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Part 2 

 
MAIN PRINCIPLES, LAWS AND EQUATIONS  

OF FUNDAMENTAL DISCIPLINES 
 
 
 
 
 
 
 
 
 

This section mainly aims at providing a unified description of funda-
mentals of a number of engineering and natural sciences from positions 
of energodynamics as a generalized theory of forces. Such a presentation 
is of great scientific, pedagogical and practical importance. The challenge 
is to obtain by deduction basic principles of as many fundamental disci-
plines as possible so as to give on their basis a uniform description of 
mechanical, thermal, electrical, magnetic, chemical, biological and the 
like properties and forms of the material world’s motion. The author has 
made an attempt to offer the shortest way toward substantiating the basic 
statements of these disciplines, but excluding, at the same time, various 
historical accretions and zigzags associated with the origination and de-
velopment of either of them. His latent intention has always been to make 
the interdisciplinary relations more explicit, the conceptual system more 
common and the mathematical body of the theory more available. He as-
sumes that the implementation of the energodynamic method for investi-
gating processes of any nature will facilitate the further self-study of spe-
cific subjects and the critical approach to analysis of the problems arising 
in various spheres of science and engineering/technology.  
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Chapter 3.   

   
CLASSICAL MECHANICS 

 
Mechanics was the first of natural sciences that reached maturity and 

became a theoretical basis of the technical civilization. Its object of inves-
tigation, viz. motion of macroscopic bodies, has long since been most 
demonstrative for investigators. This put mechanics in a special position 
among other natural sciences with its notional and conceptual system 
having up to date served as a basis for the majority of the natural science 
disciplines.  

These merits of mechanics at the same time engendered some 
mechanicalism, viz. the intention to “bring all natural phenomena to at-
tractive and repulsive forces, which value depends on their distance” (H. 
Helmholtz, 1847). However, it appeared impossible to create an exclu-
sively mechanical vision of the world. On this understanding it is worth 
considering mechanics as an “equal partner” among other scientific disci-
plines dealing with non-mechanical forms of motion. In this connection 
the main attention will be focused on obtaining by deductive way funda-
mental principles of mechanics as a particular case of the unified theory 
of real processes named herein, for short, energodynamics.  

 
 

3.1. Correction of Some Mechanical Concepts 
 

Presentation of mechanics usually starts off with kinematics that deals 
with motion of bodies in space and time irrespective of physical nature of 
this motion. The notions of trajectory, the coordinate of a point lying on 
it, velocity and acceleration of this point are herein accepted “a priori” – 
before the background of motion and formulate the laws of motion have 
been clarified. Only then dynamics starts – with introducing the notion of 
material point, its mass and momentum. At the first glance, such a struc-
ture of mechanics (from simple to the difficult) seems quite natural. 
However, as L. De Broglie (1965) rightly noted, such an approach is 
rested upon an assumption that the results of abstract kinematical consid-
eration may be applied, without an additional analysis, to the real motion 
of more complicated physical objects.  

The corrections made from energodynamics when considering me-
chanics as its deduction start off with the object of investigation. In 
kinematics an abstract point is such an object, which has neither mass, 
nor the most important property of any material object – the extension. 
As a result, the state of this object, its displacement, acceleration, etc. are 
characterized by various-order derivative of the only coordinate – radius-
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vector r of the point. In energodynamics the object of investigation is the 
entire set of the interacting material points comprising a system. To de-
fine the state of such an object from the positions of kinematics requires 
the definition of a great (in case of continuum – infinite) number of coor-
dinates of state and their derivatives. Such a description, while being gen-
erally received, contradicts, however, the state determinacy principle. 
According to this principle the number of variables conditioning the state 
of a system equals to that of independent processes running in the system. 
In case of solid body such processes are the translation motion of center 
of mass and the rotation of a body about the instantaneous center of iner-
tia, as well as its acceleration. Besides, the variables pretending to being 
the coordinate of state of a system must be extensive values just like the 
energy of the system they describe. For the quiescent state (rest) such a 
variable is the moment of system mass distribution Zm = МR, which de-
rivatives with respect to time t define the motion of the system. Accord-
ing to the process distinguishability principle this motion is  
characterised by a system impulse 
 

P ≡ dZm/dt = Мv.                                     (3.1.1) 
 

In turn  speed v of the systems as whole can be spread out on two 
components: forward speed v0 the centre of mass M and speed of  system 
as whole rotation ω×rω, where rω - instant radius of rotation (L.Landau, 
E.Livshits. Т.1. Mechanics, 1972). According to it and systems impulse P 
it is possible to spread out on an impulse of forward movement of a body 

P0 ≡ Mv0 = Мdr0/dt,                                    (3.1.2) 

and on an impulse of rotary movement:  
 

Pω ≡ ω×M rω,                                      (3.1.3) 
 

where dr0 = edr0/dt - a displacement vector; е - an unity vector in a direc-
tion of speed v0; r = |r|. 

Instead of last expression is usually used as coordinate of rotary 
movement the moment of an impulse of system L = I ω, in which I - the 
moment of body inertia). The variables P0 and L characterize now the 
motion state. They are associated with the two independent terms in fun-
damental equation of energodynamics (2.3.5) and the two independent 
components of kinetic energy of the system corresponding to, respec-
tively, its translation – Еk = Мv2/2 and rotation – Eω = Iω2/2. The time 
variations dP0/dt and dPω/dt of the coordinates P0 and Pω characterize two 
other independent processes (translation and rotation accelerations, re-
spectively), i.e. the variation of the motion state, viz. its acceleration.  
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Although such a description of a set of the material points comprising 
a moving continuum looks like, from positions of continuum mechanics, 
approximate (lacking information on motion of each of the volume ele-
ments), within the framework of energodynamics this sufficiently charac-
terizes the energy state of the system in whole. Transition to more de-
tailed description of a moving continuum (material or spatial) is beyond 
of energodynamics. As noted in Chapter 1, such over-determination is 
fraught with the loss of some properties of the system as a whole. The 
over-determination is demonstrably instantiated with the concept of an 
“oriented point” introduced by Elie Cartan in the early 20th century, 
where the oriented point is endued with capability to rotate while moving 
along some trajectory. As a result, the state of the point needs to be de-
fined by as many as six independent coordinates (three translation and 
three rotation ones), whereas a moving material point with no extension 
possesses only the translation kinetic energy so that its rotation coordi-
nates do not characterize any real process. Naturally, the Cartan-Einstein 
gravitation theory based on the above will endue the space with proper-
ties really absent. G. Shipov (1997) goes still further in this direction en-
duing a material point with three more rotation coordinates in the 
space/time domain. As a result, the space of variables becomes neither 
more, nor less than 10-dimensional (including the time coordinate), and 
the theory of physical vacuum based on this foundation leads to a series 
of paralogisms (from God as entity up to perpetual motion as a real pos-
sibility).  

Together with the above, the “under-determination” of mechanical 
systems may be also instantiated. This happens, e.g., when a material 
body is described without due consideration given to its density distribu-
tion over the space it occupies. Then the bodies with the different orienta-
tion of mass distribution moment Zm become indistinguishable, which 
excludes from consideration a whole series of the real processes of reori-
entation possible in heterogeneous systems. They take into consideration 
that the bodies differently space-oriented are not equivalent mechanically 
(L.D. Landau, E.M. Livshits, 2004).  

The adequacy principle modifies also such fundamental notions of 
mechanics as mass, velocity and acceleration. Let us consider first the 
notion of mass M as the measure of body inertial properties. Such an in-
terpretation of M was chronologically substantiated by the Newton-
adopted method of introducing the notion of force F = Ма as a value di-
rectly proportional to the body acceleartion а, where the mass value M 
figured as a proportionality factor. Hence it followed that with the same 
force F acting on a body the greater the body mass M, the lower its accel-
eration should be. The mass M thereby stood immediately for a measure 
of the body inertiality. With the special relativity theory and general rela-
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tivity theory appeared such an interpretation of mass has been common in 
the notions of “inertial”, “gravitational”, “electromagnetic” mass, “rest 
mass”, etc.  

