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We discuss whether the Stern-Gerlach experiment accepts hidden-variables theories. We discuss
that the existence of two spin-1/2 pure states | ↑〉 and | ↓〉 rules out the existence of probability
space of specific quantum measurement. If we detect | ↑〉, then measurement outcome is +1. If
we detect | ↓〉, then measurement outcome is −1. This hidden-variables theory does not accept
the transition probability |〈↑ | ↓〉|2 = 0. Therefore we have to give up the hidden-variables theory.
This implies the Stern-Gerlach experiment cannot accept the specific hidden-variables theory. And
we study whether quantum phase factor accepts hidden-variables theories. We use the transition
probability for two spin-1/2 pure states (| ↑〉+ | ↓〉)/

√
2 and (| ↑〉+ eiθ| ↓〉)/

√
2. It is cos2(θ/2). We

discuss that the phase factor does not accept another specific hidden-variables theory. We explore
the phase factor is indeed a quantum effect, not classical. Our research gives a new insight to the
quantum information processing which relies on quantum phase factor, such as Deutsch’s algorithm.
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I. INTRODUCTION

As a famous physical theory, the quantum theory (cf.
[1—5]) gives accurate and at times remarkably accurate
numerical predictions. Much experimental data has fit
to the quantum predictions for long time.

On the other hand, from the incompleteness argument
of Einstein, Podolsky, and Rosen (EPR) [6], hidden-
variables interpretation of the quantum theory has been
an attractive topic of research [2, 3].

Leggett-type non-local hidden-variables theory [7] is
experimentally investigated [8—10]. The experiments re-
port that the quantum theory does not accept Leggett-
type non-local hidden-variables theory. These experi-
ments are done in four-dimensional space (two parties) in
order to study nonlocality of hidden-variables theories.

Recently, it is shown that the two expected values of a
spin-1/2 pure state 〈σx〉 and 〈σy〉 rule out the existence
of the actually measured results of von Neumann’s pro-
jective measurement [11, 12]. More recently, it is also
shown that the expected value of a spin-1/2 pure state
〈σx〉 rules out the existence of the actually measured re-
sults of von Neumann’s projective measurement [13].

Many researches address non-classicality of observ-
ables. And non-classicality of quantum state itself is
not investigated very much (however see [14]). Here we
ask: Can the Stern-Gerlach experiment accept hidden-
variables theories? Surprisingly the Stern-Gerlach ex-
periment cannot accept specific hidden-variables theory.

We try to implement the Stern-Gerlach experiment.
The Stern-Gerlach experiment, named after German
physicists Otto Stern and Walther Gerlach, is an impor-
tant experiment in quantum mechanics on the deflection
of particles. This experiment, performed in 1922, is often
used to illustrate basic principles of quantum mechan-
ics. It can be used to demonstrate that electrons and
atoms have intrinsically quantum properties, and how

measurement in quantum mechanics affects the system
being measured.

We see a single spin-1/2 pure state is used in quan-
tum computation, quantum cryptography and so on. As
for quantum computation, we are inputting non-classical
information into quantum computer. As for quantum
cryptography, we are exchanging non-classical informa-
tion. Further, in various quantum information process-
ing, we control quantum state by means of Pauli observ-
ables, which are non-classical. This manuscript gives new
and important insight to quantum information theory,
which can be implemented only by non-classical devices.

On the other hand, in quantum mechanics, a phase
factor is a complex coefficient eiθ that multiplies a ket
|ψ〉 or bra 〈φ|. It does not, in itself, have any physical
meaning, since the introduction of a phase factor does not
change the expectation values of a Hermitian operator.
That is, the values of 〈φ|A|φ〉 and 〈φ|e−iθAeiθ|φ〉 are the
same. However, differences in phase factors between two
interacting quantum states can sometimes be measurable
(such as in the Berry phase) and this can have important
consequences. In optics, the phase factor is an important
quantity in the treatment of interference.

