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Abstract

The methodology of today’s theoretical physics consists in introducing

first all known forces by separate definitions independent of their origin, ar-

riving then to quantum mechanics after postulating the particle’s wave, and

is then followed by attempts to infer interactions of particles and fields pos-

tulating the invariance of the wave equation under gauge transformations,

allowing the addition of minimal substitutions.

The origin of the limitations of our standard theoretical model is the

assumption that the energy of a particle is concentrated at a small volume

in space. The limitations are bridged by introducing artificial objects and

constructions like particles wave, gluons, strong force, weak force, gravitons,

dark matter, dark energy, big bang, etc.

The proposed approach models subatomic particles such as electrons

and positrons as focal points in space where continuously fundamental par-

ticles are emitted and absorbed, fundamental particles where the energy

of the electron or positron is stored as rotations defining longitudinal and

transversal angular momenta (fields). Interaction laws between angular mo-

menta of fundamental particles are postulated in that way, that the basic

laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation, bend-

ing of particles and interference of photons, Bragg, etc.) can be derived

from the postulates. This methodology makes sure, that the approach is in

accordance with the basic laws of physics, in other words, with well proven

experimental data.

Due to the dynamical description of the particles the proposed approach

has not the limitations of the standard model and is not forced to introduce

artificial objects or constructions.

odomann@yahoo.com
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1 Introduction.

An axiomatic approach was used for the deduction of the “Emission & Regeneration”

Field Theory. To find the laws of interactions between the angular momenta of Fun-

damental Particles (FPs) a recursive procedure was followed until the well proven laws

of physics, which describe the forces between particles, were obtained.

Fig. 1 shows shematically the difference between the proposed approach and the

mainstream theory.

Interactions between
fundamental particles

                               Basic laws (Coulomb, Ampere, 
                               Lorentz, Maxwell, Gravitation)

Particle wave postulate (de Broglie)

Quantum mechanics (Schroedinger)
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Figure 1: Methodology followed by the present approach

The approach is based on the following main conceptual steps:

The energy of an electron or positron is modeled as being distributed in the space

around the particle‘s radius ro and stored in fundamental particles (FPs) with longitu-

dinal and transversal angular momenta. FPs are emitted continuously with the speed

ve s̄e and regenerate the electron or positron continuously with the speed vr s̄. There

are two types of FPs, one type that moves with light speed and the other type that
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moves with nearly infinite speed relative to the focal point of the electron or positron.

The concept is shown in Fig. 2.
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Figure 2: Particle as focal point in space

Electrons and positrons emit and are regenerated always by different types of FPs

(see sec. 18) resulting the accelerating and decelerating electrons and positrons which

have respectively regenerating FPs with light and infinite speed.

The density of FPs around the particle‘s radius ro has a radial distribution and

follows the inverse square distance law.

The concept is shown in Fig. 3

Field magnitudes dH̄ are defined as square roots of the energy stored in the FPs.

Interaction laws between the fields dH̄ of electrons and positrons are defined to obtain

pairs of opposed angular momenta J̄n on their regenerating FPs, pairs that generate

linear momenta p̄FP responsible for the forces.

Based on the conceptual steps, equations for the vector fields dH̄ are obtained

that allow the deduction of all experimentally proven basic laws of physics, namely,

Coulomb, Ampere, Lorentz, Gravitation, Maxwell, Bragg, Stern Gerlach and the flat-

tening of galaxies’ rotation curve.

Note: In this approach

Basic Subatomic Particles (BSPs) are:

• for v < c the electron and the positron

• for v = c the neutrino
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Figure 3: Regenerating Fundamental Particles of a BSP

Complex Subatomic Particles (CSPs) are:

• for v < c the proton, the neutron and nuclei of atoms.

• for v = c the photon.

BSPs and CSPs with speeds v < c emit and are regenerated by FPs that are

provided by the emissions of other BSPs and CSPs with speeds v < c.

BSPs and CSPs with v = c don’t emit and are not regenerated by FPs and move

therefore independent from other particles.

2 Space distribution of the energy of basic sub-

atomic particles.

The total energy of a basic subatomic particle (BSP) with constant v 6= c is

E =
√
E2
o + E2

p Eo = m c2 Ep = p c p =
m v√
1− v2

c2

(1)

The total energy E = Ee is split in

Ee = Es + En with Es =
E2
o√

E2
o + E2

p

and En =
E2
p√

E2
o + E2

p

(2)
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and differential emitted dEe and regenerating dEs and dEn energies are defined

dEe = Ee dκ = ν Je dEs = Es dκ = ν Js dEn = En dκ = ν Jn (3)

with the distribution equation

dκ =
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
(4)

The distribution equation dκ gives the part of the total energy of a BSP moving

with v 6= c contained in the differential volume dV = dr rdϕ r sinϕ dγ.

The concept is shown in Fig. 4.
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Figure 4: Unit vector s̄e for an emitted FP and unit vectors s̄ and n̄
for a regenerating FP of a BSP moving with v 6= c

The differential energies are stored as rotations in the FPs which define the longi-

tudinal angular momenta J̄e = Je s̄e of emitted FPs and the longitudinal J̄s = Js s̄

and transversal J̄n = Jn n̄ angular momenta of regenerating FPs (see also Fig. 2).

The rotation sense in moving direction of emitted longitudinal angular momenta

J̄e defines the sign of the charge of a BSP. Rotation senses of J̄e and J̄s are always

opposed. The direction of the transversal angular momentum J̄n is the direction of a

right screw that advances in the direction of the velocity v and is independent of the

sign of the charge of the BSP.

Conclusion: The elementary charge is replaced by the energy (or mass) of a resting

electron (Ee = 0.511 MeV ). The charge of a complex SP (e.g. proton) is given by the

difference between the constituent numbers of BSPs with positive J̄
(+)
e and negative

J̄
(−)
e that integrate the complex SP, multiplied by the energy of a resting electron. As
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examples we have for the proton with n+ = 919 and n− = 918 and a binding energy

of EBprot = −0.43371 MeV a charge of (n+ − n−) ∗ 0.511 = 0.511 MeV , and for the

neutron with n+ = 919 and n− = 919 and a binding energy of EBneutr = 0.34936 MeV

a charge of (n+ − n−) ∗ 0.511 = 0.0 MeV .

The unit of the charge thus is the Joule (or kg). The conversion from the electric

current Ic (Ampere) to the mass current Im is given by

Im =
m

q
Ic = 5, 685631378 · 10−12 Ic

[
kg

s

]
(5)

with m the electron mass in kilogram and q the elementary charge in Coulomb.

Note: The Lorentz invariance of the charge from today’s theory has its equivalent in

the invariance of the difference between the constituent numbers of BSPs with positive

J̄
(+)
e and negative J̄

(−)
e that integrate the complex SP, multiplied by the energy of a

resting electron. In the present paper the denomination charge will be used according

the previous definition.

3 Definition of the field magnitudes dHs and dHn.

The field dH at a point in space is defined as that part of the square root of the energy

of a BSP that is given by the distribution equation dκ. The differential values dE and

dH refere to the differential volume dV = dr r dϕ r sinϕ dγ (see also eq. (2)). For

the emitted field we have

dH̄e = He dκ s̄e with H2
e = Ee (6)

The longitudinal component of the regenerating field at a point in space is defined

as

dH̄s = Hs dκ s̄ with H2
s = Es =

E2
o√

E2
o + E2

p

(7)

The transversal component of the regenerating field at a point in space is defined

as

dH̄n = Hn dκ n̄ with H2
n = En =

E2
p√

E2
o + E2

p

(8)

For the total field magnitude He it is

H2
e = H2

s + H2
n with H2

e = Ee (9)
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The vector s̄e is an unit vector in the moving direction of the emitted FP (Fig.

4). The vector s̄ is an unit vector in the moving direction of the regenerating FP. The

vector n̄ is an unit vector transversal to the moving direction of the regenerating FP

and oriented according the right screw rule relative to the velocity v̄ of the BSP.

Conclusion: BSPs are structured particles with emitted and regenerating FPs

with longitudinal and transversal angular momenta. The rotation sense of the angular

momenta of the emitted FPs defines the sign of the charge of the BSP. The longitudinal

angular momenta of the regenerating FPs define the rest energy and the transversal

angular momenta of the regenerating FPs define the kinetic energy of the BSP.

4 Linear momentum generated out of opposed an-

gular momenta.

pd
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Figure 5: Generation of linear momentum out of opposed angular momenta
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Fig. 5 shows how the linear momentum dp is calculated out of the opposed angular

momenta J̄n and −J̄n for a single moving subatomic particle (SP). For the single

particle it is dp = 0 what means that p = mv is constant in time.

Two SPs interact trough the cross or scalar products of the angular momenta of

their FPs. For SP “1” and SP “2” we can write in a general form:

J ē =
√
J1 ē1 ×

√
J2 ē2 (10)

with ē the unit vector. With dEi = ν Ji = Ei dκi and Ei = Ei(v) and dκ =

dκ(ro, r, ϕ, γ) we get

dE ē =
√
E1 dκ1 ē1 ×

√
E2 dκ2 ē2 (11)

and with dHi =
√
Ei dκi we get

dE ē = dH1 ē1 × dH2 ē2 = dH̄ × dH̄2 (12)

We define that

dE
′

p ē =
√
E1

∫ ∞
ro

dκ1 ē1 ×
√
E2

∫ ∞
ro

dκ2 ē2 =

∫ ∞
ro

d̄H1 ×
∫ ∞
ro

d̄H2 (13)

and that

dEp =
1

2πR

∮
dE

′

p ē · dl̄ dp =
1

c
dEp dF =

dp

dt
(14)

Note: For the Coulomb interaction ēi = s̄i. For the Ampere interaction ēi = n̄i

and for the inductive interaction ē1 = n̄1 and ē2 = s̄2 and the cross product has to be

changed to the scalar product.

5 Interaction laws for field components and gener-

ation of linear momentum.

The interaction laws for the field components dH̄s and dH̄n are derived from the follow-

ing interaction postulates for the longitudinal J̄s and transversal J̄n angular momenta.

1) If two fundamental particles from two static BSPs cross, their longitudinal ro-

tational momenta Js generate the following transversal rotational momentum

J̄ (s)
n1

= − sign(J̄s1) sign(J̄s2) (
√
Js1 s̄1 ×

√
Js2 s̄2) (15)
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If both sides of eq. (15) are multiplied with
√
νs1 dκ1 and

√
νs2 dκ2, with νs the

rotational frequency, results the differential energy

dE(s)
n1

=
∣∣∣ √νs1 Js1 dκ1 s̄1 ×

√
νs2 Js2 dκ2 s̄2

∣∣∣ (16)

or

dE(s)
n1

= | dHs1 s̄1 × dHs2 s̄2 | with dHsi s̄i =
√
νsi Jsi dκi s̄i (17)

If at the same time two other fundamental particles from the same two static BSPs

generate a transversal rotational momentum −J̄ (s)
n1 , so that the components of the pair

are equal and opposed, the generated linear momentum on the two BSPs is

dp =
1

c
dE(s)

p with dE(s)
p =

∣∣∣∣∣
∫ ∞
rr1

dHs1 s̄1 ×
∫ ∞
rr2

dHs2 s̄2

∣∣∣∣∣ (18)

2) If two fundamental particles from two moving BSPs cross, their transversal

rotational momenta Jn generate the following rotational momentum.

