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Abstract. The Schwarzschild metric is rearranged to manifest inherent limitations based
on the conservation of energy. These limitations indicate that a collapsing surface will
not compact below a critical radius to form a black hole.

1. Introduction

A significant difference between physics and abstract math is the requirement that
physics is anchored in physical reality, both in its starting principles and its predictions.

For discussions of gravity, the anchor to reality has preeminently been Albert Einstein’s
theory of general relativity and particularly his field equations. These equations are built
on a very few basic assumptions about reality. Most notable of these is the fundamental
concept that the laws of nature, particularly the conservation of momentum and energy, are
valid irrespective of the motion of the reference system from which they are measured[1].

This paper explores the conservation of energy as expressed in Schwarzschild metric. The
Schwarzschild metric has been chosen as an explanatory vehicle because it is concrete, it
has very few terms and as a solution to the field equations it must express the conservation
of energy in the manner circumscribed by the field equations.

2. Gravity and the Conservation of Energy

How is energy conserved in a gravitational field? In Einstein’s defining works on grav-
ity, he explicitly or implicitly invoked what he called the Hamilton Principle to explain
conservation of energy[1, 2, 3]. According to Einstein’s version of the Hamilton Principle,
any change in energy that results from changing position in a gravity field is balanced by
an equal and opposite change in the energy of matter (or in the energy of light if light is
being observed). As he explicitly sets out in his 1916 paper, Hamilton’s Principle and the
General Theory of Relativity [4],

(1)
δ

δxv
(F vσ + tvσ) = 0,

where F vσ represents the components of the energy of matter and tvσ represents the compo-
nents of the energy of the gravitation field[4, p. 172]. Einstein included the electromagnetic
field in his definition of matter[4, p. 167].
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The energy equivalence of matter apart from a gravitation field was derived by Einstein
a few years earlier [5] and is given by the well known

(2) E = mc2.

It may be understood from (1) and (2) that for a particle of mass m (hereinafter particle
m), its total energy equivalence mc2 remains constant; however, when particle m enters a
gravitational field, its energy equivalence is apportioned into components representing the
energy of matter and representing the energy of the gravitation field.

The remainder of this paper explores how this is expressed in the Schwarzschild metric
and the implications of this for explaining and predicting physical phenomena and in
particular, black holes.

3. Verifying Conservation of Energy in the Schwarzschild metric

Shortly after Einstein’s published his field equations, a German military officer, Karl
Schwarzschild published a solution of the field equations for a gravitational field outside a
spherical non-rotating mass[6]. In this section, the terms of the Schwarzschild metric are
rearranged to make it easy and intuitive to verify that the Schwarzschild metric complies
with (1).

3.1. Rearranging the Schwarzschild metric. The Schwarzschild metric describes a
gravitational field outside a spherical non-rotating mass. For a compact mass M with a
Schwarzschild radius R, the Schwarzschild metric is often expressed using reference space
coordinates (r, θ, φ), coordinate time t and local time τ as

(3) c2dτ2 = c2(1− R

r
)dt2 − dr2

(1−R/r)
− r2dθ2 − (rsinθ)2dφ2.

In order to verify that (3) complies with (1), the terms of (3) can be rearranged as follows.

Begin by multiplying both sides of (3) by

(
1

dt

)2

yielding

(4) c2
(
dτ

dt

)2

= c2
(

1− R

r

)(
dt

dt

)2

− 1

1−R/r

(
dr

dt

)2

− r2
(
dθ

dt

)2

− (rsinθ)2
(
dφ

dt

)2

.

The terms of (4) can be rearranged as

(5) c2 = c2
(
dτ

dt

)2

+ c2
R

r
+

1

1−R/r

(
dr

dt

)2

+ r2
(
dθ

dt

)2

+ (rsinθ)2
(
dφ

dt

)2

.

To simplify interpretation, a velocity v through the three dimensions of curved space as
measured using time coordinate t can be defined as

(6) v =

√
1

1−R/r

(
dr

dt

)2

+ r2
(
dθ

dt

)2

+ (rsinθ)2
(
dφ

dt

)2

.
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Using the definition in (6), (5) reduces to

(7) c2 = c2
(
dτ

dt

)2

+ c2
R

r
+ v2.