A different situation arises with energodynamics where the notion of 
mass should be introduced long before the acceleration process has been 
considered, i.e. regardless of inertia. The mass here stands for a measure 
of extensive properties of any energy carriers Θi and the system energy U 
as their function, i.e. a quantity measure of matter contained in the sys-
tem. Then such an interpretation is further supported with introducing the 
state parameter varying in the processes of matter exchange with the en-
vironment, i.e. the mass exchange coordinate.  

The final difference of mass from the measure of system inertial 
properties is set with the transfer laws (2.6.11) formulated. With a single 
force Fi applied to a system these laws become: 
 

Fi = Σi iR Jj  ,                                      (3.1.4) 
 

where the iR  factor characterizes the resistance of the system to its state 
variation, i.e. its “inertiality” relative to the ith forces Fi. As applied to the 
acceleration process its generalized rate Ji is expressed by the time de-
rivative of the system momentum dP/dt = Ма. Substituting this expres-
sion to equation (3.14) gives: 
 

Fi = iR dP/dt          (i,j = 1),                       (3.1.5) 
 

The factor iR  is seen to appear as a function of the acceleration proc-
ess, which characterizes the measure of the system inertial properties and 
has nothing to do with the mass M of the system as the function of its 
state and the quantity measure of matter therein. This becomes especially 
evident when comparing (3.1.5) with the Ohm law in electrical engineer-
ing, where Fi – electromotive force; Ji – current strength, and the to-
current resistance factor iR  does not depend on conductor mass at all. By 
the way, in the Newton’s second law of motion, with the iR  factor 
adopted as unity, it does not depend on mass either. This means that the 
notions of mass as the measure of inertia and the quantity measure of 
matter are obviously distinguishable and their identification is inadmissi-
ble. Based on this, we will call iR  as the “inertia factor” or inertiality for 
short.  

Let's pass now to concept of acceleration. In kinematics velocity is 
construed as the total derivative of radius-vector of the point r (or its 
component) with respect to time t, i.e. v ≡ dr/dt, while acceleration is 
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construed as the derivative of velocity with respect to time, i.e. а ≡ dv/dt. 
This derivative comprises both the variation of the particle velocity v = 
v(r,t) without variation of its direction а ≡ е(dv/dt) and the variation of 
the particle velocity direction vdе/dt without variation of the velocity 
value. As a result, any rotation of a point appears to be the motion with 
acceleration, whereas these processes cause motion state variations dis-
tinctive in kind and, from positions of energodynamics, must be consid-
ered as independent. This means that the process of translation accelera-
tion of a material point or a body with the coordinate а ≡ е(dv/dt) should 
be distinguished from the process of reorientation of the body or the par-
ticle trajectory expressed, in particular, in a rotation of the body or the 
particle. The velocity of this process is expressed as vdе/dt, while the co-
ordinate of the process according to (3.4.5) is construed as the angular ve-
locity vector ω = dφ/dt. The fact should be taken here in consideration 
that a particle can not be accelerated unless its spatial position (i.e. the r 
coordinate) is changed. Therefore, the acceleration may be expressed in 
the developed form  
 

а ≡ dv/dt = е (∂v/∂t)r + е (∂v/∂r)dr/dt =  v∇v.              (3.1.6) 
 

since the notion of the acceleration local component е(∂v/∂t)r for the par-
ticle (with its position unvaried) does not make physical sense. This detail 
is a matter of no small consequence stressing the point that the accelera-
tion process is inseparably associated with the locally heterogeneous ve-
locity profile featuring the gradient ∇v ≡ (∂v/∂r) and generated in space. 
The generation of any heterogeneity demands time and energy consump-
tion. This is the time delay that makes physical sense of the inertia con-
ception.  

The similar comments may be made on also the rotation acceleration 
dω/dt. From a standpoint of energodynamics, a uniform rotation of bod-
ies with their kinetic energy Eω = Iω2/2 remaining unvaried can not be 
classified as accelerated. This statement is even more right, because, the 
energy being constant, the rotation acceleration process does not demand 
work consumption as for the translation acceleration. Being considered 
from these positions, the uniform electron-around-nuclear rotation is non-
accelerated, while the notion “centripetal acceleration” intrinsically in-
adequate. The correction of all these concepts will further impact many of 
the applications of mechanics.  
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3.2. Law of Inertia (Newton’s First Law of Motion) and Its Generalization              
to Rotational Motion 

 
Newton’s first law is a statement of the law of inertia discovered by 

Galileo and reading that “a body at rest remains at rest, and a body in 
motion continues to move in a straight line with a constant speed unless 
and until an external unbalanced force acts upon it”.  

For the mathematical substantiation of this law let us apply the fun-
damental identity of energodynamics (2.2.5)  
 

dU ≡ ΣiΨi dΘi – Σi Fi·еidri  – Σi Мi·dφi.   (3.2.1) 
 
to an arbitrary closed mechanical system (with no external forces Fi or 
their moments Мi exerted on). Thereby the system energy remains un-
varied (dU = 0) and expression (3.2.1) will become: 
 

ΣiΨi dΘi = 0.                  (3.2.2) 
 

For a mechanical system not involved in rotational motion the mo-
mentum P of the system as a whole associated with the velocity Ψi ≡ v is 
the only parameter Θi characterizing the state of motion of the system. 
From here the law of conservation of momentum directly ensues: 

 
Р = Mv = const .     (3.2.3) 

 
It becomes clear at the same time that the Galileo’s principle of rela-

tivity stating that uniform and rectilinear motion of a closed system does 
not impact the processes running in the system is just a particular case of 
the “equilibrium self-non-disturbance principle” (the general law of 
thermodynamics). In fact, from positions of thermodynamics (and ener-
godynamics too) the state of a mechanical system moving in a straight 
line is characterized by the only coordinate, viz. the momentum of the 
system. Therefore the only process is possible in it, viz. the acceleration 
of the system as a whole. The uniform motion means in this case the ab-
sence of such a process, i.e. partial equilibrium of the system. It is natural 
that only an external action can disturb such a state. However, the system 
being closed, neither of the processes is possible in it.  

Let us consider now the additional consequences ensuing from treat-
ing mechanics as a particular case of energodynamics. This is first of all 
the law of conservation of momentum (Euler’s law), which was absent in 
Newton’s mechanics: 

 
М = Iω = const.                     (3.2.4) 
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Both of these laws – (3.2.3) and (3.2.4) – may be unified in one state-

ment reading that “any material body remains at rest or in motion unless 
and until some forces applied make it change this state”. It is easy to see 
that this statement generalizes Newton’s first law extending it to rotating 
systems and demanding the legitimation of the notion “coasting rotation”. 
It is significant that with such an approach the Galileo’s law of inertia ap-
pears to be valid irrespective of whatever theory of physical vacuum or 
assumption on homogeneity and isotropy of space and time (L. Landau, 
E. Livshits, 1973).  

Thus Newton’s (3.2.3) and Euler’s (3.2.4) laws pertaining to, respec-
tively, translation and rotation of bodies ensue from energodynamics as 
particular cases. One can not now assert that “free” motion of a closed 
system, i.e. “coasting”, is always rectilinear – it may also be rotational. It 
becomes clear at the same time that the Galileo’s principle of relativity 
stating that uniform and rectilinear motion of a closed system does not 
impact the processes running in the system is just a particular case of the 
“equilibrium self-non-disturbance principle” (the general law of thermo-
dynamics). In fact, from positions of thermodynamics (and energodynam-
ics too) the state of a mechanical system moving in a straight line is char-
acterized by the only coordinate, viz. the momentum of the system. 
Therefore the only process is possible in it, viz. the acceleration of the 
system as a whole. The uniform motion means in this case the absence of 
such a process, i.e. equilibrium of the system. It is natural that only an ex-
ternal action can disturb such a state. However, the system being closed, 
neither of the processes is possible in it. This may be referred with the 
same degree of generality to also uniformly rotating bodies being in in-
ternal equilibrium.  