J̄
(n)
1 = − sign(J̄s1) sign(J̄s2) (

√
Jn1 n̄1 ×

√
Jn2 n̄2) (19)

If both sides of the equation are multiplied with
√
νn1 dκ1 and

√
νn2 dκ2, with νn

the rotational frequency, and the absolute value is taken, it is

dE
(n)
1 = | dHn1 n̄1 × dHn2 n̄2 | with dHni

n̄i =
√
νni

Jni
dκi n̄i (20)

If at the same time two other fundamental particles from the same two moving

BSPs cross, and their transversal rotational momenta generate a rotational momentum

−J̄ ′(n)1 , so that the components of the pair are equal and opposed, the generated linear

momentum on the two BSPs is

dp =
1

c
dE(n)

p with dE(n)
p =

∣∣∣∣∣
∫ ∞
rr1

dHn1 n̄1 ×
∫ ∞
rr2

dHn2 n̄2

∣∣∣∣∣ (21)

3) If a FP 1 with an angular momentum J̄1 crosses with a FP 2 with a longitudinal

angular momentum J̄s2 , the orthogonal component of J̄1 to J̄s2 is transferred to the

FP 2, if at the same instant between two other FPs 3 and 4 an orthogonal component

is transferred which is opposed to the first one. (see Fig. 13)
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6 Fundamental equations for the calculation of lin-

ear momenta between subatomic particles.

The Fundamental equations for the calculation of linear momenta according to the

interaction postulates are:

a) The equation for the calculation of linear momentum between two static BSPs

according postulate 1) is

dpstat s̄R =
1

c

∮
R

{
d̄l · (s̄e1 × s̄s2)

2πR

∫ ∞
r1

He1 dκr1

∫ ∞
r2

Hs2 dκr2

}
s̄R (22)

where He1 dκr1 s̄e1 is the longitudinal field of the emitted FPs of particle 1 and

Hs2 dκr2 s̄s2 is the longitudinal field of the regenerating FPs of particle 2. The unit

vector s̄R is orthogonal to the plane that contains the closed path with radius R.

The linear momentum generated between two static BSPs is the origin of all move-

ments of particles. The law of Coulomb is deduced from eq. (22) and because of its

importance is analyzed in sec. 8.

b) The equation for the calculation of linear momentum between two moving BSPs

according to postulate 2) is

dpdyn s̄R =
1

c

∮
R

{
d̄l · (n̄1 × n̄2)

2πR

∫ ∞
r1

Hn1 dκr1

∫ ∞
r2

Hn2 dκr2

}
s̄R (23)

where Hn1 dκr1n̄1 is the transversal field of the regenerating FPs of particle 1 and

Hn2 dκr2n̄2 is the transversal field of the regenerating FPs of particle 2.

The laws of Lorentz, Ampere and Bragg are deduced from equation (23).

c) The equations for the calculation of the induced linear momentum between a

moving and a static probe BSPp according to postulate 3) are

dp
(s)
ind s̄R =

1

c

∮
R

{
d̄l · s̄
2πR

∫ ∞
rr

Hs dκrr

∫ ∞
rp

Hsp dκrp

}
s̄R (24)

dp
(n)
ind s̄R =

1

c

∮
R

{
d̄l · n̄
2πR

∫ ∞
rr

Hn dκrr

∫ ∞
rp

Hsp dκrp

}
s̄R (25)

The upper indexes (s) or (n) denote that the linear momentum d
′
pind on the static

probe BSPp (subindex sp) is induced by the longitudinal (s) or transversal (n) field

component of the moving BSP.

The Maxwell, gravitation and bending laws are deduced from equations (24) and

(25).

12



The total linear momentum for all equations is given by

p̄ =

∫
σ

dp s̄R (26)

where
∫
σ

symbolizes the integration over the whole space.

Conclusion: All forces can be expressed as rotors from the vector field dH̄ gener-

ated by the longitudinal and transversal angular momenta of the two types of funda-

mental particles defined in chapter 1.

dF̄ =
dp

dt
=

1

8 π

√
m ro rot

d

dt

∫ ∞
rr

dH̄ (27)

7 Force quantification and the radius of a BSPs.

The relation between the force and the linear momentum for all the fundamental equa-

tions of chapter 6 is given by

F̄ =
∆p

∆t
s̄R with ∆p = p− 0 = p (28)

The force is quantized in force quanta

F = ∆p ν with ν =
1

∆t
(29)

and ∆p the quantum of action.

The time ∆t between the two BSPs is defined as

∆t = K ro1 ro2 where K = 5.4271 · 104
[ s
m2

]
(30)

is a constant and ro1 and ro2 are the radii of the BSPs.

The constant K results when eqs. (22) and (23) are equalized respectively with the

Coulomb and the Ampere equations

Fstat =
1

4πεo

Q1 Q2

d 2
Fdyn =

µo
2π

I1 I2
d

(31)

The radius ro of a particle is given by

ro =
~ c
E

with E =
√
E2
o + E2

p for BSPs with v 6= c (32)

and

E = ~ω for BSPs with v = c (33)
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and is derived from the quantified far field of the irradiated energy of an oscillating

BSP [10].

8 Analysis of linear momentum between two static

BSPs.

In this section the static eq.(22) is analyzed in order to explain

• why BSPs of equal sign don’t repel in atomic nuclei

• how gravitation forces are generated

• why atomic nuclei radiate

Although the analysis is based only on the static eq.(22) for two BSPs, neglecting

the influence of the important dynamic eq.(23) that explains for instance the magnetic

moment of nuclei, it shows already the origin of the above listed phenomena.

With the integration limits shown in Fig. 6 and considering that for static BSPs it

is ro1 = ro2 = ro and m1 = m2 = m, the integration limits are

1 2

d

minj

maxj

1or
2or

1r2r
b

Figure 6: Integration limits for the calculation of the linear momentum
between two static basic subatomic particles at the distance d

ϕmin = arcsin
ro
d

ϕmax = π − ϕmin for d ≥
√
r2o + r2o (34)

ϕmin = arccos
d

2 ro
ϕmax = π − ϕmin for d <

√
r2o + r2o (35)

and eq.(22) transforms to

pstat =
m c r2o
4 d 2

∫ ϕ1max

ϕ1min

∫ ϕ2max

ϕ2min

| sin3(ϕ1 − ϕ2)| dϕ2 dϕ1 (36)
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The double integral becomes zero for d → 0 because the integration limits ap-

proximate each other taking the values ϕmin = π
2

and ϕmax = π
2
. For d � ro the

double integral becomes a constant because the integration limits tend to ϕmin = 0

and ϕmax = π.

Fig.7 shows the curve of eq.(22) where five regions can be identified with the help

of d/ro = γ from the integration limits: 

0
0
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0.4
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0.8

1

1.2

1.4

ord /=g1.0 8.1 1.2

2dµ

statp

0.518

//
//

d

1
µ

2d

1
µ

2310x -

Figure 7: Linear momentum pstat as function of γ = d/ro between two static
BSPs with maximum at γ = 2

1. From 0� γ � 0.1 where pstat = 0

2. From 0.1� γ � 1.8 where pstat ∝ d 2

3. From 1.8� γ � 2.1 where pstat ≈ constant

4. From 2.1� γ � 518 where pstat ∝ 1
d

5. From 518� γ �∞ where pstat ∝ 1
d 2 (Coulomb)

See also Fig. 9.

The first and second regions are where the BSPs that form the atomic nucleus

are confined and in a dynamic equilibrium. BSPs of different sign of charge don’t mix

15



in the nucleus because of the different signs their longitudinal angular momentum of

the emitted FPs have.

For BSPs that are in the first region, the attracting or repelling forces are zero

because the angle β between their longitudinal rotational momentum is β = π + ϕ1 −
ϕ2 = π . BSPs that migrate outside the first region are reintegrated or expelled with

high speed when their FPs cross with FPs of the remaining BSPs of the atomic nucleus

because the angle β < π.

Fig.8 shows two neutrons where at neutron 1 the migrated BSP ”b” is reintegrated,

inducing at neutron 2 the gravitational linear momentum according postulate 3) of sec

5.
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Figure 8: Transmission of momentum dp from neutron 1 to neutron 2

At stable nuclei all BSPs that migrate outside the first region are reintegrated, while

at unstable nuclei some are expelled in all possible combinations (electrons, positrons,

hadrons) together with neutrinos and photons maintaining the energy balance.

As the force described by eq. (25) induced on other particles during reintegration

has always the direction and sense of the reintegrating particle (right screw of J̄n)

independent of its charge, BSPs that are reintegrated induce on other atomic nuclei

the gravitation force. The inverse square distance law for the gravitation force results

from the inverse square distance law of the radial density of FPs that transfer their

angular momentum from the moving to the static BSPs according postulate 3) of sec.

5. Gravitation force is thus a function of the number of BSPs that migrate and are

reintegrated in the time ∆t (migration current), and the reintegration velocity.
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The third region gives the width of the tunnel barrier through which the ex-

pelled particles of atomic nuclei are emitted. As the reintegration process of BSPs that

migrate outside the first region depend on the special dynamic polarization of the re-

maining BSPs of the atomic nucleus, particles are not always reintegrated but expelled

when the special dynamic polarization is not fulfilled. The emission is quantized and

follows the exponential radioactive decay law.

The fourth region is a transition region to the Coulomb law.

The transition value γtrans = 518 to the Coulomb law was determined by comparing

the tangents of the Coulomb equation and the curve from Fig.7. At γtrans = 518 the

ratio of their tangents begin to deviate from 1.

At the transition distance dtrans, where γtrans = 518, the inverse proportionality to

the distance dtrans from the neighbor regions must give the same force Ftrans

Ftrans =
1

∆t

K
′

dtrans
=

1

∆t

K
′
F

d 2
trans

(37)

with K
′

and K
′
F the proportionality factors of the fourth and fifth regions.

The transition distance for BSPs (electron and positron) is:

dtrans = γtrans ro = γtrans
~ c
Eo

= 518 · 3.859 · 10−13 = 2.0 · 10−10 m (38)

which is of the order of the radii of neutral isolated atoms.

The fifth region is where the Coulomb law is valid.