To further simplify comparison, a particle m is allowed to enter the gravitation field
defined by Schwarzschild metric. Based on (7) the energy equivalence of particle m is
apportioned as

(8) mc2 = mc2
(
dτ

dt

)2

+mc2
R

r
+mv2.

The Schwarzschild metric as expressed in (8) is mathematically equivalent to (3). The
arrangement shown in (8) simply makes clear how the terms in the Schwarzschild metric
represent concrete physical phenomena. Each of these terms is now individually considered.

3.2. Energy equivalence. The energy equivalence, mc2 represents the energy equivalence
of particle m. The gravity field around mass M does not change the total energy of
particle m, but only apportions it into different energy components, affecting the behavior
of particle m in the gravity field around mass M .

3.3. The energy of motion component. The energy of motion component mv2 repre-
sents the effect of motion through space. In general relativity all motion is with respect to
a reference point. The coordinates indicate the reference point from which measurements
are made. In (8), the Schwarzschild metric is expressed using reference space coordinates
(r, θ, φ). The origin of the reference space coordinates (r, θ, φ) is at (0, 0, 0), the center of
mass M . This indicates that the motion of particle m is measured with respect to the
center of the mass M .

The energy equivalence mc2 of particle m is the upper limit on the value of mv2. That
is, mv2 cannot exceed mc2 without violating (8) and thus the conservation of energy. This,
therefore, makes the speed of light c the upper limit on the magnitude of v. This is the
upper boundary for speed predicted by Einstein’s work in special relativity.

3.4. The energy of gravity component. The energy of gravity component mc2Rr rep-
resents the effect of gravity. In this gravity component, the coordinate r represents radial
distance of particle m from the center of mass M . The energy of gravity component mc2Rr
increases as radial distance r decreases.

The energy equivalence mc2 of particle m is the upper limit on the value of mc2Rr . That

is, mc2Rr cannot exceed mc2 without violating (8) and thus the conservation of energy.
This, therefore, makes the Schwarzschild radius R the minimum value for radial distance
r.

While the wide acceptance of special relativity makes the upper boundary of v in accor-
dance with our intuition, this is not necessarily the case for the minimum value of r. So
let’s pause to consider the source of this limitation.
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When Karl Schwarzschild solved Einstein’s field equations, he needed to represent the
energy of gravity in the gravity field. He did this using a constant [6]. As a result, Isaac
Newton’s gravitational constant G appears in the Schwarzschild metric. While it is not
shown directly in (3), it is there because it is used in the calculation of the Schwarzschild
radius R. Specifically,

(9) R =
2GM

c2
.

The Schwarzschild radius R is the critical radius for forming a black hole because it is
the radial location where Newtonian escape velocity vg is equal to the speed of light c.
That is,

(10) vg = c

√
R

r
.

The Schwarzschild metric assumes that Isaac Newton’s gravitational constant G does
not vary, but remains constant while r varies from r = ∞ to r = 0. This assumption
plus the requirement that energy is conserved inevitably results in the boundary of minimal
radial distance r = R in the Schwarzschild metric.

If Karl Schwarzschild’s assumption is incorrect and, for example, at very small values of r
Newton’s gravitational constant is not an accurate representation of the physical properties
of gravity, this would change the value for r where vg = c, and thus the critical radius for
forming a black hole. However, any radial location where vg is greater than c will be a
violation of general relativity [7].

3.5. The energy of matter component. The energy of matter component mc2
(
dτ
dt

)2
shows how motion and gravity affect the passage of time. When at rest and unaffected by

gravity (i.e. v = 0 and r = ∞), then dτ
dt = 1 and mc2

(
dτ
dt

)2
= mc2. When the energy of

the gravitation field increases by an increase in v or R
r , dτ

dt decreases with a corresponding

decrease in mc2
(
dτ
dt

)2
.

dτ
dt represents time dilation, i.e.,the difference in the clocks that measure time in the two

coordinate systems represented in the Schwarzschild metric. The clock in each coordinate

system is the frequency of light for that coordinate system [2]. So the term mc2
(
dτ
dt

)2
instructs us that as frequency, and thus the speed of light, slows in a coordinate system,
so also, in exact correspondence, does the energy of matter component.