Let us consider therefore a more general case of a mechanical system 
not being in internal equilibrium. In such a system, due to interaction 
(relative motion) of its macroscopic parts (subsystems), spontaneous re-
distribution processes (dri/dt ≠ 0) arise causing the variation of its or-
dered energy (dE/dt ≠ 0). It becomes especially evident if to imagine the 
translation kinetic energy of such subsystems Еk as a sum of the kinetic 
energy of entire-system-center-of-mass motion ½ΣkMkv2 and the kinetic 
energy of system-parts-relative motion ½Σk Mkwk

2 (where v, wk = vk – v – 
velocity of the center of mass of the system and relative displacement ve-
locity of its parts in the center-of-mass system). This kinetic energy of the 
system-parts-relative displacement can both decrease (due to the viscous 
force action) and increase (due to the work done by forces of other nature 
when converting energy in a system with other degrees of freedom). The 
work of such kind is done, e.g., in oscillatory motions when converting 
kinetic energy into potential one and vice versa. Let us name this work as 
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useful internal, since the forces to be overcome in this process are internal 
with respect to the system as a whole. However, the internal work may 
also be dissipative if the oscillatory process is accompanied by damping 
of the relative motion among various parts (components) of the system.  

The rotation kinetic energy of system parts Еω = ½Σk Ikωk
2 behaves 

the same. It may also be represented as a sum of the kinetic energy of en-
tire-system-rotation ½Σk Ikω2 and the kinetic energy of system-parts-
relative rotation ½Σk Ik(ωk - ω)2. The latter can also both decrease due to 
the rotational viscous force action and increase due to the other-nature-
force action. Therefore when constructing a math model of such systems 
it is necessary to allow for the variation of not only the momentums Рk = 
Mkvk of the kth components (parts) of the system, but also of their angular 
momentums Lk = Ikωk (where Ik – moments of their inertia). In this case 
expression (2.4.5) becomes for them: 

 
Σk Рk·dvk/dt + Σk Мk ·dωk/dt = ΣkFk·vk + Σk Мk⋅ωk.             (3.2.5) 

 
It follows that in case an isolated system contains the internal kth 

forces Fk = – (∂U/∂Рk) ≠ 0 and their moments Мk = – (∂U/∂Lk) ≠ 0), it is 
only the sum of the translation and rotation kinetic energies of the kth sub-
system that remains unvaried even when the laws of conservation of mo-
mentum and angular momentum  

 
Fk = dРk/dt ;     Мk = dLk/dt    (3.2.6) 

 
are valid separately for each of the kth part of the system under considera-
tion, i.e. the cross-impact of forces and moments is absent among various 
subsystems. However, since it is not so in general, the momentum of the 
system as a whole Р = ΣkMkvk and its angular momentum L = ΣkIkωk are 
not bound to remain constant with variation of the system-parts-
momentums Рk = Mkvk and their angular momentums Lk = Ikωk. In fact, 
when the right side of equation (3.2.1) is equal to zero, only the sum of 
the translation and rotation energies is retained, but not each of them 
separately. Hence it is quite legitimate to assume the variation of not only 
the internal state of the system motion, but also its external state due to 
reciprocal conversion of the translation and rotation energies. This does 
not violate energy conservation since the energy of the system as a whole 
does not vary in this case.  

Thus a fundamental deduction follows from energodynamics: what is 
valid for any homogeneous system (lacking redistribution processes) is 
not always valid for heterogeneous system. This statement is supported 
by results of the experiments conducted by N.V. Filatov (1969) followed 
by A.P. Gladchenko (1983) with inertioids. N.V. Filatov investigated col-
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lision of two massive bodies installed on carts. One of the bodies com-
prised gyros fixed on the gimbal suspensions and having rotated in the 
opposite directions with the same angular velocity for mutual compensa-
tion of their moments. During the experiments the gyros collided with a 
usual mass installed on another cart. That process was recorded on a film 
with a speed of 2000 frames per second followed by a treatment to define 
center-of-mass velocity of the system pro- and post-collision. As a result 
of a great number of experiments, it was discovered that in case the gyros 
precession started post-collision, the center of mass of the system varied 
its velocity. Thus the possibility of reciprocal conversion of the transla-
tion energy into the kinetic energy of gyros precession was revealed.  

The similar experiments were conducted by A.P. Gladchenko in 1983 
with the B.N. Tolchin’s inertioids – a gyro additionally equipped with a 
motor-brake to govern its center-of-mass velocity. Displacement of the 
cart with the gyro and the motor-brake was recorded on a film. Those ex-
periments also revealed the possibility of displacing bodies due to partial 
conversion of the kinetic energy of system-parts-relative rotation into the 
system center-of-mass translation energy.  

To more clearly explain the displacement of inertioid center of grav-
ity against variation of kinetic energy pertaining to relative rotation of its 
parts, let us denote the inertia moments of two opposite-rotating parts and 
their angular velocities as I1 , I2 and ω1, ω2, respectively, while the raduis 
vectors of their centers as R1 and R2, respectively. Then, according to the 
general definition (1.5.7), the rotational angular momentum distribution 
in such a system is expressed as: 
 

Zω = I1ω1R1 + I2 ω2R2 .                                           (3.2.7) 
 

Since ω2 = – ω1 and I1 = I2, the above expression becomes: 
 

Zω = I2ω2∆Rω,                                                     (3.2.8) 
 

where ∆Rω = R2 – R1 – displacement of inertia center for a system con-
taining rotating weights due to the opposite directions of the angular ve-
locities ω1 и ω2. Since the forces causing this displacement are internal, 
the variations of the rotational angular momentum distribution Zω they 
cause should be referred to internal wells or sinks dsZω of this value. Ac-
cording to the wells–sinks balance equation (2.4.2) the corresponding 
wells or sinks dsZw = MvdRw should appear as pertaining to the transla-
tional angular momentum distribution Zw (because the inertioid does not 
have other degrees of freedom). This means that in the system of iner-
tioid–environment their relative movement should appear and continue 
till the energy Ek

ω of relative rotation for inertioid parts is completely 
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converted into the energy Ek
w of their translational motion. As an exam-

ple of the rotational-to/from-translational angular momentum intercon-
version may serve the conversion of laminar (translational) motion of liq-
uid particles into their turbulent (vortical) motion and vortical motion into 
laminar one with obstacles appearing and disappearing in the flow. 
 It is significant that to obtain such conclusions, we did not have 
to resort to whatever models of physical vacuum of ether. That is why 
energodynamics is a theoretical base to explaine the UFO flights and to 
create “free-of-any-support” vehicles.  

 
 

3.3. Law of Force (Newton’s Second Law of Motion) 
 

Newton’s second law introduces the force concept and usually has the 
form: 

F = Ма,                                                  (3.3.1) 
 
where F – resultant mass force. 

It is worth noting, however, that Newton’s acceleration coordinate is 
not the velocity v, but the momentum (quantity of force) in the form1): 
 

F = dР/dt .     (3.3.2) 
 
I. Newton stated that law as follows:“The rate of change of momen-

tum of a body is directly proportional to the impressed force and takes 
place in the direction in which the force acts”. 

Force enters in expressions (3.3.1) and (3.3.2) as a reason of the ac-
celeration process generation. However physics and natural sciences have 
generally to deal with forces causing also other processes (displacement, 
expansion, electrization, chemical and nuclear conversions, heat and mass 
transfer, etc.). Therefore (3.3.1) and (3.3.2) need to be considered as a 
particular case of force rather than its definition. Energodynamics gives a 
more general force definition by expression (3.2.1), wherefrom, in the ab-
sence of the reorientation processes, it follows: 
 

Fi ≡ – (∂E/∂ri) .    (3.3.3) 
 

This expression reflects the unity of various-nature forces in their 
definition as itself. In particular, if ri  is a vector characterising heteroge-

                                                 
1) This form better complies with the requirement of energodynamics for the extensive 
character of generalized coordinates and will further take on fundamental significance in 
the context of the relativistic mass conversion 
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neity of mass distribution in space, force Fi defines a gravitation field. If 
vector ri  characterize displacement of free charges, force Fi defines an 
electrostatic field, etc. Hence, the force fields are generated not by 
masses, charges or currents, but rather by their heterogeneous distribu-
tion in space. This statement is reasonable to be called for easy reference 
as field-forming principle.  

