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[Abstract] 
 A PC code based on the quantum mechanical Langevin equation to simulate dynamic motion of 

deuterium (or hydrogen) cluster with three dimensional symmetry has been developed for studying very 

fast condensation or oscillation behavior in time-step of 0.001 as (1.0E-21 second) for overall time 

interval of several fs to 500 fs.  Some numerical results are typically shown for two cases of 

condensation behavior; 1) reaching to ground state oscillations as for D(H)2
+ ion molecule, dμd muonic 

molecule, 3D+ ionic molecule, 6D/OSC and others, and 2) making fast collapse to get in the strong/weak 

nuclear interaction range of d-d (or p-p) inter-nuclear distance as for 4D(H)/TSC, 

6D(H)/Rhombic-dodecahedron, 8D(H)/Rhombic-dodecahedron and 20D(H)/Rhombic-triacontahedron.  

Keywords: PC code, D(H)-cluster dynamics, ground state oscillation, fast collapse, 4D(H)/TSC, 

6D(H)-Rhombic-dodecahedron, larger clusters, nuclear interaction, simulation of cold fusion 

 
 

1. Introduction 
 
Time dependent motion of deuterium (or protium) cluster is calculable by a computer 

code based on the quantum-mechanical Langevin equation [1, 2]. Especially the 
dynamics analyses of a three body d-e-d or p-e-p, a 5-body d-e-d-e-d or p-e-p-e-p 
(namely D3

+ or H3
+ ionic molecule) and a 8-body d-e-d-e-d-e-d-e (4D) or 

p-e-p-e-p-e-p-e (4H) cluster under the Platonic symmetry (TSC: tetrahedral symmetric 
condensate) are important to understand the underlying mechanisms of condensed 
matter nuclear reactions aka cold fusion [3]. The dynamic analysis is quite applicable to 
investigate time-dependent behavior of the three body system of d-muon-d after sticking 
of muon onto a d-e-d molecule. The QM Langevin method is also applicable for much 
larger clusters under the Platonic symmetry, such as 6D(H), 8D(H), 12D(H) and 20D(H) 
clusters. 
 We have made a generalized D(H)-Cluster Langevin Code revised from the original 
crude one [1, 2]. We show some typical calculations of 1) dynamic motion going to the 
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ground state, for systems having ground state eigen-values (namely steady molecules), 
2) collapsing motion going to several-tens or smaller fm size transitory condensates 
which may cause very enhanced multi-body nuclear interactions by strong (for D) or 
weak (for H) boson exchange (namely multi-body fusion), and 3) oscillation motion of 
EQPET clusters with electron Cooper pair and quadruplet [1, 2].  
 A muonic d-μ-d system converged in 8.3 fs to its ground state with the inter-nuclear 
d-d distance of 790 fm (0.79 pm) after approximately 80 oscillations from the time 
when a muon stuck onto a d-e-d state with 138 pm d-d distance of the electronic D2

+ 
molecule ground state. A 4D(H)/TSC cluster collapses to the “nuclear interaction size” 
(20 fm to 4 fm) in 1-4 fs depending on the adoption of different type of trapping 
potential functions (Vs2 or Vs1 potential, for instance), always. The Rhombic 
dodecahedron of 6D(2-) and the Rhombic triacontahedron 20D(8+) may collapse into 
the nuclear interaction size. Some other examples are also shown. A list of BASIC 
program of the Cluster Langevin code is given in Appendix. 
   