We discuss that a quantum phase factor does not ac-
cept another specific hidden-variables theory. Thus, we
explore the phase factor is indeed a quantum effect,
not classical. Our research gives a new insight to the
quantum information processing which relies on quan-
tum phase factor, such as Deutsch’s algorithm.

In this paper, we discuss whether the Stern-Gerlach
experiment accepts hidden-variables theories. We dis-
cuss that the existence of two spin-1/2 pure states | ↑〉
and | ↓〉 rules out the existence of probability space of
specific quantum measurement. If we detect | ↑〉, then
measurement outcome is +1. If we detect | ↓〉, then mea-
surement outcome is −1. This hidden-variables theory
does not accept the transition probability |〈↑ | ↓〉|2 = 0.
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Therefore we have to give up the hidden-variables theory.
This implies the Stern-Gerlach experiment cannot accept
the specific hidden-variables theory. A single spin-1/2
pure state (e.g., | ↑〉〈↑ |) is a single one-dimensional pro-
jector. In other word, a single one-dimensional projec-
tor does not have a counterpart in such physical reality,
in general. The one-dimensional projectors | ↑〉〈↑ | and
| ↓〉〈↓ | are commuting with each other. Our discussion
shows that we cannot assign the specific definite values
(+1 and −1) to the two commuting operators, simulta-
neously. And we study whether quantum phase factor
accepts hidden-variables theories. We use the transition
probability for two spin-1/2 pure states (| ↑〉 + | ↓〉)/

√
2

and (| ↑〉+ eiθ| ↓〉)/
√
2. It is cos2(θ/2). We discuss that

the phase factor does not accept another specific hidden-
variables theory. We explore the phase factor is indeed a
quantum effect, not classical. Our research gives a new
insight to the quantum information processing which re-
lies on quantum phase factor, such as Deutsch’s algo-
rithm.

II. THE STERN-GERLACH EXPERIMENT

AND HIDDEN-VARIABLES THEORIES

Let σz be Pauli observable of z-axis. We consider two
quantum states | ↑〉 and | ↓〉, which can be described as
an eigenvector of Pauli observable σz.

We consider a quantum expected value (the transition
probability) as

|〈↑ | ↓〉|2 = 0. (1)

We introduce specific hidden-variables theory for the
quantum expected value of the transition probability.
Then, the quantum expected value given in (1) can be

|〈↑ | ↓〉|2 =
∫
dλρ(λ)f(λ). (2)

We introduce specific quantum measurement as follows.
The possible values of f(λ) are ±1 (in �/2 unit). If a
particle passes one side, then the value of the result of
measurement is +1. If a particle passes through another
side, then the value of the result of measurement is −1.

We have the following from the formalism of the spe-
cific quantum measurement

−1 ≤
∫
dλρ(λ)f(λ) ≤ +1. (3)

Thus, we can assign the truth value “1” for the propo-
sition (2). Assume the proposition (2) is true. We have
the same quantum expected value

|〈↑ | ↓〉|2 =
∫
dλ′ρ(λ′)f(λ′). (4)

An important note here is that the value of the right-
hand-side of (2) is equal to the value of the right-hand-
side of (4) because we only change the label. Thus, we
can assign the truth value “1” for the proposition (4).

We derive a necessary condition for the quantum ex-
pected value given in (2). We derive the possible value of
the product |〈↑ | ↓〉|4δ(λ − λ′) of the quantum expected
value and a delta function. The quantum expected value
is |〈↑ | ↓〉|2 given in (2). We have

|〈↑ | ↓〉|4δ(λ− λ′)

=

∫
dλρ(λ)f(λ)×

∫
dλ′ρ(λ′)f(λ′)δ(λ− λ′)

=

∫
dλρ(λ)

∫
dλ′ρ(λ′)f(λ)f(λ′)δ(λ− λ′)

=

∫
dλρ(λ)(f(λ))2

=

∫
dλρ(λ) = 1. (5)