The concept is shown in Fig. 9

wellPotential 

1 22 33 445 5

CoulombCoulomb Orbital
electronselectrons

Orbital

transd
transd

Figure 9: Potential well between BSPs
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9 Stern-Gerlach experiment and the spin of an elec-

tron

To explain the splitting of the atomic ray in the Stern-Gerlach experiment, electrons

were assigned an intrinsic spin with a quantized magnetic field that takes two positions,

up and down relative to an external magnetic field, although it is not possible to explain

how the intrinsic magnetic field is generated. The proposed approach with particles

as focal points of rays of FPs has also no posibility to explain how such an intrinsic

magnetic field could be generated.

An explanation is now given based on the E&R approach how the splitting of the

atomic ray in the Stern-Gerlach experiment is generated.
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Figure 10: Stern-Gerlach-experiment with an homogeneous magnetic field

We start with a homogeneous external magnetic field Hy.

The concept is shown in Fig. 10.

En electron with its transversal dHn field is moving along the z − axis out of the

paper-plane. The interaction between Hy and dHnx gives opposed angular momenta
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dHzy in the z direction which generate the momentum px. The interaction between

Hy and dHny does not generate opposed angular momenta because the cross product

is zero.

If a positron is used instead of an electron the momentum is −px. For a ray of

electrons and positrons we get the patern shown in the figure.

For an inhomogeneous magnetic field Hy the concept is shown in Fig. 11.
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Figure 11: Stern-Gerlach-experiment with an inhomogeneous magnetic field

The electron with its transversal dHn field is moving along the z − axis out of the

paper-plane. The interaction between Hy and dHnx gives opposed angular momenta
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dHzy in the z direction which generate the momentum px.

The interaction between Hy and dHny gives opposed angular momenta dHzx in the

z direction which generate the momentum py.

For a ray of electrons and positrons that move independently from each other (no

attraction between them) we get the patern shown in Fig. 11 which is similar to the

patern observed in the Stern-Gerlach experiment.

As a neutral atom is composed of iqual number of electrons and positrons (protons

and neutrons composed of electrons and positrons) which attract each other, a ray

of neutral atoms should not show deflections. But as the Hy and the dH fields are

quantizied (see sec. 20), the interactions between them behave probabilisticaly and so

the generated momenta px and py. This means, that if we have a virtual atom which is

formed of one electron and one positron, when the virtual atom passes the Hy field it

will be deflected according to which of the regenerating FPs of the electron or positron

interact with the FPs of the Hy field.

That only certain neutral atoms (Hydrogen, Cesium, Rubidium, Thalium, etc.)

show deflections in the Stern-Gerlach experiment can be explained with the configu-

ration the electrons and positrons have that allow or not the probabilistic interactions

between the FPs of the fields. If all FPs interact no deflection will be produced.

10 Ampere bending (Bragg law).

With the fundamental eq. (23) from sec. 6 for parallel currents the force density

generated between two straight parallel currents of BSPs due to the interactions of

their transversal angular momenta is calculated in [10] and gives

F

∆l
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (39)

with
∫ ∫

Ampere
= 5.8731.

In the case of the bending of a BSP the interaction is now between one BSP moving

with speed v2 and one reintegrating BSP of a nucleon that moves with the speed v1

parallel to v2. The reintegration of a migrated BSP is described in sec. 8.

The concept is shown in Fig. 12

For v � c it is

ρx =
Nx

∆x
=

1

2 ro
Im = ρ m v ∆ot = K r2o p = F ∆ot (40)
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We get for the force

F =
b

4 ∆ot

5.8731

64 c

√
m v1

√
m v2

d
∆l (41)

We have defined a density ρx of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take ∆l = 2 ro.

The interaction between the two parallel BSPs takes place along a distance ∆
′′
l =

v2 ∆
′′
t giving a total bending momentum pb = F ∆

′′
t. With all that we get

pb =
b

2 K ro

5.8731

64 c

m v1
d

∆
′′
l (42)

which is independent of the speed v2. In [10] the speed of a reintegrating BSP is

deduced giving v1 = k c with k = 7.4315 · 10−2. We get

pb =
b

2 K ro

5.8731

64 c

m k c

d
∆
′′
l (43)

If we now write the bending equation with the help of tan η = 2 sin θ for small η

and with 2 d = dA we get

sin θ =
pb

2 pi
=

(
5.8731 b m v1
64 c K ro h

∆
′′
l

)
h

2 pi dA
n (44)

To get the Bragg law the expression between brackets must be constant and equal
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to the unit what gives for the constant interaction distance ∆
′′
l

∆
′′
l =

64 c K ro h

5.8731 b m k c
= 8.9357 · 10−9 m (45)

We get for the bending momentum and force

pb =
h

dA
n Fb =

1

2

h

d ∆ot
=

1

2

n Eo
d

(46)

The bending force is quantized in energy quanta equal to the rest energy Eo of a

BSP.

Conclusion: We have derived the Bragg equation without the concept of particle-

wave introduced by de Broglie. Numerical results obtained using the quantized ir-

radiated energy instead of the particle-wave are equivalent, different is the physical

interpretation of the underlying phenomenon.

11 Induction between a moving and a probe BSP.

In the present approach the energy of a BSP is distributed in space around the radius

(focal point) of the BSP. The carriers of the energy are the FPs with their angular

momenta, FPs that are continuously emitted and regenerate the BSP. At a free moving

BSP each angular momentum of a FP is balanced by an other angular momentum of

a FP of the same BSP.

The concept is shown in Fig. 13.

Opposed transversal angular momenta dH̄n and−dH̄n from two FPs that regenerate

the BSP produce the linear momentum p̄ of the BSP. If a second static probe BSPp

appropriates with its regenerating angular momenta (dH̄sp) angular momenta (dH̄n)

from FPs of the first BSP according postulate 3) of sec. 5, angular momenta that built

a rotor different from zero in the direction of the second BSPp generating dp̄ip , the first

BSP loses energy and its linear momentum changes to p̄− dp̄ip . The angular momenta

appropriated at point P by the probe BSPp generating the linear momentum dp̄ip are

missing now at the first BSP to compensate the angular momenta at the symmetric

point P
′
. The linear momenta at the two symmetric points are therefore equal and

opposed d
′
p̄i = −dp̄ip because of the symmetry of the energy distribution function

dκ(π − θ) = dκ(θ).

As the closed linear integral
∮
dH̄n dl̄ generates the linear momentum p̄ of a BSP,

the orientation of the field dH̄n (right screw in the direction of the velocity) must be

independent of the sign of the BSP, sign that is defined by J̄
(±)
e .
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Figure 13: Linear momentum balance between static and moving BSPs

12 Newton gravitation force.

To calculate the gravitation force induced by the reintegration of migrated BSPs, we

need to know the number of migrated BSPs in the time ∆t for a neutral body with

mass M .

The following equation was derived in [10] for the induced gravitation force

generated by one reintegrated electron or positron

Fi =
dp

∆t
=

k c
√
m
√
mp

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (47)

with m the mass of the reintegrating BSP, mp the mass of the resting BSP, k =

7.4315 · 10−2. It is also

∆t = K r2o ro = 3.8590 · 10−13 m and K = 5.4274 · 104 s/m2 (48)

The direction of the force Fi on BSP p of neutron 2 in Fig. 8 is independent of the

sign of the BSPs and is always oriented in de direction of the reintegrating BSP b of

neutron 1.
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Fig. 14 shows reintegrating BSPs a and d at Neutron 1 that transmit respectively

opposed momenta pg and pe to neutron 2. Because of the grater distance from neutron

2 of BSP a compared with BSP d, the probability for BSP d to transmit his momentum

is grater than the probability for BSP a. Momenta are quantized and have all equal

absolute value independent if transmitted or not. The result computed over a mass M

gives a net number of transmitted momentum to neutron 2 in the direction of neutron

1, what explains the attraction between neutral masses.

For two bodies with masses M1 and M2 and where the number of reintegrated BSPs

in the time ∆t is respectively ∆G1 and ∆G2 it must be

Fi ∆G1 ∆G2 = G
M1 M2

d 2
with G = 6.6726 · 10−11

m3

kg s2
(49)

As the direction of the force Fi is the same for reintegrating electrons ∆−G and

positrons ∆+
G it is

∆G = |∆−G|+ |∆
+
G| (50)

We get that

∆G1 ∆G2 = G
4 K M1 M2

m k c
∫ ∫

Induction

(51)
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or

∆G1 ∆G2 = 2.8922 · 1017 M1 M2 = γ2G M1 M2 (52)

The number of migrated BSPs in the time ∆t for a neutral body with mass M is

thus

∆G = γG M with γG = 5.3779 · 108 kg−1 (53)

Calculation example: The number of migrated BSPs that are reintegrated at

the sun and the earth in the time ∆t are respectively, with M� = 1.9891 · 1030 kg and

M† = 5.9736 · 1024 kg

∆G� = 1.0697 · 1039 and ∆† = 3.2125 · 1033 (54)

The power exchanged between two masses due to gravitation is

PG = Fi c =
Ep
∆t

=
k m c2

4 K d 2
∆G1 ∆G2

∫ ∫
Induktion

(55)

The power exchanged between the sun and the earth is, with d�† = 1.49476 ·1011 m

PG = FG c = G
M� M†
d 2
�†

c = 1.0646 · 1031 J/s (56)

13 Ampere gravitation force.

In the previous sections we have seen that the induced gravitation force is due to

the reintegration of migrated BSPs in the direction d of the two gravitating bodies

(longitudinal reintegration). When a BSP is reintegrated to a neutron, the two BSPs

of different signs that interact, produce an equivalent current in the direction of the

positive BSP as shown in Fig. 15.

As the numbers of positive and negative BSPs that migrate in one direction at one

neutron are equal, no average current should exists in that direction in the time ∆t. It

is

∆R = ∆+
R + ∆−R = 0 (57)

We now assume that because of the power exchange (55) between the two neutrons,

a synchronization between the reintegration of BSPs of equal sign in the direction

orthogonal to the axis defined by the two neutrons is generated, resulting in parallel

currents of equal sign that generate an attracting force between the neutrons. The
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Figure 15: Resulting current due to reintegration of migrated BSPs

synchronization is generated by the relative movements between the gravitating bodies

and is zero between static bodies. Thus the total attracting force between the two

neutrons is produced first by the induced (Newton) force and second by the currents

of reintegrating BSPs (Ampere).

FT = FG + FR with FG = G
M1 M2

d2
and FR = R

M1 M2

d
(58)

To derive an equation we start with the following equation from [10] derived for the

total force density due to Ampere interaction.

F

∆l
=

b

c ∆ot

r2o
64 m

Im1 Im2

d

∫ γ2max

γ2min

∫ γ1max

γ1min

sin2(γ1 − γ2)√
sin γ1 sin γ2

dγ1 dγ2 (59)

with
∫ ∫

Ampere
= 5.8731.