4. Enforcement of Limits in the Schwarzschild metric

The limit in (8) that mv2 + mc2Rr cannot be greater than mc2 is enforced by the time

dilation inherent in mc2
(
dτ
dt

)2
. This is well understood for velocity. No matter how much

particle m is accelerated, it will never reach its top theoretical speed of c because time
dilation in combination with length contraction (which can also be calculated using the
Schwarzschild metric), will keep velocity c always out of reach of particle m.
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This is also true for any attempt of particle m to cross the Schwarzschild radius R. No
matter how much particle m is accelerated by gravity, it will never reach the Schwarzschild
radiusR because time dilation in combination with length contraction, will keep Schwarzschild
radius R always out of reach of particle m. This is demonstrated in the next section where
the journey of a free falling particle is considered.

5. Journey of a Free falling Particle

The journey of a free falling particle is significant for establishing the possibility of black
holes and explaining their operation. Absent the existence of a black hole, a particle’s
journey to mass M will end in a collision with the surface of mass M or some intermediary.
This section ignores the possibility of a collision and considers the hypothetical case of
mass M being compacted below the Schwarzschild radius R. This will allow examination
as to whether formation of black holes is possible, as the free falling particle can be used to
represent the last particle on the surface of a collapsing mass to cross R in order to form
a black hole. If a free falling particle cannot cross R, then black holes will not form from
collapsing stars.

Without performing a single calculation, it can be seen very clearly why within the
Schwarzschild metric a free falling particle will never cross R. For example, from (7) it can
be seen that there are no valid values for the Schwarzschild metric where r < R. According
to (8), a free falling particle m that crosses R violates the conservation of energy and thus
violates a fundamental tenet of general relativity, as described by (1).

As described above, the enforcement mechanism that prevents values where r < R is
the same as the one that prevents v > c. Time dilation (and length contraction) will make
it impossible for R to be crossed. No matter how much particle m is accelerated, it cannot
break the barrier that defends both r = R and v = c.

Specifically, as particle m approaches the Schwarzschild radius R, the effects of the en-
ergy of the gravity field will slow the approach of particle m. The gravitational energy
component (mc2Rr ) shown in (8) will consume energy at the expense of the energy com-

ponent of movement (mv2) and the energy of component of matter mc2
(
dτ
dt

)2
. If particle

m could, without obstruction, reach the Schwarzschild radius R, there would be no energy

left to pass it. At the Schwarzschild radius R, mv2 = 0 and mc2
(
dτ
dt

)2
= 0. With no

ability to go forward, particle m will remain suspended in place until some ending event
occurs. The ending event could be evaporation of particle m, evaporation of mass M , or
perhaps some apocalyptic event. Some ending event must occur if matter is not infinite.
For example, the estimated half life of a proton is on the order of 1032 years and a black
hole, if it were to exist, is estimated to have a finite lifetime of less than 10100 years, a mere
blink of the eye on the way to infinity [8] .

5.1. Calculation. Calculations using the Schwarzschild verify the journey scenario given
above. For a particle falling radially

(11) dθ = dφ = 0,
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and the Schwarzschild metric in (3) reduces to

(12) c2dτ2 = c2(1− R

r
)dt2 − dr2

(1−R/r)
.

For every radial location ri reached from a starting location rs, the coordinate time ti
to reach radial location ri can be calculated using an integral

(13) ti =

ri∫
rs

dt =

ri∫
rs

f1(r)dr,

where f1(r)is a function of r derived from (12) [9, p. 667].
When the radial location ri is set equal to a critical radius rc, the integrand f1(r) for

the integral in (13) is undefined and the integral does not converge. This indicates particle
m will remain outside the critical radius until it experiences an ending event occurring at
a time te and at a radial location re. The critical radius rc will be at or very near R, when
measured from the perspective of a distant observer.

6. Making the Physically Impossible Look Mathematically Plausible

The discussion above shows that according to the Schwarzschild metric a free falling
particle m cannot cross R and by logical implication black holes cannot form. How is it
some assert the Schwarzschild metric allows for a free falling particle to cross R? In this
section, the rationale for asserting particle m crosses R–and thereby indicating black holes
can form–is considered. The well known textbook Gravitation [9] often referred to as MTW
is used as the source of information for the rationale. The rationale is broken down into
logical steps that are briefly recited and critiqued below. The critique demonstrates that
the rationale for the formation of black holes relies on logical and mathematical fallacies
[10].