It is easy to show that the expression for the acceleration force F en-
sues from the above one as a particular case. Taking into consideration 
that this force causes deviation from equilibrium (so that its sign is oppo-
site to that of the force Fi) and based on (3.3.3) one can get: 

 
F  ≡ (∂Е/∂rm) = ∂(Мv2/2)/∂rm = Мv∇v = Ма,  (3.3.4) 

 
where v, rm – magnitude of velocity and radius-vector of the center of 
mass of the system, respectively.  

It is significant that the representation of acceleration in the form а = 
v∇v is exactly what allows representing the acceleration work đWw

е in 
the same form (2.2.9) as for other kinds of work: 
 

đWw
е
  = F·dr = Мv2/2.     (3.3.5) 

 
It is easy to show that definition (3.4.5) is applicable to also the cen-

trifugal force concept: 

Fц ≡ (∂Е/∂rц) = ∂(Мv2/2)/∂rц = Мω2rц,                           (3.3.6) 

On this basis these are relationships (3.3.1) and (3.3.3) that ought to 
be considered the analytical expression of Newton’s second law rather 
than the relation F = Ма referring only to acceleration process.  

Let's discuss now specificity of "forces of inertia». Till now disputes 
have not ceased concerning the fact whether these forces are real or not, 
active or passive, external or internal, inherent in all processes or only 
acceleration, etc (G.I.Shipov, 1997).  

The answer to this question is facilitated, if the entire set of 
interacting bodies is considered as a single whole. In that case all forces 
become internal. As shown above, such forces arise only in pairs and 
simultaneously. Therefore the question which of them is primary, 
disappears by itself. Both of them are real and a result of action of a force 
couple featuring another nature, which has caused process of energy 
conversion. In this sense both of them are reactions. At the same time 
they, like any forces, either cause or a stressed state of the system or 
generate a process. In the first case they become nonequilibrium state 
functions (like reaction of support), in the second case – process 



 71 

functions. Forces of inertia relate to the latter. They exist only when a 
process is really running and disappear when the process has ceased. (Ji ≠ 
0). It necessarily follows from Newton's law (3.1.1), according to which 
forces of inertia F are absent in the absence of acceleration (at а = 0). 
Such are Coriolis forces and the magnetic component of Lorentz's forces. 
Hence, force of inertia does not exist as a state function. Summarising the 
aforesaid, forces of inertia may be defined as a variety of reactions which 
are process functions. Therefore any statements about specific "fields" of 
these forces existing in nature (G.I.Shipov, 1997) are grounless. 

This fact reveals a fallacy of the opinion that the concept of inertia 
cannot be generalized to nonmechanical processes. Such a narrowing of 
the concept of inertia contradicts the Le Chatelier–Braun principle 
according to which any external influence on a system causes changes in 
its state tending to weaken the result of this influence. 
 
 
 
 

3.4.  Extended Interpretation of Newton’s Third Law of Motion     
(Principle of Action and Reaction) 

 
I. Newton formulated his third law as the following statement: “For 

every action force there is an equal, but opposite, reaction force”. 
This statement is most commonly written as: 

 
 Fа = – Fр ,  (3.4.1) 

where Fа
 , Fр – respectively, action forces and reaction forces. Thus it is 

meant, that active forces are enclosed to a body from the outside and have 
the same nature, as forces of reaction of a body. 

However, I. Newton himself repeatedly emphasized, that besides the 
enclosed forces it is necessary to distinguish operating forces, and action of 
force should be estimated as product of enclosed force size Fi for speed v 
of the moving of object  (A.P. Smirnov, 2002). In this connection Newton 
referred to Archimedes’ law of leverage formulated as “what we lose in 
velocity, we win in force”. It is necessary therefore to clarify the state-
ment of Newton’s third law from the positions of energodynamics. For 
this purpose let us apply equation (2.3.5) to an arbitrary heterogeneous 
system doing mechanical work, the said Archimedes’ lever being the 
simple example of it. The lever arms displace in the opposite directions 
with velocities vi and vj by the action of the forces Fi и Fj. Since all pa-
rameters Θi remain unvaried for such a system, equation (2.3.5) becomes: 
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 F1·v1 + F2·v2 = 0 .                              (3.4.2) 

 
This expression is nothing else but the law of conservation of energy 

(of power – to be more exact) in the context of mechanical phenomena. 
Just in a particular case, when v1 = v2 (e.g., when doing work is accom-
panied by displacement of the interface between two bodies, or the action 
is provided without whatever intermediate of the lever type), expression 
(3.4.2) goes over into (3.5.1). It is the relationship (3.4.2) that should be 
construed as a mathematical form of Newton’s third law rather than its 
particular case (3.4.1).  

It also worth noting that the statement of Newton’s third law as per 
(3.4.2) does not demand the action force Fi and the reaction force Fj to be 
directed in the same straight line. This demand was quite evident for 
Newton’s mechanics that “unfiled” rotational motion of bodies. However, 
from the positions of energodynamics, allowing for torques caused just 
by offsetting the lines, in which counter-forces are acting, this demand is 
superfluous. Withdrawing this demand enables eliminating the contradic-
tion with Newton’s third law in case of the interaction of, e.g., current-
carrying conductors, when action and reaction forces appear to be di-
rected not in the same line.  

Further, as energodynamics operates not only external, but also in-
ternal forces, it is extremely important to show, that such forces arise and 
disappear only in steams. Internal forces any ith nature have, as is known, 
no resultant Fj. If fj (Н/м2) - the specific force enclosed to unit of a sur-
face f (м2) of any closed system in a direction of a normal n for it, this re-
sultant Fj = ∫fj·ndf is always equal to zero. Applying to this expression 
Gauss theorem, we have: 

 
                             Fj = ∫fj·ndf = ∫divfj dV = 0.                         (3.4.3) 

 
It means, that if in any element dV volume of such system divfj ≠ 0 

(i.e. in it there is some volume force (∂Fj /∂V) in other element of vol-
ume it should have an opposite sign (opposite direction). In other words, 
any internal force has counteracting, as followed prove. This statement 
is reasonable to be called for easy reference as the “force couple 
principle”: internal forces in heterogeneous systems appear and disap-
per pairwise only. Such forces often not without justification are called 
as internal strain. They also generate in spatially non-uniform systems 
internal processes of the energy transformation, studying being a sub-
ject of energodynamics. In the systems possessing several degrees of 
freedom, these strains have the different nature. It also causes the en-
ergy transformation which character depends by nature overcome 
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forces. In particular, if internal force has disorder character, there is a 
process of "energy dispersion», i.e. transformation of a part of the or-
dered internal energy into chaotic (thermal). The such phenomena will 
be considered later in the section devoted to thermodynamics of irre-
versible processes.  

 
 
 

3.5. Theoretical Derivation of Law of Universal Gravitation 
 
Based on Kepler’s laws, I. Newton, from data available at that time 

on the masses of celestial bodies and the distances between them, calcu-
lated that the force of attraction of two point masses m and M was di-
rectly proportional to their product and inversely proportional to the 
squared distance r between them. Later Cavendish experimentally proved 
that the inverse-square law was valid for also terrestrial bodies while hav-
ing calculated the mass of the Earth and the gravitational constant Gg. So 
the law of gravitation has come into being: 

 
Fg = GgmM/r 2,     (3.5.1) 

 
which impact on the science history can not be overestimated.  

It is a matter of interest to derive this law from the first principles of 
energodynamics. One of such principal statements is a declaration that 
the force fields are generated by neither masses nor charges1), but their 
non-uniform distribution in space. The gravitational field is known to be 
absent in the center of a massive homogeneous sphere. Thus the gravita-
tional forces appear only where the attraction of the “test” body is un-
equal on different sides, i.e. the masses are distributed non-uniformly. In 
this case the heterogeneity is characterized by the distribution moment Zm 
= Мrm, which is the product of the body mass M and the displacement of 
the radius-vector rm of the body center from its position at the homoge-
neous distribution. From the distribution moment definition (1.5.4) it fol-
lows that dZm = Мdrm, then the mass of any set of material points or bod-
ies heterogeneously distributed is defined by the expression: 
 

М = ∂Zm/∂rm =  ∫∇⋅ZmV dV,                          (3.5.2) 
 
where ZmV = ρΔrm = ∂Zm/∂V – distribution moment density.  