It is also for v � c

ρx =
Nx

∆x
=

1

2 ro
Im = ρ m v ∆ot = K r2o Im =

m

q
Iq (60)

We have defined a density ρx of BSPs for the current so that one BSP follows

immediately the next without space between them. As we want the force between one

pair of BSPs of the two parallel currents we take ∆l = 2 ro.

For one reintegrating BSP it is ρ = 1. The current generated by one reintegrating
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BSP is

Im1 = im = ρ m vm = ρ m k c with vm = k c k = 7.4315 · 10−2 (61)

We get for the force between one transversal reintegrating BSP at the body with

mass M1 and one longitudinal reintegrating BSP at M2 moving parallel with the speed

v2

dFR = 5.8731
b

∆ot

2 r3o
64

ρ2 m k
v2
d

= 2.2086 · 10−50
v2
d

N (62)

with Im2 = i2 = ρ m v2.

The concept is shown in Fig. 16.
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Figure 16: Ampere gravitation

Note: The sign that takes the current im of the reintegrating BSP at the body

with mass M1 which interacts with the current i2, is a function of the direction of the

magnetic poles of M1. The Ampere gravitation force FR is therefore an attraction or

a repulsion force depending on the relative directions of the magnetic poles of M1 and

the speed v2.

In sec. 12 we have derived the mass density γG of reintegrating BSPs. At Fig. 14

we have seen that half of the longotudinal reintegrating BSPs of a neutron 1 induce

momenta on neutron 2 in one direction while the other half of longitudinal reintegrating

BSPs induce momenta in the opposed direction on neutron 2. In Fig. 16 we see, that all

longitudinal reintegrating BSPs at M2 generate a current component i2 in the direction
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of the speed v2. This means that we have to take for the density γA of reintegrating

BSPs for the Ampere gravitation force approximately twice the value of the density γG

of the Newton gravitation force

γA ≈ 2 γG = 2 · 5.3779 · 108 = 1.07558 · 109 kg−1 (63)

resulting for the total Ampere gravitation force between M1 and M2

FR = 5.8731
b

∆ot

2 r3o
64

ρ2 m k v2 γ
2
A

M1 M2

d
= 2.5551 · 10−32 v2

M1 M2

d
N (64)

where

FR = R
M1 M2

d
with R = 2.5551 · 10−32 v2 = R(v2) (65)

The total gravitation force gives

FT = FG + FR =

[
G

d2
+
R

d

]
M1 M2 (66)

The concept is shown in Fig. 17.
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Figure 17: Gravitation forces at sub-galactic and galactic distances.

Calculation example

To verify that the Newton component predominates over the Ampere component

for the case of the earth and the sun, we calculate now dgal for this case and compare

it with the distance d�,+ = 1.5 · 1011 m between the earth and sun. It is for the sun
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M� = 2 · 1030 kg, and for the earth M+ = 5.97 · 1024 kg, and v2 = 29.78 · 103 m/s.

dgal =
G

R(v2)
= 8.733 · 1016 m >> d�,+ (67)

The Ampere component of the force is FA = 6.056 · 1016 N and the Newton com-

ponent is FG = 3.54 · 1022 N. It is FG >> FA what explains why we only can measure

the Newton component of the gravitation force.

13.1 Flattening of galaxies’ rotation curve.

For galactic distances the Ampere gravitation force FR predominates over the induced

gravitation force FG and we can write eq. (66) as

FT ≈ FR =
R

d
M1 M2 (68)

The equation for the centrifugal force of a body with mass M2 is

Fc = M2
v2orb
d

with vorb the tangential speed (69)

For steady state mode the centrifugal force Fc must equal the gravitation force FT .

For our case it is

Fc = M2
v2orb
d

= FT ≈ FR =
R

d
M1 M2 (70)

We get for the tangential speed

vorb ≈
√
R M1 constant (71)

The tangential speed vorb is independent of the distance d what explains the flat-

tening of galaxies’ rotation curves.

Calculation example

In the following calculation example we assume that the transition distance dgal is

much smaller than the distance between the gravitating bodies and that the Newton

force can be neglected compared with the Ampere force.

For the Sun with v2 = vorb = 220 km/s and M2 = M� = 2 · 1030 kg and a distance

to the core of the Milky Way of d = 25 · 1019 m we get a centrifugal force of

Fc = M2
v2orb
d

= 3.872 · 1020 N (72)
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With

R(v2) = 2.5551 · 10−32 v2 = 5.6212 · 10−27 Nm/kg2 (73)

and

Fc ≈ R
M1 M2

d
(74)

we get a Mass for the Milky Way of

M1 = Fc d
1

R M�
= 4.3 · 106 M� (75)

and with

FG = FR we get dgal =
G

R(v2)
= 1.1870 · 1016 m (76)

justifying our assumption for FT ≈ FR because the distance between the Sun and

the core of the Milky Way is d� dgal.

Note: The mass of the Milky Way calculated with the Newton gravitation law

gives M1 ≈ 1.5 · 1012 M� which is huge more than the bright matter and therefore

called dark matter. The mass calculated with the present approach corresponds to the

bright matter and there is no need to introduce virtual masses in space.

For sub-galactic distances the induced force FG is predominant, while for galactic

distances the Ampere force FR predominates, as shown in Fig. 17.

dgal =
G

R(v2)
(77)

Note: The flattening of galaxies’ rotation curve was derived based on the assump-

tion that the gravitation force is composed of an induced component and a component

due to parallel currents generated by reintegrating BSPs and, that for galactic distances

the induced component can be neglected.

14 Atomic clocks and gravitation.

The core of the atomic clock is a tunable microwave cavity containing a gas. In a

hydrogen maser clock the gas emits microwaves (the gas mases) on a hyperfine transi-

tion, the field in the cavity oscillates, and the cavity is tuned for maximum microwave

amplitude. Alternatively, in a caesium or rubidium clock, the beam or gas absorbs mi-

crowaves and the cavity contains an electronic amplifier to make it oscillate. For both

types the atoms in the gas are prepared in one electronic state prior to filling them into

the cavity. For the second type the number of atoms which change electronic state is
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detected and the cavity is tuned for a maximum of detected state changes. The atomic

beam standard is a direct extension of the Stern-Gerlach atomic splitting experiment.

Gravitation is generated by the reintegration of migrated electrons and positrons

to their nuclei transfering their momenta to electrons and positrons of other nuclei.

At each prepared neutral atom that forms part of the ray of atoms at a Stern-Gerlach

splittin, momenta are permanently received from electrons and positrons that are rein-

tegrated at the gravitating partner. This high frequency flux of momenta on the com-

ponents of the prepared atoms at the Stern-Gerlach device modifies the energy levels

of the electrons, changing slightly the frequencies of the emitted or absorbed electric

waves. The frequency of an atomic clock is modified by gravitation.

Gravitation is composed of the Newton and the Ampere component which are both

a function of the distance between the gravitation bodies. The Ampere component

is additionally a function of the relative speed between the gravitating bodies. The

mathematical expression of the function has still to be found.

15 Quantification of irradiated energy and move-

ment.

15.1 Quantification of irradiated energy.

To express the energy irradiated by a BSP as quantified in angular momenta over time

we start with

E = Ee = Es + En =
√
E2
o + E2

p ∆t = Krorop ro =
~ c
Ee

rop =
~ c
Eo

(78)

with ro the radius of the moving particle and rop the radius of the resting probe

particle. It is

∆t = Krorop
rop
rop

= Kr2op
ro
rop

= ∆ot
ro
rop

(79)

with

∆ot = ∆t(v=0) = K
~2 c2

E2
o

= 8.082097 · 10−21 s with K = 5.4274 · 104 s/m2 (80)

We now define Ee ∆t and get

Ee ∆t = K
~2 c2

Eo
= K

h2

4 π2 m
= h (81)
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equation that is valid for every speed 0 ≤ v ≤ c of the BSP giving

Ee ∆t = Eo ∆ot = h (82)

where h is the Planck constant.

Note: In the equation Ee ∆t = h the energy Ee is the total energy of the moving

particle and the differential time ∆t is the time the differential momentum ∆p is active

to give the force F = ∆p/∆t between the moving and the probe particle.

In connection with the quantification of the energy E = J ν the following cases are

possible:

• A common frequency νg exists and the angular momentum J is variable.

• A common angular momentum Jg exists and the frequency ν is variable.

The concept is shown in Fig. 18.
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Figure 18: Quantification of linear momentum

We define for a common angular momentum Jg = h the equivalent angular frequen-

cies ν, νo and νp with the following equations

E = Ee = h ν ν =
1

∆t
and Ep = p c = h νp (83)
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and

Eo = m c2 = h νo νo =
1

∆ot
= 1.2373 · 1020 s−1 (84)

We have already defined the angular frequencies νe, νs and νn for the FPs with the

following equations

Ee = Es + En and dEe = dEs + dEn (85)

With a common angular momentum Jg = h it is

dEe = Ee dκ = h νe dEs = Es dκ = h νs dEn = En dκ = h νn (86)

The relation between the angular frequencies of FPs and the equivalent angular

frequencies is

ν =
∑
i

νei =
∑
i

νsi +
∑
i

νni
=
√
ν2o + ν2p (87)

If all FPs have the same angular frequency νei = νsi = νni
= νFP we get

ν = Ne νFP = Ns νFP + Nn νFP =
√
ν2o + ν2p (88)

with N the corresponding total number of FPs of the BSP. If we multiply the

equation with h we get

h ν = Ne h νFP = Ns h νFP + Nn h νFP = h
√
ν2o + ν2p (89)

or

E = Ee = Es + En =
√
E2
o + E2

p (90)

with EFP = h νFP the energy of one FP.

15.1.1 Fundamental equations expressed as functions of the powers ex-

changed by the BSPs.

We define the quantized emission of energy for a BSP with v 6= c defining the power as

Pe =
Ee
∆t

= Ee ν ν =
1

∆t
(91)

Pe =
Ee
∆t

=
1

∆t

√
E2
o + E2

p =
√
P 2
o + P 2

p = Es ν + En ν = Ps + Pn (92)
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where

Po = Eo ν Pp = Ep ν Ps = Es ν Pn = En ν (93)

For the differential powers we get

dPe = ν Ee dκ dPs = ν Es dκ dPn = ν En dκ (94)

Now we show that the fundamental equations of sec 6 for the generation of linear

momentum can be expressed as functions of the powers of their interacting BSPs.

