the elements of {1, i, j, k} 
multiply as in the quaternion group. As there are three types of complex 
number, so there are three types of biquaternion:

• (Ordinary) biquaternions when the coefficients are (ordinary) complex 
numbers

• Split-biquaternions   when w, x, y, and z are split-complex numbers
• Dual quaternions   when w, x, y, and z are dual numbers.

This article is about the ordinary biquaternions named by William Rowan 
Hamilton in 1844 (see Proceedings of Royal Irish Academy 1844 & 1850 page 
388). Some of the more prominent proponents of these biquaternions include 
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Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius 
Lanczos. As developed below, the unit quasi-sphere of the biquaternions 
provides a presentation of the Lorentz group, which is the foundation of 
special relativity.

The algebra of biquaternions can be considered as a tensor product C ⊗ H 
(taken over the reals) where C is the field of complex numbers and H is the 
algebra of (real) quaternions. In other words, the biquaternions are just the 
complexification of the (real) quaternions. Viewed as a complex algebra, the 
biquaternions are isomorphic to the algebra of 2×2 complex matrices M2(C). 
They can be classified as the Clifford algebra Cℓ2(C) = Cℓ0

3(C). This is also 
isomorphic to the Pauli algebra Cℓ3,0(R), and the even part of the spacetime 
algebra Cℓ0

1,3(R).

Subalgebras

Considering the biquaternion algebra over the scalar field of real numbers R, 
the set {1, h, i, hi, j, hj, k, hk } forms a basis so the algebra has eight real 
dimensions. Note the squares of the elements hi, hj, and hk are all plus one, 
for example,

Then the subalgebra given by is ring isomorphic to 

the plane of split-complex numbers, which has an algebraic structure built 
upon the unit hyperbola. The elements hj and hk also determine such 

subalgebras. Furthermore, is a subalgebra isomorphic 

to the tessarines.

A third subalgebra called coquaternions is generated by hj and hk. First note 
that (hj)(hk) = (−1) i, and that the square of this element is −1. These elements 
generate the dihedral group of the square. The linear subspace with basis {1, 
i, hj, hk} thus is closed under multiplication, and forms the coquaternion 
algebra.

In the context of quantum mechanics and spinor algebra, the biquaternions hi, 
hj, and hk (or their negatives), viewed in the M(2,C) representation, are called 
Pauli matrices.
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Contact 
The author may be contacted at jaq 2013 at outlook dot com 

Some men see things as they are and say why? I dream things that 
never were and say why not?

Let's dedicate ourselves to what the Greeks wrote so many years ago: 

to tame the savageness of man and make gentle the life of this world.

Robert Francis Kennedy
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