 
2. Basic Methodology for QM-Langevin Calculation 

 
The idea is based on the known QM electron wave-functions for d-e-d and d-e-e-d 

systems to form 3 dimensional volumetric symmetry to attain stable force-balance 
structure. These 3 dimensional symmetry systems are an elongated di-cone and ‘regular’ 
di-cone, respectively for 2D+ and D2 molecule [2]. The ground state QM electron wave 
function for a d-e-d (or p-e-p) three body system is a linearly combined two 1S wave 
functions [2, 4], where each 1S wave function is for each D(H)-atom ground state of the 
d-e-d (or p-e-p) system. In Fig.1, the feature of treatment for a d-e-d system is illustrated 
to apply to a QM Langevin equation for calculating its dynamic motion. The ground 
state orbit of electron QM center is a circular rotating one with Re = Bohr radius (52.9 
pm) around the mid-point of inter-nuclear d-d distance. The electron kinetic energy of 
d-e-d (or p-e-p) ground state is 13.6 eV that is the same value with 13.6 eV of electron 
kinetic energy of a D(H)-atom ground state. The inter-nuclear distance Rdd (or Rpp) of 
d-e-d (or p-e-p) ground state is 138 pm. The Coulombic trapping potential Vs1(1,1) of 
the d-e-d (or p-e-p) three body system is given in Appendix of Reference-[3] and also in 
Reference [5] and graphic view is shown in Fig.2.  In the previous calculations [1, 2] 
for 4D/TSC, we have used the Vs2(1,1) potential for D2 molecule or its approximate 
function Vs1(2,2) for a bosonized electron pair. In this paper, we will use Vs1(1,1) 
potential for every surface (regular triangle of d-d-d or p-p-p geometry) of various kind 
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of polyhedrons, as a unified potential component of polyhedral D(H)-cluster as 3D(H), 
4D(H), 6D(H), 8D(H), 12D(H) and 20D(H) systems.    

 
Fig.1: Treatment of dynamic motion of a d-e-d three body system by a QM Langevin 

equation.  

 

Fig.2: Coulombic trapping potential of a d-e-d system (D2+), compared with D2 one. 
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In this paper, all mathematical equations are only described in slide-figures. 
Derivations of equations for the QM Langevin method are fully given in References [2, 
3]. This style of paper is chosen for aiming at easier explanation of physical processes 
employed for making program and computations, without getting into detail of 
mathematics derivations. 
The case of TSC is special because of double octahedral symmetry for electron 

wave-function and deuteron wave-function of the TS (tetrahedral symmetry) 
configuration. This condition makes the usage of Vs2 potential (derived from a 
combined 1S product-wave-functions [4, 5]) possible for the confinement force by 
electrons which have much larger de Broglie wave-length than deuteron wave length.    
In this paper, we employ a new rule for evaluating the friction term by electron 
QM-clouds in the QM-Langevin equation, that is the adoption of Vs1(1,1) potential 
always for a unit of d-d-d or p-p-p regular triangle surface configuration. We think, we 
have obtained similar results between the old rule (ACSLENR Vol.1 paper for 4D/TSC) 
and the new rule (Nf=4, Ne=6, Vs1 for 4D/TSC): the condensation time to collapse was 
1.4fs and 3.6fs from 74pm to 20fm, respectively for the old and the new rule: So we 
may apply both rules for 4D/TSC. 
When a 4D/TSC gets into the collapse region with less than about 20 fm d-d distance, 

strong nuclear interaction between 4 deuterons work significantly to form 8Be* 
intermediate compound nucleus by the 4D simultaneous fusion [2, 3] and 
time-dependent fusion rates have been calculated using the Fermi’s golden rule with 
estimated Coulomb barrier penetration factors (time-dependent) by the HMEQPET 
method [2, 3]. In the case of 4H/TSC dynamic condensation, it can get into extremely 
collapsed state of TSC with very small inter-nuclear p-p distances as small as Rpp=2fm, 
and electron capture with a proton would induce weak-strong fusion reaction to form 
4Li* intermediate compound state [1, 6, 7]. Nucleon halo models have been developed 
to study the final state interactions and ashes (nuclear products) [6, 7]. Major nuclear 
ashes are 4He (2.0E+11 per joule) by the 4D/TSC fusion and 3He and D (ca. 1.0E+12 
per joule) by the 4H/TSC WS fusion, without significant hard radiations but low energy 
photons (BOLEP) and very weak secondary gamma-rays, respectively. 
For other combinations for 3D, 6D, 8D, 12D, 20D and so forth, we do not have the 

double symmetry as that of 4D/TSC. (The situation is same for any H-cluster.) 
So AT’s idea (ACSLENRSB Vol.2 [3]) was to learn the QM electron behavior of 3D+ 
stable ionic molecule, for which we have experimental confirmation on 3D+ stable ion 
in plasma and some solutions of Schroedinger QM calculations were given [2]. The idea 
is to apply the confinement force of Vs1(1,1) potential for a d-e-d (or p-e-p) three body 
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QM system, for a basic component per a regular triangle face of total confining 
potential of combined D(H) polyhedral system having many faces and edges. 
It is an approximate way of QM for such complicated systems as 3D+, 6D(2-), 8D(2+), 
12D(8-), 20D(8+), and so on. We need careful study by cross-checking so far if the 
approximate approach is rational. 
Because of much larger QM wave length of electrons than d(p)’s, we need a free 