With

dE = E dκ dH =
√
E dκ = H dκ and

H√
∆t

=
√
E ν =

√
P (95)

the equations for the Coulomb, Ampere and induction forces of sec. 6 can be

transformed to

d
′
F s̄R =

d
′
p

∆t
s̄R ∝

1

c

∮
R

{∫ ∞
r1

H1√
∆1t

dκr1

∫ ∞
r2

H2√
∆2t

dκr2

}
s̄R (96)

with

√
∆1t

√
∆2t =

√
Kro1

√
Kro2 = Kro1ro2 = ∆t (97)

and

H1√
∆1t

=

√
E1√
∆1t

=

√
E1

∆1t
=
√
P1 P =

E3

K ~2 c2
≈ E3

K · 10−51
(98)

Finally we get the general formulation for the fundamental equations of sec 6 for the

generation of linear momentum expressed as functions of the powers of their interacting

BSPs.

d
′
F s̄R =

d
′
p

∆t
s̄R ∝

1

c

∮
R

{∫ ∞
r1

√
P1 dκr1

∫ ∞
r2

√
P2 dκr2

}
s̄R (99)

It is also possible to define differential energy fluxes for BSPs. We start with

dPe = ν Ee dκ dPs = ν Es dκ dPn = ν En dκ (100)
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and with

dκ =
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
and dA = r2 sinϕ dϕ dγ (101)

The concept is shown in Fig. 19.

Electron

jd

cve =
r

r

gd
h

dS

dA

j

Figure 19: Emitted Energy flux density dS of a moving electron

The cumulated differential energy flux is∫ ∞
r

dPe = ν E

∫ ∞
r

dκ = ν E
1

2

ro
r

sinϕ dϕ
dγ

2π
J s−1 (102)

The cumulated differential energy flux density is∫ ∞
r

dSe =
1

dA

∫ ∞
r

dPe = ν Ee
1

4π

ro
r3

J

m2 s
(103)

To get the total cumulated energy flux through a sphere with a radius r we make

ro = r and integrate over the whole surface A = 4π r2 of the sphere and get

4π r2
∫ ∞
r

dSe = ν Ee
J

m2 s
(104)

Note: The differential energy flux density is independent of ϕ and γ and therefore

independent of the direction of the speed v. This is because of the relativity of the

speed v that does not define who is moving relative to whom.
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15.1.2 Physical interpretation of an electron and positron as radiating and

absorbing FPs:

The emitted differential energy is

dEe = Ee dκ =
h

∆t

1

2

ro
r2
dr sinϕ dϕ

dγ

2π
(105)

With the help of Fig. 19 we see that the area of the sphere is A = 4πr2, and we get

dEe =
h

∆t A
ro dr sinϕ dϕ dγ (106)

We now define

dEe = σh ro dr sinϕ dϕ dγ with σh =
h

∆t A
(107)

where σh is the current density of fundamental angular momentum h.

We can also write

dEe = σh dA with dA = ro dr sinϕ dϕ dγ (108)

15.2 Energy and density of Fundamental Particles.

15.2.1 Energy of Fundamental Particles.

The emission time of photons from isolated atoms is approximately τ = 10−8 s what

gives a length for the train of waves of L = c τ = 3 m. The total energy of the emitted

photon is Et = h νt and the wavelength is λt = c/νt. We have defined (see Fig. 18,

Fig ?? and Fig. ??), that the photon is composed of a train of FPs with alternated

opposed angular momenta where the distance between two consecutive FPs is equal

λt/2. The number of FPs that build the photon is therefore NFP = L/(λt/2) and we

get for the energy of one FP

The concept is shown in Fig. 20
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EFP =
Et
NFP

=
Et λt
2 L

=
h

2 τ
= 3.313 · 10−26 J = 2.068 · 10−7 eV (109)

and for the angular frequency of the angular momentum h

νFP =
EFP

h
=

1

2 τ
= 5 · 107 s−1 (110)

Finally we get

νt = NFP νFP = 5 · 107 NFP s
−1 with NFP =

c τ

λt/2
(111)

Note: The frequency νt represents a linear frequency where the relation with the

velocity v and the wavelength λt is given by v = λt νt. The frequency νFP represents

the angular frequency of the angular momentum h.
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The momentum generated by a pair of FPs with opposed angular momenta is

pFP =
2 EFP

c
= 2.20866 · 10−34 kg m s−1 (112)

Note: Isolated FPs have only angular momenta, they have no linear momenta

and therefore cannot generate a force through the change of linear momenta . Linear

momentum is generated only out of pairs of FPs with opposed angular momentum as

defined in sec. ??. It makes no sense to define a dynamic mass for FPs because they

have no linear inertia, which is a product of the energy stored in FPs with opposed

angular momenta. FPs that meet in space interact changing the orientation of their

angular momenta but conserving each its energy EFP = 3.313 · 10−26 J .

The number NFPo of FPs of an resting BSP (electron or positron) is

NFPo =
Eo
EFP

= 2.4746 · 1012 (113)

15.2.2 Density of Fundamental Particles.

We have defined that

dE = E dκ = E
1

2

ro
r2
dr sinϕ dϕ

dγ

2π
and dV = r2 dr sinϕ dϕ dγ (114)

resulting for the energy density

ω =
dE

dV
=

E

4π

ro
r4

J m−3 (115)

The density of FPs we define as

ωFP =
ω

EFP
=

1

4π

E

EFP

ro
r4

m−3 (116)

with EFP = h νFP = 3.313 · 10−26 J .

The concept is shown in Fig. 3

The energy emitted by a BSP is equal to the sum of the energies of the regenerating

FPs with longitudinal (s) and transversal (n) angular momenta. The corresponding

densities are

ω
(s)
FP =

1

4π

Es
EFP

ro
r4

ω
(n)
FP =

1

4π

En
EFP

ro
r4

m−3 (117)
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As Ee = Es + En we get

ω
(e)
FP = ω

(s)
FP + ω

(n)
FP m−3 (118)

The number dNFP of FPs in a volume dV is given with

dNFP = ωFP dV and with dV = r2 dr sinϕ dϕ dγ (119)

we get

dNFP =
1

2π

E

EFP
dκ (120)

With the definition of µFP = EFP/c
2, where µFP is the dynamic mass of a FP, we

get for the density of the mass

ωµ =
µFP dNFP

dV
= µFP ωFP kg m−3 (121)

The rest mass m of a BSP expressed as a function of the dynamic mass µFP of its

FPs is

m = NFPo µFP =
νo
νFP

µFP (122)

Note: In the present theory all BSPs are expressed through FPs with the Energy

EFP , the angular frequency νFP and the dynamic mass µFP .

15.3 Quantification of movement.

An isolated moving BSP has a potential energy

E = Es + En (123)

which is a function of the relative speed v to the selected reference coordinate. The

potential energy will manifest when the isolated moving BSP interacts with a BSP

which is static in the selected coordinate system.

The time variation ∆t derived for the variation dp of the momentum for the

Coulomb, Ampere and Induction forces between two BSPs, we use also as time varia-

tion to describe the movement of a BSP that moves with constant speed v = ∆x/∆t

where dp = 0.

The energy En is responsible for the movement of the BSP and the number of FPs

that generate the movement during the time ∆t is

N
(n)
FP =

En
EFP

(124)
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The total momentum of a BSP moving with constant speed v is therefore

p = m v = N
(n)
FP pFP = m

∆x

∆t
(125)

with pFP defined in eq. (112). For ∆x we get

∆x = N
(n)
FP pFP

∆t

m
(126)

For v = 0 we get

v = 0 En = 0 N
(n)
FP = 0 ∆x = 0 (127)

For v → c we get with ∆t = K r2o with ro the radius of the moving BSP

v → c Ep →∞ En →∞ N
(n)
FP →∞ ∆t→ 0 (128)

lim
v→c

∆x = lim
v→c

2 K ~2 c
m Ep

= 0 for v → c (129)

lim
v→c

∆x

∆t
= v (130)

Note: For the isolated BSP moving with constant speed v we have no static probe

BSP with radius rop that measures the force between them, force that is zero because

dp = 0. There is no difference between the two BSPs and the equation ∆t = K ro rop

becomes ∆t = K r2o with ro the radius of the moving BSP.

16 Quantification of forces between BSPs and CSPs.

In [10] the speed v = k c was derived with which migrated BSP are reintegrated

generating the Coulomb force and the two components of the gravitation force. In sec.

15.2.1 we have seen that the momentum generated by one pair of FPs with opposed

angular momenta is

pFP =
2 EFP
c

= 2.20866 · 10−34 kgms−1 (131)

We define now an elementary momentum

pelem = m k c = 2.0309 · 10−23 kgms−1 (132)

The number of pairs of FPs required to generate the momentum pelem in the time
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∆ot is

pelem
pFP

= 9.1951 · 1010 (133)

In the following subsections we express all known forces quantized in elementary

linear momenta pelem.

16.1 Quantification of the Coulomb force.

From the general eq. (25) from sec. 6 for the induced force, the Coulomb force between

two BSPs was deduced in [10] giving

F2 =
a m c r2o
4 ∆ot d 2

∫ ∫
Coulomb

with

∫ ∫
Coulomb

= 2.0887 (134)

We now write the equation as follows

F2 = NC(d)
1

∆ot
pelem = NC(d) νo pelem pelem = m k c a = 8.774 · 10−2 (135)

with

NC(d) =
a r2o

4 k d 2

∫ ∫
Coulomb

= 9.1808 · 10−26
1

d2
(136)

NC(d) gives the probability that FPs meet in space and generate opposed angular

momenta.

We can define a frequency νC(d) = NC(d) νo which gives the number of elementary

linear momenta pelem during the time ∆ot resulting in the force F2.

For an inter-atomic distance of d = 10−10 m we get NC = 9.1808 · 10−6 resulting a

frequency of elementary momenta of

νC(d) = NC(d) νo = 1.1359 · 1015 s−1 for d = 10−10 m (137)
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16.2 Quantification of the Ampere force between straight in-

finite parallel conductors.

From the general eq. (23) from sec. 6 the Ampere force between two parallel conductors

was derived in [10] arriving to

F

dl
=

b

c ∆t

r2o
64 m

Im1 Im2

d

∫ ∫
Ampere

with

∫ ∫
Ampere

= 5.8731 (138)

and b = 0.25. We now write the equation in the following form assuming that the

velocity of the electrons is v << c so that ∆t ≈ ∆ot and the currents are Im ≈ ρx m v,

where ρx = Nx/∆x is the linear density of electrons that move with speed v in the

conductors.

F = NA(d, Im1 , Im2 , ∆l) νo pelem pelem = k m c νo =
1

∆ot
(139)

with

NA(d, Im1 , Im2 , ∆l) =
b r2o

64 k m2 c2
Im1 Im2

d

∫ ∫
Ampere

∆l (140)

or

NA(d, Im1 , Im2 , ∆l) = 6.1557 · 1017 Im1 Im2

d
∆l (141)

For a distance of 1m between parallel conductors with a length of ∆l = 1m and

currents of 1A we get NA = 6.1557 · 1017. The frequency of elementary momenta for

this particular case

νA = NA(d, Im1 , Im2 , ∆l) νo = 7.6158 · 1037 s−1 (142)

16.3 Quantification of the induced gravitation force (New-

ton).