6.1. The apparent paradox of two different final destinations. An apparent para-
dox is put forth. Specifically, it is asserted that calculations from the Schwarzschild metric
show that using a different time coordinate results in a different final destination for a free
falling particle.

Specifically, the journey toward the Schwarzschild metric in the prior section was timed
by a distant observer. What happens when the journey is timed by the particle? When
measured using the local time τ of particle m, the elapsed time τi required to reach a radial
location ri can be calculated using the integral

(14) τi =

ri∫
rs

dτ =

ri∫
rs

f2(r)dr,

where f2(r)is a function of r derived from (12) [9, p. 663].
When the radial location ri is set equal to the critical radius rc, the integrand f2(r) is

undefined; however, the integral in (14) converges. This indicates that it is mathematically
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journey observed 
from a distance, t

journey 
experienced, τ 

τc critical radius

time

rc

rs

0

t=∞

Figure 1. Apparent paradox. Calculations from the Schwarzschild metric
seem to show different ending points for a journey to the critical radius.

possible to calculate a finite value for local time τ to reach rc even though it is not possible
to calculate a finite time using time coordinate t.

These results have been summarized as in Fig. 1 [9, p.667]. Fig. 1 gives the illusion
that particle m can reach rc in finite local time even though it cannot reach rc in finite
time when measured by a distant observer.

rs r1 r2 r3 ri re rc
...

0 τi τe τcτ3 ...τ2τ1τ =

0 ti te

Time until ending event for distant observer 

Time until ending event in local time

∞t3 ... ... ...

......

t2t1t =

r =

Figure 2. Solution to Paradox. The physical end of the journey is the
same regardless of the coordinate used to measure time.

6.1.1. Critiquing the apparent paradox. The solution to the apparent paradox in Fig. 1 is
to recognize that Fig. 1 does not show an ending event. Once the ending event is included,
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there is no difference in the logical sequence of the journey, regardless of the coordinate
used to measure time.

To understand the location of ending event in time and space, consider the journey as
graphed in Fig. 2. Fig. 2 shows the same data displayed in Fig. 1, but in a different format.
Particle m starts at radial location rs and progresses through radial locations, represented
in Fig. 2 by r1, r2, r3,...ri,...and re. The elapsed time to make the journey to each radial
location differs depending upon the location from which time is measured. When elapsed
time is measured from the location of the distant observer, reaching ri requires elapsed time
ti, reaching re requires elapsed time te, and rc cannot be reached in finite time. Likewise,
when elapsed time is measured from the perspective of particle m, reaching ri requires
elapsed time τi, reaching re requires elapsed time τe, and reaching rc would require elapsed
time τc.

While values for τc can be calculated, τc can never physically be reached because critical
radius, rc cannot be reached. The ending event (e.g., evaporation of M at te where te <
10100 years) that occurs at re, te and τe occurs before particle m reaches rc. The ending
event occurs at re regardless of the coordinate used to measure time.

Fig. 3 shows Fig. 1 modified to include the ending event at re, te, and τe.

journey observed 
from a distance, t

journey 
experienced, τ 

τc 

τe te 

critical radius
extra data

ending event

time

rc

rs

re

0

Figure 3. Paradox solved. The end of the journey is now shown.

6.2. Generating data not valid within the Schwarzschild metric. While the Schwarzschild
metric can be used to generate values for elapsed time for free falling particle m to reach
R, no data can be generated, at least using ordinary rules of mathematics, for any value of
time τ after R is crossed. The reason for this is clear from (7). There are no valid values in
the Schwarzschild metric where r < R. This is reflected in the integrals calculated in (13)
and (14). In both these integrals the integrand at rc is undefined making it impossible to
generate values for values of r less then rc.
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Because ordinary rules of math cannot be used to generate these values, ad hoc rules
of math are used. Particularly, a novel “cycloid principle” [9, See pp. 663-664] is used to
generate this extra data. This extra data is represented in Fig. 3 by dashed lines.

6.2.1. Critiquing data generation. The extra data generated for locations where r < R fall
outside the boundaries of the Schwarzschild metric. This can be clearly seen in (7) and
(8). As discussed above, the boundaries of the Schwarzschild metric set out in (8) are the
result of the conservation of energy. The extra data, therefore, is invalid as violating the
conservation of energy that is foundational to general relativity.