‘rotation space’ of electron QM-orbit (to satisfy HUP: Heisenberg Uncertainty 
Principle) for ‘expectation position’ for every d-d (or p-p) dipole edge. The d-e-d (2D+) 
system makes stable (ground state) force-balanced system as a di-cone in 3-dimensional 
way: the force balance holds between the central attraction force (centripetal force to the 
center-of-mass point) and the centrifugal force by electron rotation (circular orbit) of 
expectation position around the center-of-mass point (mid-point of d-d “dipole” edge). 
Because of 2 electrons in 3D+ system, the circular rotation orbit can be shared for 3 
d-d edges in 3-dimensional symmetric way to take balance within HUP (or electron de 
Broglie wave-length domain). It means, the balance is not possible in the view of 
classical mechanics, because only two d-d edges can share electron rotation 
simultaneously and the third deuteron will be kicked outside. The HUP helps the 
balance for simultaneous electron sharing for 3 d-d edges and thus 3D+ can be 
stable quantum-mechanically.  

If we consider a 3D++ case, the regular triangle of 3d’s cannot be sustained while 
electron is rotating around a d-d edge and therefore the third deuteron shall apart (by d-d 
repulsion force) from the system. Consequently, 3D++ breaks up to 2D+ (d-e-d) and 
deuteron. The helping force by HUP will not be enough. (We need more study here.) 
Then, what will happen for 6D(2-) 3-dimensional symmetric system by ‘orthogonal’ 
combination of deuteron-octahedron and electron-cube (Rhombic Dodecahedron)? 
This is our challenging problem. We think the solution by our new rule (8Nf and 12Ne) 
may be right. A triangle surface of deuteron-octahedron has no ‘back-side’ surface for 
an ‘paired electrons’ but has for an electron, so that 8 Nf will be OK as every d-d edge 
has sharing d-e-d type rotation orbit simultaneously to avoid break-up.  
However, we are assuming that the same partial QM electron wave-function as that of 
the d-e-d system, namely Vs1(1,1) confining potential for a d-d pair,  holds for every 
electron ‘QM-center’ on the triangle surface. The validity of this assumption shall be 
further studied. 
For more complicated systems as 8D(2+), 12D(8-), 20D(8+), and their relative states 

as ‘neutral’ like 6D, 8D, 12D, 20D having ‘fractional’ net-charge of electron QM-center 
at a face, we do not know exactly whether the analogy of partial Vs1(1,1) friction may 

5 
 



Technova-6201-NT-21  Paper to Proc. JCF-14 

hold or not. 
The formulation of QM-Langevin equation for many-body polyhedral system has been 

derived in Reference [2]. The original form for 4D/TSC as used in Reference [3] is 
shown in Fig.3 with physical meaning of balance of forces between the Coulombic 
centripetal force, the friction by QM electron cloud and the deviation force from pure 
Platonic symmetry. The form of cluster trapping potential is shown accordingly. 

 
Fig.3: The QM-Langevin equation and trapping potential, originally used for Ref.[3] for 
4D/TSC condensation motion. 

 
Fig.4: A d-d pair wave function, time-dependent, is approximated with Gaussian wave 
function  
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 Time dependent d-d pair (for nearest d and d of polyhedron) wave function is 
approximated with a Gaussian wave function, adiabatically which pseudo-eigenvalue 
can be estimated by the HMEQPET method [2, 3]. The QM weight (barrier factor) of 
d-d wave function to getting into the range of strong interaction (See Fig.4) is also 
estimated by the WKB approximation in the HMEQPET method. 
 Now, our general formulas of new QM-Langevin code is shown in Fig.5 for many 
body polyhedral system. 

 

Fig.5: general formulas of QM-Langevin method for Platonic polyhedral 
 

3. Some Calculated Results 
 

A PC code as given in Appendix has been developed using Basic programming. We 
show some typical results and discussions in the following for 1) D(H)-clusters getting 
to stable ground state oscillations, 2) D(H)-clusters getting to collapses in nuclear 
strong/weak interaction ranges, and 3) virtual EQPET molecules with bosonized 
electrons. 