From sec. 12 eq. (47) we have that the gravitation force for one aligned reintegrating

BSPs is

Fi =
k m c

4 K d 2

∫ ∫
Induction

with

∫ ∫
Induction

= 2.4662 (143)
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which we can write with ∆ot = K r2o and pelem = k m c as

Fi = Ni νo pelem with Ni =
r2o

4 d 2

∫ ∫
Induction

(144)

Considering that ∆G1 ∆G2 = γ2G M1 M2 we can write for the total force between

two masses M1 and M2

FG = Fi ∆G1 ∆G2 = NG νo pelem with NG = Ni ∆G1 ∆G2 (145)

where NG represents the probability of elementary forces felem = νo pelem in the

time ∆ot = K r2o.

Finally we get

FG = NG(M1,M2, d) νo pelem with NG = 2.6555 · 10−8
M1 M2

d2
(146)

The frequency with which elementary momenta are generated is

νG = NG(M1,M2, d) νo = 3.2856 · 1012 M1 M2

d2
(147)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M� = 1.9889 · 1030 kg and a distance of d = 147.1 · 109 m we get a frequency of

νG = 1.8041 · 1045 s−1 for aligned reintegrating BSPs.

16.4 Quantification of the gravitation force due to parallel

reintegrating BSPs (Ampere).

From sec. 13 eq. (62) we have for a pair of parallel reintegrating BSPs that

dFR = 5.8731
b

∆ot

2 r3o
64

ρ2 m k
v2
d

= 2.2086 · 10−50
v2
d

N (148)

which we can write as

dFR = N νo pelem with N = 8.7893 · 10−48
v2
d

(149)

where

pelem = k m c and k = 7.4315 · 10−2 (150)
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The total Ampere force between masses M1 and m2 is given with eq. (64)

FR = 2.5551 · 10−32 v2
M1 M2

d
N (151)

We now write the equation in the form

FR = NR(M1,M2, d) νo pelem with NR = 1.01682 · 10−29 v2
M1 M2

d
(152)

The frequency with which pairs of FPs cross in space is

νR = NR(M1,M2, d) νo = 1.25811 · 10−9 v2
M1 M2

d
s−1 (153)

For the earth with a mass of M⊕ = 5.974 · 1024 kg and the sun with a mass of

M� = 1.9889 · 1030 kg and a distance of d = 1.5 · 108 m and a tangential speed of the

earth around the sun of v2 = 30 m/s we get a frequency of νR = 2.9896 · 1039 s−1 for

parallel reintegrating BSPs. The frequency νG for aligned BSPs is nearly 106 times

grater than the frequency for parallel reintegrating BSPs and so the corresponding

forces.

16.5 Quantification of the total gravitation force.

The total gravitation force is given by the sum of the induced force between aligned

reintegrating BSPs and the force between parallel reintegrating BSPs.

FT = FG + FR = [NG(M1,M2, d) + NR(M1,M2, d)] pelem νo (154)

or

FT = FG + FR = pelem νo

[
2.6555 · 10−8

d2
+

1.01682 · 10−29

d
v2

]
M1 M2 (155)

We define the distance dgal as the distance for which FG = FR and get

dgal =
2.6555 · 10−8

1.01682 · 10−29 v2
= 2.6116 · 1021 1

v2
m (156)
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17 Electromagnetic and Gravitation emissions.

Fig. 21 shows the generation of the electromagnetic emission and the gravitation

emission.

At a) a Subatomic Particle (SP), electron or positron, shows transversal angular

momenta Jn of its Fundamental particles (FPs) when moving with constant moment

p relative to a second SP (not shown). The transversal angular momenta of its FPs

follow the right screw law in moving direction independent of the charge. FPs with

opposed angular momenta are entangled and are fixed to the SP. No FPs are emitted

when moving with constant speed.

When the moving SP approaches a second SP (not in the drawing), the opposed

transversal angular momenta are passed to the second SP via their regenerating FPs

so that the first SP looses moment while the second SPs gains moment.

At b) a oscillating SP is shown with the pairs of emitted FPs with opposed angular

momenta at the closed circles changing ciclically their directions. At far distances from

the SP trains of FPs with opposed angular momenta become independent from the SP

and move with light speed (photons) relative to its source. According to which combi-

nation of opposed entangled FPs become independent we have a train with potentially

transversal momenta p (shown) or potentially longitudinal momenta p (not shown).

At c) a SP is shown that migrates slowly to the right outside the atomic nucleus and

is than reintegrated to the left with high speed to its nucleus . The migration is so slow

that no transversal angular momenta are generated at their FPs. When reintegrated,

FPs with opposed transversal angular momenta become independent and move until

absorbed by regenerating FPs of a second SP (not shown). As the transversal angular

momenta of a moving SP follow the right screw law in moving direction independent

of the charge of the SP, the reintegration will generate always potential longitudinal

momenta p in the direction of the nucleus. The emitted pairs of opposed angular

momenta with potential longitudinal momenta p have all the same direction, and when

passed to a second SP generate the gravitation force.
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Figure 21: Electromagnetic and Gravitation emissions
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18 Conventions introduced for BSPs.

Fig. 22 shows the convention used for the two types of electrons and positrons intro-

duced.

The accelerating positron emits FPs with high speed ve =∞ and positive longitu-

dinal angular momentum J̄ +
s (∞+) and is regenerated by FPs with low speed vr = c

and negative longitudinal angular momentum J̄ −s (c−).

The decelerating electron emits FPs with low speed ve = c and negative longitudinal

angular momentum J̄ −s (c−) and is regenerated by FPs with high speed vr = ∞ and

positive longitudinal angular momentum J̄ +
s (∞+).

The emitted FPs of the accelerating positron regenerate the decelerating electron

and the emitted FPs of the decelerating electron regenerate the accelerating positron.

BSP ngAccelerati

BSP ngDecelerati

BSP Positive BSP Negative

BSP NegativeBSP Positive

+acc
-acc

+dec
-dec

Figure 22: Conventions for BSPs

Fig. 23 a) shows a neutron with the internal and external rays for emitted and

regenerating FPs. The complex SP is formed by accelerating positrons and decelerating

electrons.

Fig. 23 b) shows a proton with the net external rays for emitted and regenerating

FPs. The complex SPs is formed by accelerating positrons and decelerating electrons.
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composed of accelerating positrons and decelerating electrons
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Fig. 24 shows a neutron with one migrated BSP and the net external field.
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Figure 24: Neutron with migrated BSP

19 Flux density of FPs and scattering of particles.

19.1 Flux density of FPs.

At each BSP the flux density of emitted FPs is equal to the flux density of regenerating

FPs although the different speeds of the FPs.

In a complex SP formed by more than one BSP (Fig.23), a mutual internal regener-

ation between the BSPs of the complex SP exists. Part of the emitted positive rays of

FPs with J̄
(+)
e of the positive BSPs of the complex SP regenerate the negative BSPs of

the complex SP, and part of the emitted negative rays of FPs with J̄
(−)
e of the negative

BSPs regenerate the positive BSPs. The other part of the emitted and regenerating

rays of FPs respectivelly radiate into space and regenerate from space.

At a complex SP with equal number of positive and negative BSPs Fig.23 a) the

flux density of FPs radiated into space with positive angular momenta is equal to the

flux density of FPs radiated into space with negative angular momenta. The same is

valid for the flux density of regenerating FPs.

At a complex SP with different number of positive and negative BSPs Fig.23 b)

the flux density of FPs radiated into space with positive angular momenta is not equal

to the flux density of FPs radiated into space with negative angular momenta. If the

complex SP has more positive BSPs in the nucleous, the flux density of FPs radiated
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into space with positive angular momenta is bigger than the flux density of FPs radiated

into space with negative angular momenta and vice versa.

19.2 Scattering of particles.

Elastic scattering.

Elastic scattering we have when the scattering partners conserve their identity. No

photons, neutrinos, electrons, positrons, protons, neutrons are emitted.

There are two types of elastic scatterings according the smallest scattering distance

ds that is reached between the scattering partners.

”Electromagnetic” scatering we have when the smallest scattering distance ds is

in the fifth region of the linear momentum curve pstat of Fig.7 where the Coulomb force

is valid. Electromagnetic scattering is characterized by the inverse square distance

force between particles.

”Mechanical” scatering we have when the smallest scattering distance ds is in the

fourth region of Fig.7. Mechanical scattering is characterized by the combination of

inverse square distance and inverse distance forces between particles.

Plastic or destructive scattering.

Plastic scattering we have when the identity of the scattering partners is modified

and photons, neutrinos, electrons, positrons, protons or neutrons are emitted.

In plastic or destructive scattering the smallest scattering distance ds enters the

third and second region of the linear momentum curve pstat of Fig.7.

The internal distribution of the BSPs is modified and the acceleration disturbs the

internal mutual regeneration between the BSPs. The angular momenta of each BSP

of the scattering partners interact heavily, and new basic configurations of angular

momenta are generated, configurations that are balanced or unbalanced (stable or

unstable).

In today’s point-like representation the energy of a BSP is concentrated at a point

and scattering with a second BSP requires the emission of a particle (gauge boson) to

overcome the distance to the second BSP which then absorbs the particle. The energy

violation that results in the rest frame is restricted in time through the uncertainty

principle and the maximum distance is calculated assigning a mass to the interchanged

particle (Feynman diagrams).

Conclusion: In the present approach the emission of FPs by BSPs is continu-

ous and not restricted to the instant particles are scattered. In the rest frame of the

scattering partners no energy violation occurs. When particles are destructively scat-

tered, during a transition time the angular momenta of all their FPs interact heavily

according to the three interaction from sec. 5 and new basic arrangements of angular

momenta are produced, resulting in balanced and unbalanced configurations of angu-
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lar momenta that are stable or unstable, configurations of quarks, hadrons, leptons

and photons. The interacting particles (force carriers) for all types of interactions

(electromagnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.

The concept is shown in Fig. 25

Note: The proposed theory considers elementary particles those which are sta-

ble as free particles or as part of composed particles like the electron, positron, neutron,

proton, neutrino, photon, nuclei of atoms. All particles with a short life time (tran-

sitory particles) are not elementary particles and are produced at collisions. With

increasing collision energies more and more transitory particles of higher energies can

be produced without adding new substantial information to the theory.
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BSP =Basic Subatomic Particles

CSP=Complex Subatomic Particles (composed of BSP) 

Fundamental
particles

BSP

CSP All other particles with antiparticles 

Unstabel

Free stabel

Stabel in 
configurations

Stabel

Stabel in 
configurations

Electron *

Neutrino **

Positron *

Proton *

Photon ***

Neutron *

Elementary particles

Leptons except electrons 
and neutrinos

Hadrons except protons 
and neutrons

(FPs)

Bosons except photons

   Clasification of particles based on 
Basic (simple) or Complex (composed) 

*  Focal point of rays of FPs

**  Pair of FPs with opposed angular momenta

*** Sequence of pairs of FPs with opposed angular momenta 

Legend 

Figure 25: Clasification of particles
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19.3 Feynman diagram.