Here we use the fact

(f(λ))2 = 1 (6)

since the possible values of f(λ) are ±1. Hence we derive
the following proposition if we assign the truth value “1”
for the two propositions (2) and (4), simultaneously.

|〈↑ | ↓〉|4δ(λ− λ′) = 1. (7)

We derive a necessary condition for the quantum ex-
pected value given in (1). We derive the possible value
of the product

|〈↑ | ↓〉|2 × |〈↑ | ↓〉|2 × δ(λ− λ′) = |〈↑ | ↓〉|4δ(λ− λ′). (8)

δ(λ − λ′) is the delta function. |〈↑ | ↓〉|2 is the quan-
tum expected value given in (1). We have the following
proposition since |〈↑ | ↓〉|2 = 0

|〈↑ | ↓〉|4δ(λ− λ′) = 0. (9)

We do not assign the truth value “1” for two propo-
sitions (7) and (9), simultaneously. We are in a contra-
diction. We give up assigning the truth value “1” for the
four propositions (2), (4), (7), and (9) simultaneously.
That is, we cannot assign the truth value “1” for the
four propositions simultaneously

• Proposition (2) concerning hidden-variables theory

• Proposition (4) concerning hidden-variables theory
with changing the label accepting proposition (2)

• Proposition (7) concerning mathematical calcula-
tions accepting two propositions (2) and (4)

• Proposition (9) concerning quantum theory

Assume we give up proposition (2). We cannot assign
the specific definite values (+1 and −1) for the quan-
tum state | ↑〉 and for the quantum state | ↓〉 simul-
taneously. It turns out that the single spin-1/2 pure
state | ↑〉 and the single spin-1/2 pure state | ↓〉 does
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not have counterparts in such physical reality simultane-
ously. A single spin-1/2 pure state (e.g., | ↑〉〈↑ |) is a
single one-dimensional projector. In other word, a single
one-dimensional projector does not have a counterpart
in such physical reality, in general. The one-dimensional
projectors | ↑〉〈↑ | and | ↓〉〈↓ | are commuting with each
other. Our discussion shows that we cannot assign the
specific definite values (+1 and −1) to the two commut-
ing operators, simultaneously.

In sum, we give up the following situation

observable
︷ ︸︸ ︷
| ↑〉〈↑ | →

physical reality
︷︸︸︷
+1 and

observable
︷ ︸︸ ︷
| ↓〉〈↓ | →

physical reality
︷︸︸︷
−1 .

(10)

III. QUANTUM PHASE FACTOR AND

HIDDEN-VARIABLES THEORIES

We study whether quantum phase factor accepts an-
other hidden-variables theories. This discussion gives us
general result of the previous section. We use the transi-
tion probability for two spin-1/2 pure states

|0〉 = (| ↑〉+ | ↓〉)/
√
2,

|θ〉 = (| ↑〉+ eiθ| ↓〉)/
√
2 (11)

We consider the following transition probability

|〈0|θ〉|2 = cos2(θ/2). (12)

We introduce another specific hidden-variables theory
in order to explain the value of the transition probability.
Then, the transition probability given in (12) is

|〈0|θ〉|2 =
∫
dλρ(λ)f(λ). (13)

The possible values of f(λ) are ±1 (in �/2 unit).
We have the following from the formalism of the spe-

cific hidden-variables theory

−1 ≤
∫
dλρ(λ)f(λ) ≤ +1. (14)

Thus, we can assign the truth value “1” for the proposi-
tion (13). Assume the proposition (13) is true. We have
the same value of the transition probability

|〈0|θ〉|2 =
∫
dλ′ρ(λ′)f(λ′). (15)

An important note here is that the value of the right-
hand-side of (13) is equal to the value of the right-hand-
side of (15) because we only change the label. Thus, we
can assign the truth value “1” for the proposition (15).