 
3.1 Results for Stable D(H)-Clusters 
 The 3D(H)+ ionic molecule exists stably in solar plasma and accelerator ion-source 

plasma. The solution of the 5-body Schroedinger equation [8] has been given and 
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discussed in our previous paper comparing with our QM-Langevin solution, in good 
agreement [3]. The polyhedral structure of the 5-body d-e-d-e-d system is illustrated in 
Fig.6.  

 

Fig.6: The polyhedral composition of 3D(H)+ ionic molecule 

 

Fig.7: Trapping potential of 3D(H)+ ionic molecule, given by our new rule for 
QM-Langevin equation 
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Fig.8: Trapping potential of 4D(H)/TSC by our new rule with Vs1(1,1) 
 
Table-1: Three key parameters for QM-Langevin calculations for D(H)-clusters 
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Using our new rule based on components of triangle faces with Vs1(1,1) trapping 
potential, the number of faces Nf =4: (3-faces of a triangle-pyramid for e per 3 d-d 
edges )x2e x 2 faces of 3d-triangle for 3D+ : is concluded. Its trapping potential is 
shown in Fig.7. The 3D(H)+ polyhedron has three d-d edges (Ne =3). Interestingly, the 
4D(H)/TSC has Nf = 4 (and Ne =6) with its regular triangle surfaces, but the trapping 
potential shape is quite different, namely having no well-type minimum as shown in 
Fig.8. In Table-1, three key parameters, namely k-value of centripetal force, number of 
edges Ne and number of faces Nf are given for various polyhedrons. D. Rocha has 
calculated k-values for various configuration of polyhedral, using an excel sheet 
calculation by summing up all components of attractive and repulsive Coulombic 
potentials for possible d-d, d-e and e-e distances between QM charge centers. 

The initial two oscillations of 3D+ cluster by the present D(H)-cluster Langevin code 
is shown in Fig.9.  

 

Fig.9: Initial two cycles of oscillation for 3D+ ionic molecule 
 
Initial two cycles of simulated oscillation for 3D+ cluster is shown in Fig.9.  It has 

the ground state with Rdd(gs) = 85 pm which is in good agreement with the result of 
Schroedinger equation analysis [8]. When starting calculation with R0=138 pm, 
complete steady oscillation with same amplitude was attained after about 500 
oscillations. Changing R0 value around 138 pm, we have found almost the same 
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converging oscillation mode that is regarded as ground state. 

 

Fig.10: Initial two cycles of oscillation for 3D+ cluster started with R = 300 pm 

 

Fig.11: Initial 5 cycles of oscillation motion for 2D+(d-e-d) ionic molecule, started 
with R0 = 138 pm 
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The simplest cluster in the present paper is a d-e-d three body system. The first two 
cycles by starting with R0 = 300 pm is shown in Fig.10. Comparison is made with 
starting conditions of R0 = 138 pm and 78 pm. By random sampling of starting 
conditions we obtain corresponding oscillation curves. The ensemble average of curves 
will give the ground state solution. We know the ground state Rdd(gs) = 138 pm, as 
already discussed in Fig.1. Initial 5 cycles of oscillating motion of 2D+ (d-e-d) are 
plotted in Fig.11 for variation of Rdd(t) and relative kinetic energy of d-d pair. 

 
The next interesting three body system is a muonic d-d molecule. When a muon sticks 

to a D2 molecule, how does the time-dependent motion of dμd system look like? We 
used trapping potential of Vs1(50,2) that is known to be almost equivalent to 
Vs1(207,1) [3]. Using the starting value R0 = 74pm, simulation by the present code has 
given an interesting first oscillation cycle curves as shown in Fig.12. After about 2.7 fs, 
there happens very sharp valley of Rdd(t) curve and local maximum of relative d-d 
kinetic energy curve, the extended figure of which is drawn in Fig.13. The local 
minimum d-d distance there is Rdd = 0.2 pm and the local maximum relative d-d kinetic 
energy is ca. 3.0 keV. Next local maximum d-d distance after the first oscillation cycle 
is Rdd = ca. 52 pm which is smaller than the starting value of 74 pm; namely the system 
is condensing. 

