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Abstract

We present a continuous counterpart to Schwarzschild’s metrical model of a
constant-density sphere. The new model interpolates between a central higher-
density spherical concentration of mass and lower-density layers at large dis-
tance. Whereas the radial part of pressure shows a positive distribution for all
values of radial distance, the angular part of pressure shows negative magni-
tudes in the upper layers of low density; both pressures vanishing for infinite
distance. We speculate that the negative pressure effect might be connected
with stellar winds. Studying the motions of photons and massive particles in
the gravity field of the continuous model shows similar, however continuous,
behaviors to those described before for Schwarzschild’s constant-density model.

1 Introduction

The Schwarzschild relativistic model of an incompressible liquid sphere[1] of constant
density may serve as an idealistic mathematical foundation[2],[3] for a liquid model of
the sun[4] and other astrophysical bodies. However, it would be much more realistic
if a model would account for a continuous transition from an internal higher-density
incompressible spherical core to external lower-density gaseous layers. Our purpose in
this article is to present such a counterpart to the Schwarzschild metric.

Let us begin by recalling that corresponding to a general metric described by the line
element

ds2 = A(r)c2dt2 −B−1(r)dr2 − r2(dθ2 + sin2 θ dφ2) (1)

where r, θ, φ are the spherical coordinates, t is the time variable, c is the special rela-
tivistic speed of light constant, with A(r) and B(r) functions of the radial coordinate,
the Schwarzschild metric of a sphere of constant density is given by such foregoing
metric with the functions A and B given by separate expressions for the inside and the
outside of the sphere. First for the internal part of the metric, we have

A(r) = 1
4

(
3
√

1− s
a
−
√

1− sr2

a3

)2

B(r) =
(

1− sr2

a3

) r ≤ a (2)
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while for the external part, we have the Schwarzschild metric for a central point, with A(r) =
(
1− s

r

)
B(r) =

(
1− s

r

) r ≥ a (3)

In the above expressions, the parameter a denotes the radius of the sphere, while the
parameter s denotes the Schwarzschild (or Hilbert) radius given by s = 2GM/c2, with
G the Newtonian gravitational constant, and M is mass of the sphere. Notice that the
values of the functions A(r) and B(r) for the inside of the sphere and for the outside,
do in fact match at the boundary r = a.

Whereas Schwarzschild had given the above metric[1] in a much more complicated form
and in terms of other coordinate variables, the above was given recently by Borissova
and Rabounski[2],[3]. We have already examined the above metric[7] and verified the fact
that it solves the Einstein equations with a constant mass density inside the sphere and
zero outside:

ρ =


3c2

8πG
s
a3

r ≤ a

0 r > a
(4)

And with a pressure of an ideal fluid (radial and angular parts equal) given by

P =


3c4

8πG

(
s
a3

){ √1− s
a
−
√

1− sr2

a3

−3
√

1− s
a
+
√

1− sr2

a3

}
r ≤ a

0 r ≥ a

(5)

We also studied the relativistic motions[5] of a photon and a massive particle in the
gravitational field of the above Schwarzschild metric for a sphere of constant density,
and made contrast with the motions[6] in the field of a singular Schwarzschild source[7].

In the followings, after introducing our continuous counterpart to the Schwarzschild
metric of a sphere of constant density, given above, we proceed to examine its properties
keeping eye on the possibility of applying it as a stellar model, with particular reference
to solar parameters. We shall also examine the radial motions of a photon and a
massive particle in the associated gravity field, making comparisons and contrasts with
the results of our similar study[5] with regard to the metric of a Schwarzschild liquid
sphere.

2 The Continuous Counterpart

We now present the model which replaces Schwarzschild’s discontinuous metric by a
counterpart that interpolates continuously between the internal and external sections.
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The metrical functions take the form:
A(r) = 1

4

(
3
√

1− s
(r3+a3)1/3

−
√

1− sr2

r3+a3

)2

B(r) =
(

1− sr2

r3+a3

) (6)

Notice that the above expressions reduce to the Schwarzschild internal form for r � a,
and to the external form for r � a. The parameter a in our expressions would give a
measure of the size that should be associated with the central mass distributions. To
determine the value of a we can use its relationship to other quantities such as density
and pressure, as we shall see. With regard to the description of a stellar body, the value
of a need not be equal to the apparent value of the stellar radius. It could be smaller
or greater depending on the state, structure and evolution of the system.

In the followings, we shall examine the properties of the above continuous metric, and
show that it gives reasonable continuous expressions for density and pressure. We shall
discuss implications for a possible associated stellar model, with particular reference
to solar parameters. Subsequently, we shall depict the relativistic motion of a particle
making contrast with Schwarzschild’s model.

Recalling that our general expression[5] for the mass density is given by

ρ = − c2

8πG

(−1 +B + rB′)

r2
(7)

where the prime denotes differentiation with respect to the radial coordinate r, we
obtain corresponding to our continuous metric:

ρ =
3c2

8πG

sa3

(r3 + a3)2
(8)

First note that the above expression is positive for all positive values of a and r. In
order to make a realistic depiction of the above density distribution, we shall use solar
parameters. Using s = 2GM/c2, we obtain

ρ =
3a3M

4π(r3 + a3)2
(9)

Now using the solar mass value for M , we get the following expression (in gm/cm3),

ρ =
4.7482× 1026a3

(r3 + a3)2
(10)

The following is a plot for three tentative values of a = {0.5, 1, 1.5} ×R�, with R� the
solar radius (respective colors, red, green and blue), with the radial scale in meters:
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We see that the smaller the value of a, the more concentrated is the spherical mass
distribution. Corresponding to the three respective values of a, we can compute that
the respective values of the density at the center of a corresponding solar model are
{11.2666, 1.40832, 0.41728} gm/cm3 while the values when r is equal to the visible solar
radius are {0.139093, 0.35208, 0.248324} gm/cm3. In fact depending on the nature of
the solar model, the needed density at the core, or the value needed at the photosphere,
we might be able to determine the value of a more precisely. Notice that the above
values of density would drop to {0.00266664, 0.0173867, 0.0367343} gm/cm3 at twice
the solar radius and to {1.75996× 10−7, 1.40551× 10−6, 4.72115× 10−6} gm/cm3 at ten
solar radii.