Changing over from the integral over volume into that over the closed 
surface f as based on the Gauss theorem the expression (3.6.2) becomes: 
 

 М = ∫ ZmV⋅n df .                   (3.5.3) 
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This expression is valid for a body of any shape. Therefore let us 

take, for convenience, a spherical surface f = 4πrс2 (where rс – radius of a 
sphere, filled with a mass М). Then instead of (3.5.3): 

 
М = 4π ∫ZmV⋅ndrс2.                                    (3.5.4) 

 
The heterogeneity of mass distribution per unit volume of the system 

described by the vector ZmV  generates the thermodynamic force xg, 
which in our case according to (2.3.8) is expressed by the negative gradi-
ent –∇ψg of the gravitational potential ψg. This force is connected with 
the ZmV parameter through the general equation of state ZmV = ZmV(xg). 
Assuming this relation proportional on the ground that both values (ZmV 
and xg) disappear simultaneously and denoting the proportionality factor 
as εg gives instead of (3.5.4): 

 
М =  8πεg∫ rс xg ⋅n drс.                               (3.5.5) 

 
The xg ⋅n product characterizes the absolute magnitude xg = |xg| of 

the specific force xg acting along the normal to the spherical surface. The 
field of this force is known to be heterogeneous. If the mass distribution 
in the volume V is homogeneous, the force xg inside the body is equal to 
zero and discontinues on the body surface. However, the Gauss formula 
is known to remain valid also in this case – it is just enough to change 
from –∇ψg  to the so-called surface divergence xg +(rс) – xg –(rс), i.e. to the 
difference of forces on both sides of the sphere surface. In the case of the 
homogeneous mass distribution xg –(rс) = 0, and instead of (3.5.5): 
 

xg = GgМ/rс2,                                      (3.5.6) 
 
where Gg = 1/4πεg – proportionality factor empirically defined and 

usually called the gravitational constant. 
Since in the stationary field ∇ψg = dψg/dr, it is easy to find the gravi-

tational potential ψg = –∫xgdr in any point r ≥ rс. Integrating (3.5.6) within 
rс to r gives: 
 

ψg  = GgМ (1/r с – 1/r). (r ≥ rс).                        (3.5.7) 
 
The gravitational potential ψg is known to be the force of gravity per 

unit mass m of a test body. Therefore the force Fg = mψg found from this 
expression exactly complies with the gravity law (3.5.1). However, now 
this law of force was found theoretically from the condition of heteroge-
neous mass distribution. According to (3.5.7) the potential energy of 
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gravitating masses becomes zero not at their being infinitely apart from 
each other (as follows from (3.5.1)), but, on the contrary, when they oc-
cupy the same space (like components of a mixture), which complies 
with empirical facts. As a particular case, the fact follows from (3.5.7) 
that at homogeneous mass distribution (also inside a body with homoge-
neous density) the gravity force is equal to zero (constant potential ψg). 
Hence Newton’s law of gravitation (3.5.1) does not work, i.e. the range of 
its validity is restricted to a provisional (equivalent) radius of the sphere 
confining the “field-forming” body M (area r ≥ rс). Unlike (3.5.1), the po-
tential ψg and the gravity force Fg in (3.5.7) do not become infinity at r → 
0. This eliminates the problem of “divergences” which, as appears now, 
is caused by the arbitrary extrapolation of the results obtained from ob-
servations on celestial bodies to dimensionless “point” objects. Taking 
into account the minimum distance rс the test mass m can approach the 
mass M solves the problem. Indeed, whatever the value rс could be, the 
potential ψg  = 0 at r = rс. Hence, intensity of gravitational interaction 
is defined not by the interaction constant, but rather by the force 
magnitude at the closest approach of the interacting objects. It is not 
less significant that despite the well-established conceptions the potential 
energy of gravitating masses can not be negative, which corresponds to 
the general definition of energy as the capability of a system comprising 
material bodies to do work1. 

One more correction to the law of gravitation will be needed if one 
desires to allow for the impact made on the gravitation from the relative 
orientation of celestial bodies with shape anisotropy. Different positions 
of bodies in space and their different orientation in the same are known to 
be not equivalent mechanically (L.D. Landau, E.M. Livshits, 2004). It is 
this fact that may explain the dependence recently discovered by as-
tronomers of the gravitational constant Gg from the relative position of 
some celestial bodies. As a matter of fact, for a body of non-spherical 
form the value Rs varies, generally speaking, as a function of the angle ϕ, 
at which the other body is observed, i.e. rs = rs(φ). In particular, for the 
Earth as a field-generating body the distance from its surface to the center 
of its mass is unequal at different latitudes and longitudes. This is al-
lowed for by the gravitational potential written in the form 

 
ψg(R)  = (GgМ1/4π)[1/rs(φ)  –1/r],  (r ≥ rs).  (3.5.8) 

 

                                                 
1 Positivity of energy in any form follows from the energy definition itself as a 
capability for doing work – which is either available or unavailable. 
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where the energy of interaction appears to be a function of the relative 
position of non-spherical bodies, e.g. the spiral galaxies. Such an ap-
proach is preferable to the assumption the gravitational constant is 
changeable. It better corresponds to the methodology of energodynamics 
demanding the orientation processes with the coordinate φi to be specifi-
cally classified.  

Thus, mechanics consideration as one of branches 0f energodynam-
ics allows not only to receive its main principles, laws and the equations 
as its consequence, but also to generalise the majority of them. 
 

 
3.6.  Substantiation of the Least Action Principle 

 
The “least action principle” is considered as one of the fundamental 

principles of mechanics. As for the background, it is worth noting that the 
principle was stated at the time when such concepts as energy and the law 
of its conservation did not yet exist. The name “least action principle” 
was given by Maupertuis (1744). According to his statement of this 
principle regarding stationary conditions for real path of a material point 
in conservative force field the integral of particle momentum taken over 
the segment of a trajectory in-between two of its points is minimal as 
compared with the same integrals but taken over segments of other 
curves.  

The above form of the principle, as well as its other forms, 
proceeded not from physical nature, but were based on the belief usual 
among scientists at that time that all natural processes occurred with a 
definite purpose. Natural philosophers treated that principle as the “elixir 
stone” to discover all natural laws. It only remained to find criteria for 
Nature to define that its target had been reached. Thus Laplace 
considered that “the real goal of Nature was saving of work-kinetic 
energy”. That was the viewpoint Lagrange adhered to, when he 
considered the above principle as “ought to be rather named the extreme 
work-kinetic energy“.  

H. Helmholtz was the first, who legalized the least action principle 
as the most general law of mechanics. Having kept a principle in essence, 
the, unlike other researchers, took the Lagrange function of object under 
research L = Eк - Eп as initial primary value, interpreting it as the 
difference between its kinetic Eк and potential Eп energy. This function 
was expressed through the generalized coordinates ri and momenta pi of 
all N system particles (i = 1,2, …, N), which made the lagrangian L[ri 
(t), pi (t), t] be time function t. According to it the least action principle is 
expressed in mechanics as functional: 
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Ŝ(t) = ∫ L[ri (t), pi (t), t]d t = min.                                      (3.6.1) 

Helmholtz succeeded in deriving the laws of motion for a number of 
systems from the properties of this function extremum. After that 
principle had successfully been applied in electrodynamics and then also 
in the gravitation theory, a number of authoritative scientists started to 
consider it applicable to also those phenomena which are still to be 
studied. This Helmholtz’ idea «to find wordings for the laws of new-class 
phenomena» has gradually led to attempts to transform physics into a 
science which would allow «to reduce all physical constants to 
mathematical ones». 