 
Fig.12: The initial one cycle of oscillation motion of muonic d-d molecule after 

sticking of muon onto a D2 molecule. 
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Fig. 13: Extended graph of Fig.12, for time interval around 2.7 fs 
 

 
Fig.14: Condensing behavior of muonic d-d molecule after sticking of muon onto D2 

molecule. Changing starting R0 values around 100-50 pm does not effect on the 
converging ‘ground’ state. 
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For succeeding cycles of simulation, local maximum values of Rdd(t) decrease and 

local minimum values of Rdd(t) slowly increases as shown in Fig.14. After about 80 
cycles of oscillation, it looks converging to an asymptotic oscillation that is regarded as 
the ground state of muonic d-d molecule with Rdd(gs) = 0.79pm. The ground state 
oscillation frequency is ca. 1.0E+17 Hz and the ground state relative d-d kinetic energy 
is estimated as ca. 365 eV which is a double score of the previously estimated value 180 
eV by the QM variational calculation with Gaussian wave function (Rdd(gs) was 0.805 
pm in that case) [9]. In the QM variational calculation [3, 9], we used a reduced mass 
for a d-d pair to be 1.0, while the mass of d in the present QM Langevin code is 2.0. 
Therefore the double score is understandable as the difference in conversion from the 
center-of-mass system to the laboratory system. 

 
Now we come back to a known standard case of D2 molecule. We know the 

mathematical functions [4, 5] in Vs2(1,1) potential for trapping D2 molecule have 
difficulty in numerical calculation of its derivative (field-force form) to apply to QM 
Langevin calculation. However, we find that Vs1(1,1.41) potential has very close curve 
to that of Vs2(1,1) as compared in Fig.15. Therefore, we can simulate an approximate 
dynamic motion of D2 molecule by the present code with use of Vs1(1, 1.41) potential. 
The initial two cycles of oscillation motion are drawn in Fig.16.  

 
Fig.15: Vs1(1, 1.41) potential behaves closely to that of Vs2(1,1) potential of D2 

molecule 
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Fig.16: Initial two cycles of oscillation motion for D2 molecule 
 

 

Fig.17: Condensation and collapse of 4D/TSC as simulated by the present code with 
the new rule for face trapping potential component 
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3.2 Condensation Collapse of D(H)-Cluster Polyhedron 
 Now we argue on the results for larger D(H)-clusters than 3D under 3 dimensional 

symmetry (Platonic symmetry). We have already given three key parameters for various 
D(H)-clusters in Table-1. The result for 4D/TSC by the new rule of usage of Vs1(1,1) 
potential for its unit face of triangle d-d-d is shown in Fig. 17. The 4D-cluster collapses 
at around 3.6 fs after the TS formation, while it was after 1.4 fs by using the old rule in 
References [2, 3] which used Vs1(2,2) potential of ‘bosonized electron pair’ on d-e-e-d 
surface of cubic TSC configuration. 

 Fig.18 illustrates the feature of 6D(2-) Rhombic dodecahedron. It has 12 d-d edges 
(Ne = 12) and 8 triangle d-d-d faces (Nf = 8). The value of k is estimated by D. Rocha 
to be 18.45 keVpm. The results of simulation by the present code are shown in Figs. 19 
and 20. It has given collapse after ca. 4.1 fs. Near collapsing time-interval, we had to 
use very fine time meshes as 0.000001 fs (1.0E-21 s) as shown in Fig.20. Such very 
small time meshes would have not been tried in the past molecular dynamics codes 
conventionally available: usually as (1.0E-18 s) would have been the smallest time 
mesh as far as tried. Therefore, usual molecular dynamics codes (or static Schroedinger 
equation analyses) should have missed the collapsing states of D(H)-clusters which 
have no static ground state eigen-values but transient condensing and collapse 
evolution. 

 

Fig.18: Rhombic dodecahedron is the polyhedron of 6D(2-)-cluster 
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Fig.19: Simulated results of condensation motion of 6D(2-) Rhombic dodecahedron, 
getting to collapse after ca. 4.1 fs and maybe inducing 6D multi-body fusion 

 