The proposed approach postulates that the force carriers between the focal points,

which replace the subatomic particles, are the FPs with their dH fields. The forces

between the subatomic particles are generated by the interactions of the angular mo-

menta of their FPs or dH fields, and not by the exchanges of particles as the standard

model teaches.

A flawless analysis of the disintegration of radioactive nuclei shows that there is no

violation of conservation of energy, contrary to Feynmans conclusions.

0) ;(Åï

g

)p ; (E pp

)p ; (E gg

Figure 26: Feynman diagram

The concept is shown in Fig. 26

(Eo ; 0)→ (Ep ; pp) + (Eγ ; pγ) (157)

Ek =
√
E ′ 2
o + E2

p Ep = pp c Eγ = pγ c (158)

with

p̄p = −p̄γ Ep = Eγ (159)

∆E = Ek + Eγ − Eo =
√
E ′ 2
o + E2

p + Eγ − Eo (160)

For ∆E = 0 we get

E
′

o =
√
E2
o − 2 Eo Ep =

√
E2
o − 2 Eo Eγ (161)

For stable BSPs like the electron and the positron which don’t disintegrate by

radiation Ep = Eγ = 0 and E
′
o = Eo.
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For CSPs like heavy nuclei that disintegrate by radiation Ep > 0 and E
′
o < Eo.

The same analysis is valid for nuclei that radiate α, β and γ particles. The radiated

energy goes always in detriment of the rest mass Eo of the nuclei. No violation of

conservation of energy occurs.

20 Emission Theory

The present approach is based on the postulate that light is emitted with light speed

relative to the emission source.

uc+

uc-

x x x x x
l Photon

K K
*K

c
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B
C

L

L L L

L L L

F.Ps

Figure 27: Emission Theory.

Fig 27 shows how bursts of FPs with opposed angular momenta (photons) emitted

with light speed c by a binary pulsar system, travel from frame K to frames K̄ and

K∗ with speeds c + u from A and c − u from B. When they arrive at the measuring

instruments at C, the transformations to the frames K̄ and K∗ take place from where

they continue then with the speed of light c.

The emission time of photons from isolated atoms is approximately τ = 10−8 s

what gives a length for the wave train of L = c τ = 3 m. (See section 15.2.1). The

total energy of the emitted photon is Et = h νt and the wavelength is λt = c/νt. We
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have defined that the photon is composed of a train of FPs with alternated angular

momenta where the distance between two consecutive FPs is equal λt/2. The number

of FPs that build the photon is therefore L/(λt/2) and we get for the energy of one FP

EFP =
Et λt
2 L

=
h

2 τ
= 3.313 · 10−26 J = 2.068 · 10−7 eV (162)

and for the angular frequency of the angular momentum h

νFP =
EFP
h

=
1

2 τ
= 5 · 107 s−1 (163)

The number NFPo of FPs of an resting BSP (electron or positron) is

NFPo =
Eo
EFP

= 2.4746 · 1012 (164)

Note: The assumption of our standard model that light moves with light speed

c independent of the emitting source suggests the existence of an absolute reference

frame or ether, but at the same time the model is not compatible with such absolute

frames.

The objections made by Willem de Sitter in 1913 about Emission Theories based

on a star in a double star system, is based on a representation of light as a continuous

wave and not as bursts of sequences of FPs with opposed transversal angular momenta

with equal length L .

In the quantized representation photons with speeds c + v and c − v may arrive

simultaneously at the measuring equipment showing the two Doppler spectral lines

corresponding to the red and blue shifts in accordance with Kepler’s laws of motion.

No bizarre effects, as predicted by Willem de Sitter, will be seen because photons of

equal length L and λ with speeds c + v and c − v are detected independently by the

measuring instrument giving well defined lines corresponding to the Doppler effect.

The present approach is based on a modern physical description of nature postu-

lating that

• photons are emitted with light speed c relative to their source

• photons emitted with c in one frame that moves with the speed v relative to a

second frame, arrive to the second frame with speed c± v.

• photons with speed c± v are reflected with c relative to the reflecting surface

• photons refracted into a medium with n = 1 move with speed c independent of

the speed they had in the first medium with n 6= 1.

The concept is shown in Fig. 28
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Relativity is a speed problem and not a time and space problem. When writing the

Lorentz equation with speed variables instead of a mix of time and space variables and

then calculate the Lorentz Transformation equations we get “Galilean relativity“ with

the γ factor giving the no linear behaviour of momentum, acceleration, energy, etc.,

with the relative speed v. Time and length are absolute variables as shown in [10].

ieoe

re

vc± c

c

1n =

1n =

1n ¹

Figure 28: Light speed at reflections and refractions

Fig. 29 shows how electromagnetic waves that are emitted from a frame that moves

with v relative to a second frame arrives to it with c+ v. Waves that go through lenses

or are reflected by antennas move with c in the second frame, what explains why always

“ c “ is measured.

relativity.pdf

vc+
c

v

vc+

vc+
c

c

Figure 29: Light on relative moving receivers
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20.1 Binary pulsar.

Fig 30 shows the speed of photons in the direction of earth of a binary pulsar. At the

points A and B the speed uearth in the direction of the earth has a maximum and a

minimum respectively.
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B
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Earth

earthu
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Figure 30: Speed of photons at an Binary Pulsar.

We will analyse the shape of the signal composed by a secuence of bursts generated

at A and B along the x-axis that extend from the binary pulsar to the earth.

For the purpose of our analyses it is enough to represent each sequence of bursts

generated at A or B by the first two terms ” 1 + sin ” of the Fourier series and than

add them according to

[1 + sinα] + [1 + sin β] = 2 + 2 sin
α + β

2
cos

α− β
2

(165)

where

α =
2π

λ1
[x+ u1 t1] and β =

2π

λ2
[x+ u2 t2] (166)

and u1 = c− u, u2 = c+ u, λ1 = (c− u) T , λ2 = (c+ u) T and t2 = t1 − T/2 with

T the time of the period of the pulsar.

Making the corresponding substitutions we get

α + β

2
=

2π c

(c2 − u2)T
x + 2π

t

T
− π

2
(167)
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and

α− β
2

=
2π u

(c2 − u2)T
x +

π

2
(168)

The envelope cos(α−β)/2 is independent of the time t and has zeros at (α−β)/2 =

(2n+ 1)π/2 with n = 0; 1, 2, .... We get for the zeros of the envelope on the x-axis

xn = n
(c2 − u2)

2u
T (169)

and for the distance between two consecutive zeros

D = xn+1 − xn =
(c2 − u2)

2u
T (170)

At the fix points xn along the x-axis where the envelope cos(α − β)/2 is zero, the

bursts generated at A and B alternate with the period T/2 in the same way as at the

origin for x = 0 where the binary pulsar is located.

The concept is shown in Fig 31.

We conclude, that at each distance x = nD from the binary pulsar which is an

integer multiple of D a periodic change of the frequency between blue and red with

the period T will be detected. For distances x = (n + 1/2)D which fall between two

zeros a periodic signal with mixed blue and red frequencies will be detected.

Note: The Standard Model requires the introduction of the unphysical concept

that light moves with c independent of its source to explain binary pulsars.

EarthsarBinary pul

D1x 2x 3x
nx 1+nx x0x

Figure 31: Periodic distances at a Binary Pulsar.

Calculation example:

For the calculations the PSR B1913+16 also known as Hulse-Taylor binary is used.

The period of the orbital motion is 7.75 hours and the average orbital velocity of the
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star is 300 km/s.

T = 2.79 · 104 s u = 3.0 · 105 m/s c = 3.0 · 108 m/s (171)

The period of the signal along the x-axis is

D =
(c2 − u2)

2u
T = 4.185 · 1015 m = 0.44 ly (172)

The distance between the PSR B1913+16 and the earth is thus an integer multiple

of 0.44 ly.

Note: The representation of a star rotating a neutral mass to explain the bursts of

x-rays that change periodically from blue to red was introduced based on the Doppler

effect. Another possible representation is a steady star that changes periodically the

frequency of the bursts because of a frequency modulation caused by some unknown

effect.

20.2 Sagnac effect.

In the SM the results of the Sagnac experiment are not compatible with Special Rel-

ativity and are easily explained with non relativistic equations but still assuming that

light moves with light speed independent of its source.

The equations for the Sagnac experiment are now derived based on the emission,

reflection and refraction postulates.

The concept is shown in Fig. 32

Fig. 1 of Fig. 32 shows the arrangement with a light source at point “0” and a

detector for the two counter-rotating light rays also at point “0’. Mirrors are placed at

points “1”, “2”, .....”n” of the ring. The tangential speed of the rotating arrangement

is “v”.

Points “0” and “1” are placed in the parallel planes “a” and “b”. For the time a

photon of the length L and wavelength λ takes to pass from plane “a” to plane “b” the

relative speed between them of vr = v(1−cosϕ) can be assumed constant. If we imagin

that plane “a“ moves relative to plane “b” then, according to the emission theory, the

speed of the ray that leaves “a” in the direction of “ b “ has the speed vbi = c− vr as

shown in Fig. 2 of Fig. 32.
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Figure 32: Sagnac experiment

Also according to the emission theory the output wavelength λao at “a” must be

equal to the input wavelength λbi . We get for the frequancies ν

λbi =
c− vr
νbi

= λao → νbi =
c− vr
λao

(173)

The frequencies at the input and output of plane “b” must be equal

νbi =
c− vr
λao

= νbo =
c

λbo
→ λbo =

c

c− vr
λao (174)
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Writing the last equation with the nomenclature used for the points “0” and “1”

we get

λ1o =
c

c− vr
λ0o (175)

and for the points “1” and “2” we get

λ2o =
c

c− vr
λ1o =

(
c

c− vr

)2

λ0o (176)

Generalising for “n” we get for the ray in counter clock direction

λno =

(
c

c− vr

)n
λ0o =

1

(1− vr/c)n
λ0o (177)

and for the ray in clock direction

λ
′

no
=

(
c

c+ vr

)n
λ0o =

1

(1 + vr/c)n
λ0o (178)

With

(1± vr/c)−n = 1∓ n(vr/c) +
n(n+ 1)

2!
(vr/c)

2 ∓ ...... for |vr/c| < 1 (179)

neglecting all non linear terms we get for the wavelength

λdetect = 1 + n(vr/c)λ0o λ
′

detect = 1− n(vr/c)λ0o (180)

and for the difference

∆λdetect = λdetect − λ
′

detect = 2 n(vr/c)λ0o (181)

With R the radius of the ring we have that Ω = v/R and with vr = v(1− cosϕ) we

get

∆λdetect = 2 n
R(1− cosϕ)λ0o

c
Ω (182)

For n >> 1 and with l the length of the arc on the ring between two consecutive

mirrors, we can write that 2π R m ≈ n l with m the number of windings of the fibre

coil. We also have that cosϕ ≈ 1− ϕ2/2 and that ϕ = l/R. We get

∆λdetect = 2 π m
l

c
λ0o Ω (183)

The wavelength difference between the clock and anticlockwise waves is proportional
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to the angular speed Ω of the arrangement.