Meanwhile till now have not yet succeeded not only attempts to 
substantiate the principle of the least action proceeding from whatever 
not less general and fixed laws, but even to understand the physical sense 
of the lagrangian. In this respect energodynamics provides new 
possibilities. First of all, note that should (3.6.1) be integrated within the 
same interval of time t2 - t1, the action Ŝ (t) to within the constant EΔt 
corresponds to the integral ∫2Eкdt expressing action by Maupertuis. 
Expressing Eк in terms of mass m of a body under investigation and its 
velocity v = dr/dt (where r – radius vector of its center of mass) the 
Maupertuis action may become: 

Ŝ(t) = ∫ m v⋅ dr = min.                                      (3.6.2) 

It is easy to notice, that the integrand in (3.5.2) is a special case of 
the more general expression for the increment dZi = Θidri   of the distribu-
tion moment pertaining to the carrier of the ith motion form Θi (1.5.4). In 
this case Θi.≡ Θw, i.e. represents the body momentum P, while ri = rw ex-
presses the displacement of the inertia centre due to velocity field redis-
tribution. The velocity profile in the liquid flow with the velocity in the 
flow core above the average value whereas in the boundary layer below it 
may serve an illustrative example of such a redistribution. In this case the 
least action principle becomes the  condition of minimum increment for 
the translational angular momentum Zw =  Θwrw,caused by the deviation 
of the system from a dynamic equilibrium:  

Ŝ(t) = Zw = ∫Θwdrw = min,                                      (3.6.3) 

where the integral is taken of the state prior to starting motion.  
Thus, the principle of the least action is reflexion of a condition of 

evolution of system to equilibrium (2.5.9). According to it, the decrease 
of ordered energy E = E(Zi) is accompanied by reduction Zi to zero (ow-
ing to an opposite orientation of vectors Xi and Zi). Thus, the 
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energodynamics opens physical sense of action as the compulsion 
deleting dynamic system from a condition of internal balance. About 
conservatism of systems (preservation the explanation and amazing 
universality of a principle of the least action, and its independence of a 
primary assumption finds in it the sums of potential and kinetic energy). 
Really, existence of the moments of distribution of impulse Zw as func-
tions of a nonequilibrium condition does not depend on what the system 
has by come to this condition. On the other hand, thanking of dissipation 
the minimum of size Zw is reached. The undertaken substantiation 
eliminates obstacles to application of a principle of the least action in 
thermodynamics, hydroaerodynamics and electrodynamics. 

Summarizing the chapter as a whole it may be concluded that 
considering classic mechanics as consequences from energodynamics 
allows not only substantiating all its fundamental statements, but also 
proceeding with their further generalization. 

 
 
 
 
 
 
 
 
 

 
 
 

 
Chapter 4 

 
CLASSIC THERMODYNAMICS 

 
Present-day thermodynamics has long outgrown the initial frames of 

the heat-engine theory and transmuted into a rather general macroscopic 
method for studying kinetics of various transfer processes in their insepa-
rable connection with the thermal form of motion. However, it is still 
rooted in the conceptual system of equilibrium thermodynamics (thermo-
statics) remote from the transfer concept and in its body of mathematics 
going over into inequalities when considering real (non-static, irreversi-
ble) processes. Even in the current manuals on thermodynamics its con-
struction quite often starts with describing the theory of ideal cycles and 
ideal gases as its working media. Such a “squared idealization” in the 
theory grounds themselves could not help creating problems in the further 



 79 

generalization of thermodynamics to systems differing from those ideal-
ized.  

The escape from the situation may be found in obtaining basic state-
ments of thermodynamics by deductive way as consequences of ener-
godynamics in order to avoid the extrapolation of classic thermodynamics 
beyond the framework strictly bounding the applicability of its initial 
concepts. This chapter is mainly dedicated to ascertaining the minimal 
scope of the corrections necessary to introduce into the fundamentals of 
thermodynamics from the positions of energodynamics.  

 
 

  4.1. Principle of the Excluded Perpetuum Mobile of 1st Sort 
(the First Law of Thermodynamics) 

 
 R. Clausius, the founder of classic thermodynamics, presumed the 

principle of heat Q and work W equivalence generalizing the results of 
numerous experiments to be the only reliable basis to thermodynamics. 
He formulated this principle as follows, ”In all cases, when heat becomes 
work in a cyclic process, the amount of the heat expended is proportional 
to the work done and vice versa, work done is converted into an equiva-
lent amount of heat” (Clausius, 1876). If heat and work are measured in 
the same units of the international system of units, SI, the equivalence 
principle may be written as a simple relationship: 
 

 Qc/Wc = 1,   (4.1.1) 
 
or 

∫  (đQ + đW) =0                               (4.1.2) 

 
where đQ, đW – elementary amounts of heat and work for particular parts 
of the cyclic process under consideration.  

Clausius was the first who noticed that the above relationship did not 
depend on the nature of the cyclic process under consideration. Accord-
ing to a known curvilinear integral theorem the fact the integral along the 
contour within the space of variables x1, x2,... xn becomes zero is a suffi-
cient evidence that the integrand represents the exact differential of some 
function of these variables U(x1, x2,..., xn).  

Thus the principle of equivalence meant the existence of a specific 
function of state U, which variation was equal to the algebraic sum of 
heat and work of a process. Allowing for the rule of signs accepted in 
thermodynamics (the heat Q fed into a system and the work W done by 
the system being positive), the integrand may be expresses as: 
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 dU  = đQ – đW .                            (4.1.3) 

         
R. Clausius named the function U the total heat of a body (he meant 

the sum of the heat Q fed into a system and the “disgregation” work of 
the dissipative nature, which replenished the “heat of the body” – the en-
ergy associated with heat motion in the system). Such an understanding 
reflected a known duality of the heat concept, which had historically been 
caused by consideration of the heat as a form of motion (in the same line 
with such phenomena as light, sound, electricity, magnetism). This dual-
ity means that heat shows in some cases as the state function (heat of a 
body), whereas in other cases – as the process function (heat of a proc-
ess). Therefore from Clausius’ times on the function U has been referred 
to as the internal energy of a system. However, despite plenty discussions 
the said duality in using the term “heat” survives to this day. Accepting 
this fact as a historically preconceived reality, let us name the internal 
heat energy, for short, the “heat of a body”, whereas the quantitative 
measure of heat transfer – the “heat of a process” designating, for the 
avoidance of mishmash, the former through Uq and the latter through Q. 
In this case, to designate the infinitesimal increments of internal heat en-
ergy as a function of state, let us use the sign of exact differential d, 
whereas to designate the elementary amount of work W or heat Q as a 
process function – the sign đ (đW, đQ).  

Equation (4.1.3) has been named the first law of thermodynamics. 
This reflects the constancy of energy of an isolated system (U = const at 
Q, W = 0) and therefore is one of the statements of the law of conserva-
tion of energy. This law reflects the conservation of the internal energy U 
at its interchange among a system and the environment in the form of 
heat Q or work W. With regard to a cyclic process (cycle) expression 
(4.1.3) may be written as: 
 

 ∫ đQ = ∫ dU + ∫ đW    or     Qc = ∫ dU + Wc,          (4.1.4)    

 
where Qc, Wc – total heat and work of the cyclic process.  

Since the circuit integral of any state parameter, including the system 
energy U, is equal to zero, expression (3.1.4) directly gives that Wc = Qc, 
i.e. the work done by working medium for a cycle is equal to the heat it 
expendes in the cycle. In other words, a cyclic machine is impossible, 
which would do work without heat expenditure. This statement was 
named the law of excluded perpetual motion of the first kind.  

At its early stages classic thermodynamics was restricted to the sim-
plest thermo-mechanical systems, where expansion work was the only 



 81 

kind of work. A system having been in equilibrium with the environment 
(equal pressures p), that work was determined from mechanical interpre-
tation of pressure as a force and expressed by the relationship đWр = рdV, 
where V – volume of the system. From there the so-called analytical ex-
pression for the first law of classic thermodynamics ensued in the form: 
 

 đQ = dU  + рdV.    (4.1.5) 
 

It may be said without exaggeration that the majority of methodologi-
cal features intrinsic for thermodynamics, as well as its insufficiency, is 
caused by that specific form (4.1.5), in which it involves the law of con-
servation of energy. Expression (4.1.5) first of all involves only two 
forms of power interchange in a system, viz. heat Q and work W done by 
the equilibrium system1). Meanwhile, one more type of power inter-
change referred to neither heat transfer nor work take place in a great 
number of cases of practical interest. This is mass transfer associated with 
the kth-substances interchange between a system and the environment. 
Such systems are called open ones. These types of power interchange are 
not covered by equation (4.1.5) describing the law of conservation of en-
ergy, therefore the principle of equivalency of heat and work can not 
serve as a basis for further generalization of this law to open systems. To 
do this, a more general approach is needed, which is exactly what ener-
godynamics puts forward.  