Fig.20: Extended graph of condensing evolution before collapse at around 4.097035 fs 
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 When we exchange QM centers between electrons (red) and deuterons (blue) in 
Fig.18, we get 8D(2+) cluster of Rhombic dodecahedron. The result of simulation by 
the present code is shown in Fig.21. This 8D(2+) cluster may also collapse at ca. 3 fs 
after the cluster polyhedron formation. 
Example for more larger D(H)-cluster is for the case of 20D(8+) cluster of Rhombic 

triacontahedron as its geometrical feature is illustrated in Fig.22. This 20D(8+) cluster 
may also collapse at around 6.5 fs after the cluster formation. What kind of strong 
interactions (so many body fusion?) will happen is the remained problem of nuclear 
physics consideration.  
When we exchange QM centers between electrons (red) and deuterons (blue) of Fig.22, 

we get 12D(8-) cluster of Rhombic triaconrahedron. The simulation calculation for the 
system, as shown in Fig.24, does not make collapse but converges to steady oscillation 
of ground state, interestingly. We tried to find that some other polyhedral cluster as 
6D(2-)/OSC does not collapse either.  
To summarize the results of simulation for various clusters, in the view of collapse and 

possible multi-body nuclear interactions, Table-2 is conclusively obtained.  
 
 

 

Fig.21: Results of simulation for condensation motion of 8D(2+) cluster 
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Fig.22: Geometrical feature of 20D(8+) cluster of Rhombic triacontahedron 
 
 

 

Fig.23: Results of simulation for 20D(8+) cluster of Rhombic triacontahedron 
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Fig.24: Results of simulation for 12D(8-) cluster of Rhombic triacontahedron 
 
 
Table-2: Summary of condensation and collapse states for D-clusters; 
   Here RD denotes Rhombic dodecahedron and RT does Rhombic triacontahedron. 
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3.3 Simulation of EQPET D(H)-Clusters 
 Because of the spin arrangement of electrons in D(H)-clusters of polyhedra, 

condensation motion may be somewhat different from above results for which the spin 
effect was not treated.  

 The anti-parallel arrangement of spins for counter-part electrons in polyhedron of 
D(H)-cluster, bosonized pseudo-particle state of coupled electrons were assumed in our 
previous study on D(H)-cluster condensation [5]. The typical bosonized pseudo-particle 
states of oriented electrons as assumed in reference [5] are illustrated in Fig.25.  

Results of simulation calculations for EQPET clusters by the present code are shown 
in Figs. 26 through 29. In many cases, EQPET clusters have very diminished size 
ground states as summarized in Table-3. Since these diminished size states as ground 
states have infinite life time and very close d-d (or p-p) inter-nuclear distances, reaction 
rates by strong (even weak) interactions may become significantly large to be able to 
argue on the possibility of condensed matter nuclear reactions aka cold fusion. 

 
In this paper, example figures for H-systems are not specifically shown. However 

condensation speed is inversely proportional to mass and all figures may be rescaled for 
the case of H-clusters. 
 

 
Fig.25: Assumed bosonized quasi-particles of oriented electrons 
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Fig.26: Results of simulation for 4D/TSC cluster with Vs1(4,4) EQPET potential 

 

Fig.27: Results of simulation for EQPET 8D/RD cluster 
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Fig.28: Results of simulation for EQPET 6D(2-) cluster with Vs1(8,8) potential, 
having no collapse but converged ground state of diminished size cluster (Rdd(gs) = 
125 fm) 
Table-3: Summary of converged ‘ground’ sates for EQPET clusters 
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A typical example of simulation for such EQPET clusters is the cases of 4D/TSC with 

Vs1(4,4) trapping potential and  8D/RD neutral-cluster with Vs1(8,8) trapping 
potential. Results of simulation on condensation/collapse motion by the present code are 
shown in Figs. 26 and 27.  

 
 

4. Concluding Remarks 
 

A generalized PC computer code written by Basic language has been developed for 
making simulation calculations on very time-sensitive dynamics behavior of polyhedral 
D(H) clusters which transient behavior is recognized very important according to the 
physical mechanisms of condensed matter nuclear reactions aka cold fusion. 
For realizing the frictional/constraint force components caused by the quantum 

mechanical motion of electrons in D(H)-cluster, the well-studied Coulombic trapping 
potential Vs1(1,1) of three body system (d-e-d or p-e-p) was used as a unit of particle 
trapping force per a regular triangle d-d-d (or p-p-p) surface of D(H)-cluster polyhedron 
assuming the 3 dimensional symmetry (Platonic symmetry). Evaluating three key 
parameters as k-value of centripetal Coulombic force of cluster, number of d-d (or p-p) 
edges Ne and number of regular triangle surfaces for individual D(H)-cluster, the 
programmed D(H)-cluster Langevin code can be run for simulation of very precise 
time-dependent behavior of condensation and sometimes collapsing states.  
Time steps of numerical Verlet run must be very fine as 1.0E-21 s to find very rapidly 