Turning to the pressure parts, we first note the the radial pressure part P1 and the
angular pressure part P2 (which is equal to P3) are not equal in this model (which
means that the underlying distribution does not correspond to an ideal fluid). The
expressions for P1 and P2 are too complicated, so we shall present them as images from
our symbolic computational system. This gives the expression for P1:

(11)
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This gives the expression for P2:

(12)

Now using the solar parameters we obtain numeric expressions for P1 and P2. The
following is a plot of P1 corresponding to our three values of a = {0.5, 1, 1.5} × R�
(respective colors red, green and blue). The radial scale is given in meters, and the
pressure scale in atmospheres:

Likewise, this is the plot for P2:

At this point, we note an important observation. Whereas the radial part of pressure P1

is positive for all values of the radial coordinate, the angular part P2 exhibits negative
values in upper layers of the solar sphere. However, notice that both parts tend to zero
for large radial distance.

For the mean pressure P = (P1 + P2 + P3)/3, we have the following plot:
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We can see that the effect of a negative angular part of pressure does show up in the
depiction of the mean pressure. The physical meaning of negative pressure, we believe,
is that of inflation, to be contrasted with compression. What would this mean with
respect to a solar model? This is not a question which we can answer immediately.
However, we ask whether this could have any relationship with the phenomenon of
stellar winds ! The outer layer of a star would seem to be characterized by negative
pressure, and this seems to come from the angular part of pressure rather than from
the radial, according to the continuous metrical model at hand. Any other suggestions?

It would be interesting to compare the radial part of pressure with the angular part at
the same radial distance. The following is a plot of both P1 and P2 for the value of
a = 0.5×R�:

Let us turn now to an analysis of the relativistic radial motion of a particle in the field
of our continuous metrical counterpart to the Schwarzschild liquid sphere. We shall
begin with the motion of a photon followed by the motion of a massive particle.

3 Motion of a Photon

The radial speed squared of the photon is given[5] by v2(r) = c2A(r)B(r), and we have
correspondingly:

v2(r) =
c2

4

(
3

√
1− s

(r3 + a3)1/3
−
√

1− sr2

r3 + a3

)2(
1− sr2

r3 + a3

)
(13)
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The following is the photon’s radial acceleration divided by c2:

(14)

Notice, from the above expression, that a radial photon’s acceleration vanishes for
r → 0.

The following is a schematic plot of v2(r) for the case a > s, in our continuous model,
compared with the corresponding plot[5] in the Schwarzschild model[5] (the scales are
the same for the two cases with c = 1, s = 1, and a = 10):

And these give the plots for the acceleration functions a(r):

Turning to the case a = s, when the radius of the sphere is equal to its Schwarzschild
radius, we have for the photon speed squared:

For the photon’s acceleration, we have
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4 Motion of a Massive Particle

The expression for the speed squared v2(r) of a massive particle of mass m and energy
ε, moving radially, as well as the expression for the acceleration a(r), are given by the
general formulae[5], in terms of the metric functions A(r) and B(r):

v2(r) = c2AB

{
1−

(
mc2

ε

)2
A

}
a(r) = 1

2
d
dr
v2(r)

(15)

With the forms given for A and B in our continuous model, we can work with the
corresponding numeric expressions, and move directly to the schematic plots.

The followings are the schematic plots for particle speed squared v2(r) and acceleration
a(r) that correspond to ε = 0.5mc2, with scales chosen such as c = 1, s = 1 and a = 10:

to be compared with their Schwarzschild counterparts[5]:

The followings are the schematic plots for particle speed squared v2(r) and acceleration
a(r) that correspond to ε = mc2, with scales chosen such as c = 1, s = 1 and a = 10:
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to be compared with their Schwarzschild counterparts[5]:

And, the followings are the schematic plots for particle speed squared v2(r) and accel-
eration a(r) that correspond to ε = 1.5mc2, with scales chosen such as c = 1, s = 1
and a = 10:

to be compared with their Schwarzschild counterparts[5]:

The reader can learn a lot by studying carefully all the preceding plots.

5 Discussion

The relativistic metrical model presented in this article offers a continuous counterpart
to Schwarzschild’s model of a constant-density sphere. Along with continuity, our model
brings about a new effect that is manifest in the plot of pressure as a function of radial
distance. The new effect is that of negative magnitude associated with the angular part
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of pressure. Whether this effect of negative pressure is a universal feature of continuous
models in general, and whether it is of any important physical significance such as being
connected with stellar winds, is the subject of our current investigations. However, we
have found that many metrical models with acceptable density distributions do in fact
demonstrate the negative pressure effects in the central part of the radial range, as well
as in the external part (seen here).

On the other hand, our study of the motions of photons, and massive particles with large
energy, in the gravity field of the continuous model, does show the effect of gravitational
repulsion, as we have seen before in connection with singular Schwarzschild sources[6],
and with the constant-density Schwarzschild sphere[5].

Other examples of continuous metrical models, that are not related to the Schwarzschild
model at all, will be presented in other articles. These models will also help to clarify
the question of the interior gravity and the repulsive effect, together with the novel
effect of negative pressure.
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