Furthermore, equation (4.1.3), unlike (2.2.5), does not contain any 
forces Хi causing the generation of the energy-conversion processes. Its 
terms on the right-hand side characterize energy interchange between a 
system and the environment in the form of heat and cubic strain work 
(confirming the principle that a system can only exchange what it really 
has). Therefore it describes only processes of energy transfer, but not 
conversion. In other words, the first law of thermodynamics characterizes 
the balance of energy only and has nothing to do with the law of conser-
vation of energy at its conversion. It is even more true, because an inter-
nally equilibrium (homogeneous) system can not do useful work in the 
absence of other bodies (environment), with which it is not being in equi-
librium. Besides, the energy balance itself described by equation (4.1.5) 
comes valid provided the system being in equilibrium with the environ-
ment. Actually, in the absence of, e.g., mechanical equilibrium between a 
system and the environment (when the pressure p in the system is not 
equal to the environmental pressure pe, and the expression pdV does not 

                                                 
1) Such work will hereafter be referred to as “non-technical” unlike the useful exter-
nal (technical) work done by various machines (by extended systems). 
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define the expansion work any more) the analytical expression of the first 
law of thermodynamics (4.1.5) goes over into inequality: 
 

              đQ ≠ dU  + рdV .                                    (4.1.6) 
 

This is the reason why the first law in the form (4.1.5) is valid for 
only completely (both internally and externally) equilibrium systems.  

One more reason of the insufficiency classic thermodynamics dem-
onstrates is caused, strange though it may appear, by the notion of inter-
nal energy as itself. energy U belonging to, strictly speaking, entire set of 
the interacting (relatively moving) bodies is known to be far from being 
possibly attributed to one of the comprising parts considered as the object 
of investigation. This may be done to only that part which does not de-
pend on position and motion of the system relative to other bodies and is 
defined by exclusively parameters of the system itself. That is exactly 
where the definition of the internal energy U is rooted in. However, it en-
sues from this definition that such a system can not do useful external 
work measured by the variation of external potential or kinetic energy of 
a system of interacting bodies. Therefore the internal energy of an equi-
librium system is actually the anergy (see Chapter 2).  

The notion of internal energy is quite often extrapolated to systems 
lying in external fields of forces, which are, e.g., dielectric and magnetic 
materials. Their energy is known to be dependent on not only internal 
variables, but as well on intensities of these fields. However, these are of-
ten associated with the notion of magnetic and dielectric “internal self-
energy” considering it sufficient to subtract the energy of electrical and 
magnetic fields from the total energy in the volume occupied with the 
system. This makes energodynamics consider a polarized medium along 
with a polarizing field as a whole and, generally, non-equilibrium system. 
Such an approach is substantiated by the fact that an attempt to isolate a 
dielectric or magnetic field from the surrounding fields of forces leads to 
change of their state (relaxation), which excludes a possibility of treating 
their energy as internal one (self-energy) and applying equation (4.1.3) to 
it.  

There are also other serious and yet hardly perceived constraints for 
the equations operating with the notion of internal energy. In this sense 
the term “thermodynamic” may be applied only to the so-called “simple” 
media, where long-range and surface forces may be neglected since their 
energy can not be attributed to just one of the interacting bodies 
(Caratheodory, 1964). From this one more constraint ensues, viz. for size 
of a system. This exists not only “from above” (for galactic-size systems 
where long-range gravitational forces can not be neglected), but also 
“from below”, e.g., for usual continuums since when artificially splitting 
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them into elementarily small zones the surface energy of the continuum 
elements increases and may appear non-negligible (Putilov, 1971; Ba-
zarov, 1983).  

To exclude all these constraints, energodynamics considers as the ob-
ject of investigation “extended systems” comprising such a set of inter-
acting (relatively moving) bodies and fields, which energy, to enough de-
gree of accuracy, may be considered as its “self-energy”. Such systems 
may be isolated not disturbing their internal state and energy. Further-
more, energodynamics offers an absolutely other (and in many ways op-
positional) approach to stating the law of conservation of energy. This 
approach is notable for its basing the law of conservation not on the en-
ergy balance equation, which equation (4.1.3) is, but on the representa-
tion of the system energy as a function of a quite definite number of the 
system state parameters.  

Suppose we deal with a thermo-mechanical system having only two 
(thermal and mechanical) degrees of freedom. These two degrees of free-
dom are described with two extensive state coordinates, which we for-
mally designate as Θt and Θe. Their meaning will be explained hereafter. 
For now it is enough to know that the total energy of the system (consist-
ing in this case exclusively of its internal energy U) as a function of state 
is expressed in the form of U = U(Θt, Θр), whereas its exact differential 
may be written as: 
 

 dU = (∂U/∂Θt)dΘt + (∂U/∂Θe)dΘe .  (4.1.7) 
 

Designating Ψt ≡ (∂U/∂Θt) и Ψe ≡ (∂U/∂Θe) gives a thermo-dynamic 
identity: 
 

dU ≡ ΨtdΘt + ΨрdΘр .                                   (4.1.8) 
 

According to this identity the energy of the system varies with varia-
tion of the said parameters Θt and Θe irrespective of what causes the 
variation – either energy interchange or internal processes in the system. 
Undoubtedly, in the latter case the terms ΨtdΘt and ΨedΘe do not reflect 
any more heat exchange or cubic strain work. To define them, energody-
namics offers other ways (see Chapter 2). That enabled energodynamics 
to refuse the classification of processes by the type of energy interchange. 
It was the said classification that engendered the problem of thermody-
namic inequalities. As a matter of fact, the principle of classification by 
the type of energy interchange demands the availability of state coordi-
nates that would remain unvaried in the absence of heat transfer processes 
and expansion work. However, this is excluded in a non-equilibrium sys-
tem, where a number of its parameters can vary spontaneously. For this 
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reason classic thermodynamics is known to be restricted to equilibrium 
states and quasi-static processes not practically disturbing this equilib-
rium.  

Unlike it, energodynamics classifies processes by exclusively those 
state variations they cause. Such a classification provides the fundamental 
equation of equilibrium thermodynamics in the form of (4.1.7) retains the 
nature of identity even in the case when the parameters Θt and Θр vary 
spontaneously, i.e. in the whole range of real processes.  
 
 
 

4.2.  Principle of Entropy Existence (Second Law for Reversible 
Processes) 

 
Let us clarify the meaning of the variables Θt and Θe introduced 

above formally (by definition). Let us start off with the coordinate Θe of 
expansion work. It is considered quite natural to accept for this the vol-
ume V of a system. However, in this case the volume-correlated system 
potential Ψe ≡ (∂U/∂V) according to relationship (2.2.2) takes on the 
meaning of pressure reversed in sign (Ψр ≡ – р). According to equation 
(2.3.2) this entails opposite-to-actual sign of the motive force of gas flow 
transfer process (as known from experience, gas flow is transferred by 
pressure-gradient force toward the lower-pressure zone – just like with 
potentials of other nature). Furthermore, the volume (positive or negative) 
does not comply with the requirement of energodynamics for potential 
and coordinate of some process simultaneously becoming zero. Lastly, 
the volume of a system can not serve as a cubic strain coordinate in open 
systems because it necessarily varies at mass transfer with the density ρ 
of the system remaining constant. For systems, where the processes of 
composition variation run (due to diffusion of the kth substances across 
the borders of the system at constant mass M of the system), the cubic 
strain coordinate issue grows even more complicated since the system 
density ρ = Σ сkρk can vary with constant density ρk of any of the kth sub-
stances, but with the variation of the fractions сk of their total masses. 
Therefore the cubic strain issue appears to be, in actual fact, not that 
plain.  

From energodynamics any state coordinate Θi is considered as a 
quantitative measure of the corresponding form of energy in a system and 
therefore increases with increase of this energy. If, for the sake of sim-
plicity, to be confined to only closed systems (M = const) of a constant 
composition (сk = const), this demand is met by the difference between 
the theoretical compression limit Vo = 0 (this is the state corresponding to 
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zero of the cubic strain coordinate Θe) and the current value of the vol-
ume V, i.e.  
 