collapsing states. Such extremely small time mesh dynamics may be new in 
molecular/cluster-forming dynamics codes as given conventionally. Usual time mesh 
calculations with a few fs or even few as time mesh should miss easily the collapse 
states due to the time-averaging or error accumulation in time-step sequences of 
numerical calculation. Of course, the eigenvalue approach by the static Schroedinger 
equations cannot resolve such very fast transient behavior. The developed 
QM-Langevin method is a unique tool that should be very usable in studying underlying 
dynamic mechanisms of condensed matter nuclear reactions aka cold fusion. 
Summary of most important consequences in this respect of cold fusion is given in 

Table-2. We may conclude the polyhedral D(H) cluster such as 4D(H)/TS, 6D/RD, 
8D/RD, 20D/RT have something to do with inducing dreamy cold fusion events.      
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Appendix: D(H)-Cluster Langevin Program 
 

1 ! Cluster Langevin Code (written by Akito Takahashi, revised on April 11 2013) 
2 ! Instruction: Time-dependent motion of d-d (or p-p) distance for a polyhedral deuteron(d) or 
proton(p) cluster is calculated. 
3 ! Source Literature: Akito Takahashi: The Basics of Deuteron-Cluster Dynamics as Shown by 
a Langevin Equation, ACSLENRSB Vol.2, Chapter 11, pp.193-217, 2009 
4 ! the second literature: A. Takahashi, N. Yabuuchi, Study on 4D/TSC Condensation Motion by 
Non-Linear Langevin Equation, ACSLENRSB Vol.1, pp.57-83, 2008 
5 ! Correction in the second literature: In Appendix, (A-4) minus is missing for K, (A-9) minus 
should be removed for K' 
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11 ! ms: mass number (cf. electron) of electronic quasi-particle, Z: relative charge (cf. electron) 
of EQ 
12 ! BA: bias factor by <f(t)> for the main centripetal Coulombic force: BA=0.91 is 
recommended for most cases. 
16 input BA 
17 print using "BA=%.####" :BA 
20 input ms 
30 print using "ms=%.####" :ms 
40 input Z 
50 print using "Z=%.####" :Z 
55 ! EK is k-value (keVpm) for centripetal force, EK=3.65 for 3D+, EK=11.85 for 4D/TSC, 
EK=10.97 for 6D(2-) 
56 ! FNf is the number of effective faces of d(or p)-polyhedron: FNf=4 for 3D+, FNf=4(for 
Vs1(1,1)) or 6(for Vs1(2,2) or Vs1(4,4)) for 4D, Nf=8 (for Vs1(1,1)) for 6D 
57 ! FNe is the number of nearest d-d edges: FNe=3 for 3D+, FNe=6 for 4D, FNe=12 for 6D 
58 ! fmrev is the inverse of d (or p)-mass: 4.77E4 for deuteron, 2*4.77E4 for proton (See the 
second literature). 
59 ! R0 is the starting d-d distance in pm unit. 
60 ! Please write-in the following parameters in line 62-66 
62 LET  EK=11.85 
63 LET  FNf=6 
64 LET  FNe=6 
65 LET  fmrev = 4.77E4 
66 LET R0=74.0 
69 input TDT 
70 print using "DT=%.#####" :TDT 
100 DIM RDD(2000), R(2000), T(2000), V(2000), VS1(2000), FCOND(2000), 
BALANCE(2000), G(2000), ED(2000), DT(2000) 
110 ! T is in (fs), R and RDD are in (pm), V is in (pm/fs), VS1 and ED are in (keV), FCOND 
