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Abstract

In the present study, Monte Carlo simulations show how a simple test applied to financial time-

series data can discriminate among the lognormal random walk used in the Black-Scholes-Merton

model, the Gaussian random walk used in the Ornstein-Uhlenbeck stochastic process, and the

square-root random walk used in the Cox, Ingersoll and Ross process. Alpha-level hypothesis

testing is provided. As a conclusion, this test appears to be helpful for selecting the best stochastic

processes for pricing contingent claims and risk management.

I. INTRODUCTION

One approach to testing for lognormality

of financial time series is to analyze the distri-

bution of the returns. If a time series follows

a lognormal random walk, then the continu-

ously compounded returns ln(St/St−1) must

be normally distributed. This approach has

been used by [1] for interest rate changes.

There are many ways to test the normality

of a distribution such as the Kolmogorov-

Smirnov test and the Anderson-Darling test

[2]. Such tests may be used to accept or re-

ject the hypothesis of normally distributed

returns given a certain significance level.

Inferring lognormality from a normality

test of the distribution of returns has some

weaknesses. For example, in many cases a

Gaussian random walk or square-root ran-

dom walk may exhibit close to normally dis-

tributed returns. Accordingly, testing for

normality of returns is not enough to infer

lognormality of a time series. In addition, re-

turns of financial time series exhibit depar-

tures from normality such as anomalies of

the skewness and kurtosis, outliers and, for

equity and market indexes, fat tails [3, 4].

Therefore, a normality test may give a neg-

ative result at the same time that we ac-

cept that the underlying process is lognor-

mal in overall. These weaknesses motivate

the development of tests that do not rely on

the hypothesis that returns are normally dis-

tributed.

The aim of the present study is to offer a

testing framework for the structural proper-
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ties of the Brownian motion of the underly-

ing stochastic process of a time series. For

example the Ornstein-Uhlenbeck stochastic

process is expressed as dSt = λ (µ− St) dt +

σdWt, where λ, µ, and σ are model param-

eters, and Wt the Wiener process. In this

stochastic differential equation, the Brown-

ian motion is a Gaussian random walk of

the form σdWt. In the Cox, Ingersoll and

Ross process, which is expressed as dSt =

λ (µ− St) dt + σ
√
StdWt, the Brownian mo-

tion is a square-root random walk of the

form σ
√
StdWt. The lognormal random walk,

which is expressed as dSt = µStdt+ σStdWt,

has Brownian motion of the form σStdWt.

For the general form of stochastic processes,

dSt = µ(St, t)dt+σnS
n
t dWt, the present study

proposes a method to estimate n which is the

order of the Brownian motion.

II. MODEL

Because daily time increments are gener-

ally used for the purpose of analyzing time-

series data, the drift term of the stochastic

differential equation is considered to be neg-

ligible in our analyses. Hence, for a lognor-

mal random walk the stochastic differential

equation is as follows:

dSt = σStdWt , (1)

where St is the asset price, σ is the volatil-

ity, and dWt the Brownian term which is a

N (0, 1) variable.

Let us consider the expected value of the

absolute value of dSt/St in eq. (1). We get:

E
(∣∣∣∣dStSt

∣∣∣∣) = σE (|dWt|) . (2)

To evaluate E (|dWt|), we need to integrate

the density function of N (0, 1) multiplied by

the absolute value of the integration variable

between −∞ and ∞, which is equal to twice

the integral of the density function multiplied

by the integration variable between 0 and∞:

E (|dWt|) = 2

∫ ∞
0

x
1√
2π

exp

(
−x2

2

)
dx .

(3)

Hence, the expected value of the absolute

value of dWt is as follows:

E (|dWt|) =

√
2

π
. (4)

The following estimator of the volatility is

obtained from eqs. (2) and (4):

σ̂1 =

√
π

2

1

n

n∑
i=1

|ri| , (5)

where σ̂1 is the volatility estimator for n re-

turns ri = ln Si

Si−1
.

Eq. (5) estimates volatility based on the

average value of absolute returns assuming

that the returns are normally distributed.

In contrast, the usual approach to comput-

ing volatility calculates a standard deviation

from the sum of squared returns:
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σ̂2 =

√√√√ 1

n− 1

n∑
i=1

r2i . (6)

Eq. (6) makes no assumptions about re-

turn distribution.

To test the lognormality of a time se-

ries, let us do a linear regression of the

absolute value of the differences |dSt| =

|St − St−1| versus St. The regression model

is |Si − Si−1| = α + βSi + εi, where α is the

intercept, β the slope, and εi the error term.

Then let us compute the following parameter

which is also an estimator of the volatility for

the lognormal random walk:

σ̂3 =

√
π

2
β , (7)

where β is the slope of the linear regression.

For a lognormal random walk, σ̂3 will con-

verge toward σ̂1 or σ̂2; whereas for a Gaussian

random walk of the form dSt = σGaussdWt, σ̂3

will converge toward 0. This approach can

also be used to test the square-root random

walk of the form dSt = σsqrt
√
StdWt.

III. SIMULATIONS

To assess the present test, let us run

some Monte Carlo simulations with differ-

ent stochastic processes, respectively the log-

normal random walk, the Gaussian random

walk, and the square-root random walk. For

comparability, we need to scale the σGauss

and σsqrt of the Gaussian and square-root

random walk. Let us take σGauss = S0σ, and

σsqrt =
√
S0σ, where S0 is the initial asset

price of the simulation. For the Monte Carlo

simulation, let us take S0 = 100, σ = 0.15,

over a time horizon T of 2 years with daily

time increments.