The interference of two sinusoidal waves with nearly the same frequencies ν and

wavelengths λ is given with

F (r, t) = 2 cos

[
2π

(
r

λmod
− ∆ν t

)]
sin
[
2π
( r
λ
− ν t

)]
λmod ≈

λ2

∆λ
(184)

For our case it is ∆ν = 0 and ∆λ = ∆λdetect and we get

F (r, t) = 2 cos

[
4π2 m

l

λ0 c
r Ω

]
sin

[
2π

(
r

λ0
− ν0 t

)]
(185)

For a given arrangement the argument of the sinus wave varies with r for a given

Ω following a cosinus function.

For the intensity of the interference of two light waves with equal frequencies but

differing phases we have

I(r) = I1(r) + I2(r) + 2
√
I1(r) I2(r) cos[ϕ1(r)− ϕ2(r)] (186)

The phases are in our case

ϕ1(r) = 2π
r

λ20
∆λdetect ϕ2(r) = − 2π

r

λ20
∆λdetect (187)

The intensity of the interference fringes are given with

I(r) = I1(r) + I2(r) + 2
√
I1(r) I2(r) cos

[
4π2 m

l

λ0 c
r Ω

]
(188)

The fringes of the intensity vary with r for a given Ω following a cosinus function .

We have derived the interference patterns for the sagnac arrangement based on the

emission postulate that light is emitted with light speed c relative to its source and that

light is refracted or reflected with light speed independent of the input speed. There

is no incompatibility with “SR without time delay and length contraction”.

21 BSP with light speed.

BSPs with speeds v 6= c emit and are regenerated continuously by fundamental par-

ticles that have longitudinal and transversal angular momenta. With v → c, eq. (7)

becomes zero and so the longitudinal field dH̄s and the corresponding angular momen-

tum J̄s. According eq. (8) only the transversal field dH̄n and the corresponding angular

momentum J̄n remain. With v → c, the BSP reduces to a pair of FPs with opposed

transversal angular momenta J̄n, with no emission (no charge) nor regeneration.
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The concept is shown in Fig. 33

Fig. 33 shows at a) a BSP with parallel p̄
‖
c linear momentum and at b) with

transversal p̄⊥c linear momentum. At c) a possible configuration of a photon is shown as

a sequence of BSPs with light speed with alternated transversal linear momentums p̄⊥c ,

which gives the wave character, and intercalated BSPs with longitudinal momentums

p̄
‖
c that gives the particle character to the photon.

Conclusion: BSPs with light speed are composed of pairs of FPs with opposed

angular momenta J̄n, they don’t emit and are not regenerated by FPs. They are not

bound to en environment that supplies continuously FPs to regenerate them. The

potential linear momentum p̄c of each pair of opposed angular momenta can have any

orientation relative to the speed c̄. BSPs with light speed can be identified with the

neutrinos.
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Figure 33: Different forms of BSP with light speed
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21.1 Redshift of the energy of a complex BSP with light speed

(photon) in the presence of matter.

Fig. 34 shows a sequence of BSPs with light speed (photon) with their potential linear

momenta p before and after the interaction with the ray of regenerating FPs of the

BSPs of matter. When the regenerating rays are approximately perpendicular to the

trajectory of the opposed dHn (dots and crosses) fields of the photon, part of the energy

of the dHn field is absorbed by the regenerating FPs of the ray and carried to the BSPs

of the matter. The photon doesn’t change its direction and loses energy to the BSPs of

the matter shifting its frequency to the red. The inverse process is not possible because

the BSPs of the photon (opposed dHn fields) have no regenerating rays of FPs that

can carry energy from the BSPs of matter and shift the frequency to the violet.
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Figure 34: Loss of energy of a BSP with v = c

The process of loss of energy is according the interaction law 3) of sec. 5 which

postulates that pairs of regenerating FPs with longitudinal angular momenta from a

BSP can adopt opposed pairs of transversal angular momentum from another BSP (see

Fig. 13). As photons have no regenerating FPs they can only leave pairs of transversal

angular momentum to other BSPs and lose energy. During the red shift, two adjacent

opposed potential linear momenta of the photon compensate partially by passing part

of their opposed linear momenta to the BSP of matter.

The energy exchanged between a photon and an electron is

Ei =
h c

λi
Eb =

p2b
2 mp

(189)
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The frequency shift of the photon is with Ei = Eo + Eb

∆ν = νi − νo =
1

h
(Ei − Eo) =

Eb
h

z =
∆ν

νi
(190)

where Ei = h c/λi is the energy before the interaction, Eo = h c/λo the energy

after the interaction and Eb the energy carried to the BSP of matter.

Light that comes from far galaxies loses energy to cosmic matter resulting in a red

shift approximately proportional to the distance between galaxy and earth (Big Bang).

Light is not bent by gravitation nor by a bending target, it is reflected and refracted

by a target.

21.1.1 Refraction and red-shift at the sun.

Fig.35 shows two light rays one passing outside the atmosphere of the sun and one

through the atmosphere. The first ray is red shifted due to regenerating FPs of matter

of the sun as explained with Fig. 34. The second ray is refracted in the direction of

the sun surface when crossing the sun atmosphere. Due to the refractions the speed in

the atmosphere is v < c. Red-shift is also possible at the second ray but not shown in

the drawing.

Note: Bending takes place only between BSPs with rest mass.
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Figure 35: Refraction and red-shift at the Sun
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21.1.2 Cosmic Microwave Background radiation.

From Fig. 34 we have learned how a photon passes energy to matter shifting its fre-

quency to red. The transfer of energy takes place according postulate 8 from rays

that not necessarily hit directly matter. If we put on the place of the matter the

microwave detector of the COBE satellite we see how microwave radiation from radi-

ating bodies that are not placed directly in front of the detector lenses can reach the

detector. What is measured at the FIRAS (Far-InfraRed Absolute Spectrophotome-

ter), a spectrophotometer (Spiderweb Bolometer) used to measure the spectrum of the

CMB, is the energy lost by microwave rays that pass in front of the detector lenses.

The so called Cosmic- Background Radiation is not energy that comes from microwave

rays that have their origin in the far space in a small space angle around the detector

axis. As the loss of energy from rays of photons to the microwave detector that don’t

hit directly the detector is very low, the detector must be cooled down to very low

temperatures to detect them.

22 Interpretation of Data in a theoretical frame.

A theory like our Standard Model was improved over time to match with experimental

data introducing fictious entities (particle wave, gluons, gravitons, dark matter, dark

energy, time dilation, length contraction, Higgs particle, Quarks, Axions, etc.) and

helpmates (duality principle, equivalent principle, uncertainty principle, violation of

energy conservation, etc.) taking care that the theory is as consistent and free of

paradoxes as possible. The concept is shown in Fig. 36. These improvements were

integrated to the existing model trying to modify it as less as possible what led, with the

time, to a model that resembles a monumental patchwork. To return to a mathematical

consistent theory without paradoxes (contradictions) a completely new approach is

required that starts from the basic picture we have from a particle. “E & R” UFT is

such an approach representing particles as focal points in space of rays of FPs. This

representation contains from the start the possibility to describe interactions between

particles through their FPs, interactions that the SM with its particle representation

attempts to explain with fictious entities.
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Detection of experimental data
that don´t fit with the current SM

Definition of fictious entities based on 
the experimental data that don´t fit.

Making the SM consistent with new 
fictious entities as good as possible

Inventing justifications for remaining 
contradictions

Declaring fictitious entities and 
contradictions as the new standard

Glorifying and idolizing the fictious
 entities and their creators 

Detection of additional experimental data that 
can be explained with the fictious entities

Prove that fictious entities really exist

Fallacy used to conclude that the existence of 
fictitious entities is experimentally proven
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Figure 36: Fallacy used to conclude that fictious entities really exist

Fig. 36 is an organigram where the main steps of the integration of fictious entities

to the SM are shown. All experiments where the previously defined fictious entities are

indirectly detected (point 7. of Fig. 36) are not a confirmation of the existence of the

fictious entities (point 8. of Fig. 36), they are simply the confirmation that the model

was made consistent with the fictious entities (point 3. of Fig. 36).

All experiments where time dilation or length contraction are apparently measured

are indirect measurements and where the experimental results are explained with time

dilation or length contraction, which stand for the interactions between light and the
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measuring instruments, interactions that were omited.

In the case of the increase of the life time of moving muons the increase is because

of the interactions between the FPs of the muons with the FPs of the matter that

constitute the real frame relative to which the muons move. To explain it with time

dilation only avoids that scientists search for the real physical origin of the increase of

the life time.

23 Findings of the proposed approach.

The main findings of the proposed model [10], from which the present paper is an

extract, are:

• The energy of a BSP is stored as rotations in FPs defining the longitudinal

angular momenta of the emitted fundamental particles. The rotation sense of

the longitudinal angular momenta of emitted fundamental particles defines the

sign of the charge of the BSP.

• All the basic laws of physics (Coulomb, Ampere, Lorentz, Maxwell, Gravitation,

bending of particles and interference of photons, Bragg) are derived from one

vector field generated by the longitudinal and transversal angular momenta of

fundamental particles, laws that in today’s theoretical physics are introduced by

separate definitions.

• The interacting particles (force carriers) for all types of interactions (electro-

magnetic, strong, weak, gravitation) are the FPs with their longitudinal and

transversal angular momenta.

• Quantification and probability are inherent to the approach.

• The incremental time to generate the force out of linear momenta is quantized.

• Gravitation has its origin in the induced momenta when BSPs that have migrated

outside their nuclei are reintegrated.

• The gravitation force is composed of an induced component and a component

due to parallel currents of reintegrating BSPs. For galactic distances the induced

component can be neglected, what explains the flattening of galaxies´ rotation

curve. (dark matter).

• The photon is a sequence of BSPs with potentially opposed transversal linear mo-

menta, which are generated by transversal angular momenta of FPs that comply

with specific symmetry conditions (pairs of opposed angular momenta).
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• Permanent magnets are explained through closed energy flows at static BSPs

stored in transversal angular momenta of FPs.
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