We derive a necessary condition for the transition prob-
ability given in (13). We derive the possible value of the
product

|〈0|θ〉|2 × |〈0|θ〉|2 × δ(λ− λ′) (16)

where δ(λ− λ′) is a delta function. We have

|〈0|θ〉|4δ(λ− λ′)

=

∫
dλρ(λ)f(λ)×

∫
dλ′ρ(λ′)f(λ′)δ(λ− λ′)

=

∫
dλρ(λ)

∫
dλ′ρ(λ′)f(λ)f(λ′)δ(λ− λ′)

=

∫
dλρ(λ)(f(λ))2

=

∫
dλρ(λ) = 1. (17)

Here we use the fact

(f(λ))2 = 1 (18)

since the possible value of f(λ) is ±1. Hence we derive
the following proposition if we assign the truth value “1”
for the two propositions (13) and (15), simultaneously

|〈0|θ〉|4δ(λ− λ′) = 1. (19)

We derive a necessary condition for the transition prob-
ability given in (12). We derive the possible value of the
product

|〈0|θ〉|2 × |〈0|θ〉|2 × δ(λ− λ′). (20)

δ(λ − λ′) is the delta function. We have the following
proposition since the transition probability is cos2(θ/2)

|〈0|θ〉|4δ(λ− λ′) = cos4(θ/2)δ(λ− λ′). (21)

We do not assign the truth value “1” for two propo-
sitions (19) and (21), simultaneously. We are in a con-
tradiction. We have to give up assigning the truth value
“1” for the four propositions (13), (15), (19), and (21) si-
multaneously. That is, we cannot assign the truth value
“1” for the four propositions simultaneously

• Proposition (13) concerning hidden-variables the-
ory

• Proposition (15) concerning hidden-variables the-
ory with changing the label accepting proposition
(13)

• Proposition (19) concerning mathematical calcula-
tions accepting two propositions (13) and (15)

• Proposition (21) concerning quantum theory

Assume we give up proposition (13) and we accept quan-
tum theory. We have to give up the hidden-variables the-
ory in order to explain the value of the transition prob-
ability cos2(θ/2). Thus, the quantum phase factor does
not accept the specific hidden-variables theory. In the
case that

θ = π (22)
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we get the result of the previous section.
In short, we give up the following general situation

observable︷ ︸︸ ︷
|0〉〈0| →

physical reality
︷︸︸︷
+1 and

observable︷ ︸︸ ︷
|θ〉〈θ| →

physical reality
︷︸︸︷
−1 .

(23)

IV. CONCLUSIONS

In conclusions, we have discussed whether Stern-
Gerlach experiment accepts hidden-variables theories.
We have discussed that the existence of two spin-1/2
pure states | ↑〉 and | ↓〉 rules out the existence of prob-
ability space of specific quantum measurement. If we
detect | ↑〉, then measurement outcome has been +1.
If we detect | ↓〉, then measurement outcome has been
−1. This hidden-variables theory has not accepted the
transition probability |〈↑ | ↓〉|2 = 0. Therefore we have
had to give up the hidden-variables theory. This has

implied the Stern-Gerlach experiment cannot accept the
specific hidden-variables theory. A single spin-1/2 pure
state (e.g., | ↑〉〈↑ |) has been a single one-dimensional pro-
jector. In other word, a single one-dimensional projector
does not have had a counterpart in such physical real-
ity, in general. The one-dimensional projectors | ↑〉〈↑ |
and | ↓〉〈↓ | have been commuting with each other. Our
discussion has shown that we cannot assign the specific
definite values (+1 and −1) to the two commuting op-
erators, simultaneously. And we have studied whether
quantum phase factor accepts hidden-variables theories.
We have used the transition probability for two spin-1/2

pure states (| ↑〉+ | ↓〉)/
√
2 and (| ↑〉+eiθ| ↓〉)/

√
2. It has

been cos2(θ/2). We have discussed that the phase factor
does not accept another specific hidden-variables theory.
We have explored the phase factor is indeed a quantum
effect, not classical. Our research has given a new in-
sight to the quantum information processing which relies
on quantum phase factor, such as Deutsch’s algorithm.
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