and BALANCE are in (pm/fs/fs) 
210 LET V(1)=1.0 
215 LET T(1)=0.0 
218 LET R(1)=V(1)*TDT 
220 LET IMAX=2000 
230 LET I=1 
300 do while I<IMAX 
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305    LET DT(I)=TDT 
320    LET RDD(I)=R0-R(I) 
321    if RDD(I)<=20 then LET DT(I)=0.1*TDT 
322    if RDD(I)<=5 then LET DT(I)=0.01*TDT 
323    if RDD(I)<=1 then LET DT(I)=0.001*TDT 
324    if RDD(I)<=0.5 then LET DT(I)=0.0001*TDT 
325    if RDD(I)<=0.05 then LET DT(I)=0.00001*TDT 
315    if RDD(I)<=0.001 then LET RDD(I)=0.001 
330    LET y=ms*Z*RDD(I)/52.9 
340    LET FJ=0.0272*Z^2*ms*(-1/y+(1+1/y)*exp(-2*y)) 
350    LET FK=-0.0272*Z^2*ms*(1+y)*exp(-y) 
360    LET FD=(1+y+y^2/3)*exp(-y) 
365    LET VS1(I)=-0.0136*Z^2*ms+1.44/RDD(I)+(FJ+FK)/(1+FD) 
370    LET FJD=(5.14E-4)*Z^3*ms^2*((1.0-exp(-2*y))/y^2-2*(1.0+1/y)*exp(-2*y)) 
380    LET FKD=(5.14E-4)*Z^3*ms^2*y*exp(-y) 
390    LET FDD=-(6.3E-3)*(y+y^3)*exp(-y) 
400    LET DVS=-1.44/RDD(I)^2+((FJD+FKD)*(1+FD)+(FJ+FK)*FDD)/(1+FD)^2 
410    LET BALANCE(I)=(FNf*fmrev/FNe)*DVS 
420    LET FCOND(I)=(EK*fmrev/FNe)/RDD(I)^2 
430    LET G(I)=BA*FCOND(I)+BALANCE(I) 
500    ! Verlet Solution 
510    LET R(I+1)=R(I)+V(I)*DT(I)+0.5*G(I)*DT(I)^2 
512    LET RDD(I+1)=R0-R(I+1) 
513    if RDD(I+1)<=0.001 then LET RDD(I+1)=0.001 
515    LET y=ms*Z*RDD(I+1)/52.9 
516    LET FJ=0.0272*Z^2*ms*(-1/y+(1+1/y)*exp(-2*y)) 
517    LET FK=-0.0272*Z^2*ms*(1+y)*exp(-y) 
518    LET FD=(1+y+y^2/3)*exp(-y) 
519    LET FJD=(5.14E-4)*Z^3*ms^2*((1.0-exp(-2*y))/y^2-2*(1.0+1/y)*exp(-2*y)) 
520    LET FKD=(5.14E-4)*Z^3*ms^2*y*exp(-y) 
521    LET FDD=-(6.3E-3)*(y+y^3)*exp(-y) 
522    LET DVS=-1.44/RDD(I+1)^2+((FJD+FKD)*(1+FD)+(FJ+FK)*FDD)/(1+FD)^2 
523    LET G(I+1)=BA*(fmrev*EK/FNe)/RDD(I+1)^2+(fmrev*FNf/FNe)*DVS 
530    LET V(I+1)=V(I)+(DT(I)/2)*(G(I+1)+G(I)) 
540    LET ED(I)=(0.5/fmrev)*V(I)^2 
590    if RDD(I)<=0.001 then LET IMAX=I 
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595    if RDD(I)<=0.001 then LET RDD(I)=0.001 
600    if RDD(I)<=0.001 then exit DO 
650    LET I=I+1 
700 loop 
800 ! Print Outputs 
810 LET AA$="T(fs) " 
820 LET AB$="RDD(pm) " 
830 LET AC$="v(pm/fs) " 
840 LET AD$="ED(keV) " 
850 LET AE$="Vs(keV) " 
860 LET AF$="Fcond(pm/fs/fs) " 
870 LET AG$="Balance(pm/fs/fs) " 
880 LET AH$="G(pm/fs/fs)" 
890 print AA$&AB$&AC$&AD$&AE$&AF$&AG$&AH$ 
910 LET I=1 
920 LET T(1)=TDT 
950 do while I<=IMAX-1 
955    LET T(I+1)=T(I)+DT(I) 
960    print using "-%.#######^^^^ -%.###^^^^ -%.###^^^^ -%.###^^^^ -%.###^^^^ 
-%.###^^^^ -%.###^^^^ -%.###^^^^" : T(I), RDD(I), V(I), ED(I), VS1(I), FCOND(I), 
BALANCE(I), G(I) 
970    LET I=I+1 
1000 loop 
1100 stop 
     END 
        
Note: Basic software is available at:  

• The source of BASIC EXE under use in our PCs is downloadable from here: 
• http://hp.vector.co.jp/authors/VA008683/basicw32.htm  
• The instruction is in Japanese. 
• BASIC761 : you may right-click it and download. 
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