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We show that when spin eigenfunctions are not fully orthonormal, Bell’s inequality does allow
local hidden variables. In the limit where spin eigenfunctions are Dirac orthonormal, we recover a
significant extremal case. The new calculation gives a possible accounting for αMCM − αQED.

As it has been understood, Bell’s inequality rules out
the new variable proposed in the MCM. No analytic form
has been found for the eigenfunctions of the spin operator
but they are assumed to be orthonormal. In this short
paper we examine the case when spin eigenfunctions are
not orthonormal [1]. Derivation of Bell’s inequality of-
ten starts with a statement of the average value of the
product of the spins when the detectors are aligned along
spatial unit vectors ~a and ~b and θ is the angle between
them [2].

P (~a,~b) = −~a ·~b = − cos(θ) (1)

This is derived by taking the expectation value of the
product of two spins in a singlet state. Moving directly
to the end of that calculation we find the following.

P (~a,~b) =
sin(θ)√

2
〈0 0|1 −1〉 − (2)

− cos(θ)〈0 0|0 0〉+
sin(θ)√

2
〈0 0|1 1〉

When spin states are orthogonal, equation (2) reduces
to equation (1). When they are not orthogonal, the sin(θ)
terms do not go to zero. Let the magnetic quantum num-
ber distinguish δ±.

P (~a,~b) = δ− − ~a ·~b+ δ+ (3)

Bell’s inequality is derived from the difference between
P (~a,~b) and P (~a,~c). Using the normal prescription [2]

that −~a·~b = A(~a)A(~b) and moving to the hidden variable
formalism, we may write the following.

P (~a,~b) −P (~a,~c) = (4)

=

∫
[1−A(~b, λ)A(~c, λ)]A(~a, λ)A(~b, λ)ρ(λ)dλ+

+

∫
(δab− − δac− )ρ(λ)dλ+

∫
(δab+ − δac+ )ρ(λ)dλ

The system in question decays to two particles so it is
not possible to directly test the the theory’s prediction
for three different detector alignments {~a,~b,~c}. The ex-
perimenter would have to perform a test in one apparatus

configuration {~a,~b}, then reconfigure the table for {~a,~c}
and take more data at some later time. In the process
of reconfiguring, the observer moves to a different level
of ℵ so δab 6= δac. The delta resultant from the earlier
measurement is infinitely smaller than the later one and
can safely be ignored.

When the delta is taken to be the Dirac delta, we find
the extremal case in which local hidden variables are al-
ways allowed.

|P (~a,~b)− P (~a,~c)| ≤ 3 + P (~b,~c) (5)

Now consider the case when δ± are integrated accord-
ing to the prescription in reference [1].

|P (~a,~b)− P (~a,~c)| ≤ 1 + P (~b,~c) + 2π + (Φπ)3 (6)

This leads to a possible accounting for the small dis-
crepancy between the expected value for the fine struc-
ture constant and the empirically determined one αQED.

αMCM − αQED = P (~b,~c) + 1 (7)

The difference is less than one so it is possible the +1
factor needs to be dropped. Another possibility is that
the requirement for a probability not between zero and
one is a manifestation of non-unitarity. Interesting is that
αMCM − αQED ≈ ϕ.

The two axes ~b and ~c are not necesarily related to lo-
cal orientation. They could define the angle of intersec-
tion between the worldlines that made this universe come
into existence. This description of αMCM both allows
and tightly constrains a varying fine structure constant.
Small fluctuations in the historical value for αQED may
be caused in part by orbital and other wobbles. Such
cases are readily optimized against empirical studies of
the shocking anomalies in the CMB [3].
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