Further, merely showing how the extra data can be mathematically generated does not
overcome the logical sequencing problem introduced by adding the extra data to Fig. 3.
The extra data suggests rc can be reached and crossed in local time τc. However, this is
physically impossible because as shown in Fig. 2 and Fig. 3, the ending event that occurs
in local time τe will occur before the critical radius rc can be reached by particle m.

6.3. Declaring coordinates to be pathological. Once it is accepted that in local time
τ particle m can traverse R, the logical inconsistency of not being able to reach R in
coordinate time t needs to be addressed. This is addressed by declaring a pathology in the
coordinates results in a singularity appearing at r = R [9, pp. 820-823] .

6.3.1. Critiquing coordinate pathologies. The ad hoc assertion that coordinates are patho-
logical ignores that the physical boundaries of (8) are imposed by the conservation of energy
fundamental to the theory of general relativity. As discussed above, the singularities in the
Schwarzschild metric protect these boundaries and are not the result of mathematically
defective coordinates.

Further, declaring coordinates to be pathological strikes at another fundamental root of
general relativity. According to general relativity, all coordinates (reference frames) will
observe the same reality. As Einstein [1, p.117] made clear when setting out the basis for the
theory of general relativity: “. . . all imaginable systems of coordinates, on principle, [are]
equally suitable for the description of nature.” The singularities at r = R and v = c exist
not because of any pathology in the selected coordinates, but because there are physical
limitations that result from the conservation of energy.

6.4. Using special coordinates to show the particle crosses the Schwarzschild
radius. Having declared some coordinates to be “pathological”, it is necessary to replace
them with coordinates that give the desired results. Coordinates that are based on the ref-
erence frame of the free falling particle (e.g., the Novikov coordinates) and coordinates that
are based on the reference frame of a radially traveling photon, (e.g., ingoing Eddington-
Finkelstein coordinates and the Kruskal-Szekeres coordinates) have been used to “show”
R can be reached and crossed [9, pp. 826-835].

6.4.1. Critique of the use of special coordinates. Regardless of the coordinates used in the
Schwarzschild metric, R cannot be reached and crossed by particle m without violating the
Schwarzschild metric and the conservation of energy. In general relativity, all coordinates
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will observe the same reality. Special coordinates such as Novikov coordinates, Eddington-
Finkelstein coordinates and Kruskal-Szekeres only give the appearance that particle m
reaches and crosses R by using the logical fallacy of begging the question, where the thing
to be proved true is assumed to be true in a premise.

Specifically, the thing to be proved is that a free falling particle can reach and cross the
critical radius. The premise is that the reference frame of special coordinates can reach
and cross the critical radius. If it is assumed that a reference frame reaches and crosses R,
then it can also be “shown” by measurements from that reference frame that particle m is
able to reach and cross the critical radius.

But the premise is wrong. No reference frame can reach and cross R. Coordinates
based on the free falling particle and coordinates using the reference frame of a radially
traveling particle are considered separately in the following subsections. It is shown in
these subsections that the reference frames for the special coordinates cannot cross R and
so cannot be used to boot strap particle m across R.

6.4.2. Coordinates based on the reference frame of the particle. The Novikov coordinates
utilize a reference frame that, while not identical to the reference frame of particle m,
nevertheless uses the same time coordinate τ [9, p. 826]. This means the mapping of t
to τ shown in Fig. 2 is valid for the Novikov coordinates as well as for particle m. The
mapping shows that the Novikov coordinates cannot reach R in finite coordinate time t.
The ending event that occurs at re, te, and τe will occur at τe as measured from the Novikov
coordinates. This ending event (e.g., the disintegration of mass M), will occur before the
Novikov time coordinate τ reaches τc. Since the particle cannot reach and cross rc, before
the Novikov time coordinate τ reaches τe, the Novikov coordinates show that particle m
will not reach and cross τc.

6.4.3. Coordinates based on the reference frame of a photon. Ingoing Eddington-Finkelstein
coordinates use a freely falling photon as their foundation [9, p. 828]. A radially traveling
photon will not reach R in finite coordinate time t. Specifically, for a radially traveling
photon, dθ = dφ = 0. Because local time for a photon does not progress, dτ = 0. Setting
dθ = dφ = dτ = 0 in (3) yields

(15) 0 = c2(1− R

r
)dt2 − dr2

(1−R/r)
.