TABLE I. Simulated test statistical parameters

over 200,000 paths

σ̂1 σ̂2 σ̂3

lognormal rand. walk 0.1500 0.1499 0.1510

Gaussian rand. walk 0.1537 0.1543 -0.000278

square-root rand. walk 0.1513 0.1514 0.0758

In the simulations of table I, the volatility

estimators have been scaled to annual basis

using the
√
dt scaling factor. The volatility

estimators converge quickly to their expected

values from the first simulation path. For

the purpose of running the simulations over

longer time horizons (e.g. T of 20 years), we

must add a constraint on the minimal value

that S can reach; otherwise, the statistics σ̂1

and σ̂2 become unstable when S is close to

zero for the Gaussian and square-root ran-

dom walk. A floor price of 1 unity when S0

is equal to 100 would be adequate.

To show that testing for normality of the

returns is not sufficient to make inferences

about the lognormality of a time series, let us

run some Monte Carlo simulations under dif-
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ferent scenarios and compute the percentage

rejection of the null hypothesis (i.e. normally

distributed returns) using the Kolmogorov-

Smirnov test at a significance level of 5% over

10,000 simulation paths (see table II).

TABLE II. Rejection rate of the normally

distributed return hypothesis with the

Kolmogorov-Smirnov test at 5% significance

level

T of 2 yrs T of 20 yrs

lognormal rand. walk 0.0% 0.0%

Gaussian rand. walk 0.01% 42.5%

square-root rand. walk 0.0% 9.9%

For the simulations with the 2-year hori-

zon, the test fails to reject the normally dis-

tributed return hypothesis for the Gaussian

and square-root random walks; whereas, for

the 20-year horizon, the rejection rate is 9.9%

for the square-root random walk and 42.5%

for the Gaussian random walk. The reason

for this result is that, for the 2-year hori-

zon, the variations of S are small. Hence,

returns from the stochastic differential equa-

tion are almost normally distributed for both

the Gaussian and square-root random walks.

For the 20-year horizon, the variations of S

are larger (S spans a larger range of values);

therefore, we start to observe some deviations

from normality for the returns.

IV. GENERALIZATION

Let us show that for the general form of

stochastic processes dSt = Snt σndWt, the ra-

tio σ̂3/σ̂1 converges toward n.

Let us set y = |dS|, hence the slope of |dS|

versus S for arbitrary t is as follows:

βn =
dy

dS
= nSn−1σn|dW | . (8)

From the scaling relationship Sni σn =

Siσi, we get σn = σ
E(Sn−1)

, hence:

βn = nSn−1
σ

E(Sn−1)
|dW | . (9)

Finally, the expected value of βn is as fol-

lows:

E(βn) = n

√
2

π
σ . (10)

V. HYPOTHESIS TESTING OF LOG-

NORMALITY

Finally, the parametric test of lognormal-

ity of a given time series is described below.

The null hypothesis is that the underlying

stochastic process of the time series is log-

normal. Let us assume that the error terms

of the linear regression of |dSt| versus St used

for the estimation of σ̂3 are Gaussian centered

in zero, and of finite variance. If a time se-

ries is lognormal, then the slope of the lin-

ear regression β must converge toward
√

2
π
σ.
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Hence, we can compute the value of the test

statistic as follows:

t∗ =
β −

√
2
π
σ

se (β)
, (11)

where the standard error of the slope of

the linear regression β is as follows:

se (β) =

√
MSE√∑n

i=1

(
Si − S̄

)2 , (12)

where MSE is the mean square error of the

linear regression which is the sum of square

errors divided by n− 2:

MSE =

∑n
i=1 ε

2
i

n− 2
, (13)

where εi are the error terms of the linear re-

gression yi = α+βxi+εi, with n observations.

To compute t∗ in eq. (11), we suggest us-

ing σ̂2. The p-value is determined by refer-

ring to a Student’s t-distribution with tn−2

degrees of freedom. If the p-value is smaller

than the significance level α, we reject the

null hypothesis; if it is larger than α, we can

conclude that the time series is lognormal at

the significance level α.

VI. CONCLUSION

The present study presents a testing

framework for the structural properties of the

underlying stochastic process of a time series.

This test is aimed at discriminating among

stochastic processes, in particular among the

lognormal random walk used in the Black-

Scholes-Merton model, the Gaussian random

walk used in the Ornstein-Uhlenbeck stochas-

tic process, and the square-root random walk

used the Cox, Ingersoll and Ross process.

The test is based on three parameters: σ̂1,

σ̂2 and σ̂3, where σ̂1 and σ̂2 are volatility es-

timators. For a lognormal random walk, σ̂3

converges toward σ̂1 and σ̂2. For a Gaus-

sian random walk, σ̂3 converges toward 0;

and for a square-root random walk σ̂3 con-

verges toward half of σ̂1 or σ̂2. Finally, an

α-level hypothesis test is provided to test for

the lognormality of a time series. In conclu-

sion, practitioners may find the present test

useful for selecting the stochastic processes

they use for contigent claim valuation and

risk management. The test can be applied

to any asset class.
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