The integral in (13) can be used to calculate elapsed coordinate time t for the photon
based on radial distance. Integrand f1(r) is obtained by rearranging the terms in (15), i.e.,

(16) f1(r) =
dt

dr
=

1

c(1−R/r)
.

When the photon reaches r = R, the integrand in (16) is undefined and the integral in
(13) does not converge. Therefore the radially traveling photon will not reach R in finite
coordinate time t. Some ending event (e.g., the disintegration of mass M) will ultimately
end the journey of the photon.
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Further, because the integrand in (16) is undefined when the photon reaches r = R, no
data exists for the journey when r < R. This data must be generated, for example, using
the same or similar techniques used to generate such data for the free falling particle [9, p.
828].

Since neither a free falling particle nor a photon can reach R in finite time, these refer-
ence frames cannot be used to bootstrap free falling particle m across the critical radius.
The journey of particle m from the perspective of a photon is discussed in the following
subsection.

6.4.4. Journey of the particle from the reference frame of a photon. When viewed from the
reference frame of a radially falling photon (e.g., ingoing Eddington-Finkelsten coordinates)
the journey of the particle does not vary vis-a-vis the account given by the distant observer
above.

Specifically, suppose coordinate t is redefined to measure time as experienced by the
photon. From the perspective of a photon there is no advance of time, so dt = 0. Since
free falling particle m travels radially, dθ = dφ = 0. Setting dt = dθ = dφ = 0 in (3) yields

(17) c2dτ2 =
dr2

(1−R/r)
.

The integral in (14) can be used to calculate elapsed local time τ for the particle based
on radial distance. Integrand f2(r) is obtained by rearranging the terms in (17), i.e.,

(18) f2(r) =
dτ

dr
=

1

c
√

(1−R/r)
.

When the particle reaches r = R, the integrand in (18) is undefined and the integral
in (14) converges. The ending event at re and τe will occur before particle m reaches R.
As expected in calculations made in accordance with general relativity, the same logical
sequence occurs regardless of the reference frame from which observations are made.

6.5. Surface of Last Influence. A surface of last influence occurs when it is assumed a
collapsing surface of a star will compact below R. A hypothetical is given in which a family
of external observers shines a flashlight at the reflective surface of a collapsing surface [9, p.
873]. Beams of light that impact the collapsing surface at locations where r < R are unable
to return to the external observers. Beams of light that impact the collapsing surface just
before R is reached will take a very long time to return to the external observers creating
the illusion that the collapsing surface remains above R.

6.5.1. Critiquing Surface of Last Influence. The existence of a surface of last influence is
based on the assumption that a collapsing surface of a star will compact below R. The
surface of last influence, therefore, offers no evidence that a surface will compact below R,
but only explains what might be expected to occur if a surface could collapse below R.
But, as discussed above, the conservation of energy will prevent a particle from crossing
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R and thus by implication will prevent the collapsing surface of a star from compacting
below R.

Because the collapsing surface will not compact below R in finite time and light travels
faster than matter, photons from the flashlight of an external observer will always overtake
the collapsing surface and reflect back the information that the collapsing surface is still
outside R. If the stationary external observer continues to shine a flashlight at the col-
lapsing surface until the ending event at re, te, and τe is reached, the light will continue to
impact the collapsing surface and reflect back to the external observer. This will verify to
the stationary external observer that the collapsing surface continuously remains outside
R until the ending event.

7. Where from Here

Once it is recognized that the Schwarzschild metric and Einstein’s theory of general
relativity do not predict or permit formation of black holes, this opens up a horizon of
opportunities for investigation. For example, for those that want to advocate for the
existence of black holes, theories other than general relativity can be explored for possible
support.

Further, recognizing the possibility that black holes do not exist expands the tools to
explain observed phenomena that are puzzling in the current paradigm. For example, as
indicated by (8) and (1), the energy of matter is lessened by gravity. This suggests that
under high gravity fields matter might more easily make the transition to radiation. This
is subject to verification, if not via gravity,then by matter accelerated close to the speed
of light. If experimentally verified this may prove a very fruitful field of study to provide
explanations of cosmological observations. For example, the tremendous release of energy
that would accompany such transitions may serve as a power source to help explain jet
emissions seen from highly compacted matter, previously regarded as black holes.
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