 Θp = (Vo – V).                                           (4.2.1) 
 

It is easy to see that Θe complies with all requirements for the cubic 
strain coordinate. In particular, dΘe = – dV, and  

 
Ψр ≡ (∂U/∂Θр) = – (∂U/∂V) = р.                     (4.2.2) 

 
which provides further the concordance of signs for all potentials and 
forces of a system.  

In equilibrium systems, where the reversible expansion work done by 
a system is the only reason of changing the volume of the system, accord-
ing to (4.2.1) đWp = рdV, which corresponds to expression (4.1.4). In 
more general case of non-equilibrium systems the term pdV characterizes 
the process of uniform compression or expansion of a system (its uniform 
cubic strain) irrespective of what causes it – either the compression (ex-
pansion) work done by the system or the energy dissipation (including 
that from overcoming frictional forces or from spontaneous expansion 
into void).  

The next challenge R. Clausius, the founder of thermodynamics, 
faced on the way to representing the law of conservation of energy (4.1.3) 
in terms of state parameters was to find the heat transfer coordinate as a 
value remaining unvaried in adiabatic processes. R. Clausius found that 
coordinate thru splitting the arbitrary cycle of the heat engine by series of 
adiabatic and isothermal lines into a number of elementary reversible 
Carnot cycles. Designating the elementary amounts of heat being re-
ceived and delivered in such elementary cycle at temperatures Т' and Т", 
respectively, thru đQ' и đQ" gives the following form of the thermal effi-
ciency ηt for each of such cycles: 
 

 ηt ≡  1 – đQ"/đQ' = 1 – Т"/ Т' .                            (4.2.3) 
 

From this it follows that the sum đQ'/Т' + đQ"/Т" of the so-called “re-
duced heats” đQ'/Т' and đQ"/Т" is equal to zero over all elementary cy-
cles, i.e. the circuit integral, in its limit, of the reduced heat  
 

∫ đQ/T = 0                                      (4.2.4) 
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appears to be equal to zero irrespective of the cycle configuration. This 
means that the integrand đQ/Т is the exact differential of some function 
of state, which Clausius named the entropy: 
 

dS = đQ/Т или đQ = ТdS.                                   (4.2.5) 
 

It was thereby proved the existence of a reversible process coordi-
nate, i.e. a state parameter which variation is a necessary and sufficient 
criterion of running the heat transfer process. That statement R. Clausius 
referred to the second law of thermodynamics as the law of entropy. The 
further investigations (T.A. Afanasieva–Erenfest, 1928; A.A. Guhman, 
1947; N. Petrov, J. Brankov, 1986) have shown that the law of entropy 
comprises two quite independent statements referred to, respectively, re-
versible and irreversible processes, viz. the laws of existence and increase 
of entropy. With all this going on, relationship (4.2.4) being the mathe-
matical expression of the second law of thermodynamics for reversible 
processes has been proposed as the law of existence of entropy (A.A. 
Guhman, 1947).  

With the lapse of time the concept of entropy has crossed the borders 
of not only thermodynamics, but also physics, and penetrated into the 
inmost of human brain. Therefore, many investigators have remained un-
satisfied with the close connection between the concept of entropy and 
Carnot ideal gas cycles. Other ways have been tried for a long time to 
substantiate existence of entropy. The Caratheodory’s system (Caratheo-
dory, 1909) is commonly considered as the mathematically strictest and 
logically most consistent of all others. C. Caratheodory based his substan-
tiation of existence of entropy and absolute temperature on an “axiom of 
adiabatic unattainability”, according to which “in any vicinity of the ini-
tial state arbitrarily prescribed there are such ones which can not be how-
ever accurately approximated by adiabatic state variations”. The implica-
tion of this axiom is most distinct from the Afanasieva–Erenfest’s (1928) 
statement, “Provided đQ = 0 on infinitesimal way between two infinitely 
close states of a thermally homogeneous system, then none of mere adia-
batic quasi-static ways is possible as bypass between these states”. The 
“bare root” of the Caratheodory’s axiom is thus growing from the evident 
ground that reversible heat exchange results in such variations of state 
which can not be attained by any other way as well reversible. It is easy 
to see that this statement is a particular case of the process distinguisha-
bility principle (axiom) we have embedded into the foundation of the 
process classification (Chapter 2). This axiom, as applied to heat ex-
change process, just logically results in a statement that a parameter ex-
ists, which variations reflect those specific state changes distinguishable 
in kind and non-reducible to each others, which the reversible heat ex-
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change causes. However, Caratheodory was persistent in his intent to 
prove the existence of entropy not recurring to notions of non-mechanical 
nature (in particular, to the notions of heat and temperature). That was 
what engendered a known complexity and awkwardness of his entropy-
existence substantiation. The main point of his approach offered consists 
in proving the holonomy of the expression đQ = dU + pdV, i.e. that this 
the so-called “Pfaffian” form contains the integrating factor 1/T convert-
ing the heat element đQ into the exact differential of some function of 
state, which Clausius has earlier named entropy. The fact is that the heat 
đQ and the work đW elements as themselves in the equation (4.1.3) of the 
first law of thermodynamics are not exact differentials since their values 
depend on the nature of a process. In particular, for adiabatic processes 
đQ = 0, for isochoric ones đW = 0. That is what required the representa-
tion of the elementary heat in terms of the exact differential of some func-
tion of state, i.e. per se the determination of the heat exchange coordinate.  

As we’ll try to show hereafter, the one can avoid this complexity who 
classifies processes not by the energy exchange type, but by those spe-
cific state variations the processes cause. In this case it should be admit-
ted a specific process exists dependable on a change of the system inter-
nal heat energy irrespective of what causes this change, either the exter-
nal heat exchange Q or internal sources of the dissipative heat Qd (from 
friction, chemical transformations, high-frequency or induction heating, 
etc1)). Let us name this process, after K. Putilov (1971), the thermal proc-
ess. Then it directly ensues from the theorem of degrees of freedom 
proven in Chapter 1 that a specific coordinate of the said process exists 
designated as Θt in the previous chapter. All we have to do now is to clar-
ify the relationship between the thermal process coordinate and the heat 
exchange coordinate, viz. the Clausius’ entropy S. With this purpose let 
us use the equilibrium conditions determination method, which idea be-
longs to J. Gibbs (1885). Let us consider the conditions, at which the 
thermal equilibrium occurs between two parts (subsystems) of a system 
isolated in whole. The subsystems have intrinsically different empirical 
temperatures τ' and τ" and are separated with a rigid diathermic (thermo-
penetrable) partition. Since during the process of equilibrium setting the 
energy of such a system remains unvaried, the equilibrium condition ac-

                                                 
1) Note that from the positions of equilibrium thermodynamics, where heat has been con-
strued as a function of process, it would be incorrectly to qualify the “heat of a body” as a 
quantitative measure of the internal heat energy Ut. However, in energodynamics, like in 
thermal physics, the heat exchange is construed as a process of exchanging the internal 
heat energy Ut among bodies (confirming the principle that a system can only exchange 
what it really has). This considerably facilitates the comprehension of thermal process 
specificity.  
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cording to equation (4.1.4) is expressed as the absence of the energy 
variation đU for the system as a whole at any energy variations δU' and 
δU" for the subsystems (which is caused by the dynamic nature of ther-
mal equilibrium): 
 

δU = δU' + δU" = Ψt'dΘt′ + Ψt"dΘt"  = 0.                       (4.2.6) 
 

Taking into account that in the thermal equilibrium state there are no 
any internal sources for the Θt' and Θt" coordinates, while the system as a 
whole is isolated (Θt = const), gives that possible variations Θt' and Θt" in 
the subsystems obey the evident constraint: 
 

δΘt = δΘt' + δΘt" = 0.                                (4.2.7) 
 

Considering (4.2.6) jointly with equation (4.2.7) of imposed con-
straints may lead to a conclusion that at thermal equilibrium the equality 
of potentials Ψt' and Ψt" in both subsystems takes place: 
 

 Ψt' = Ψt".                                        (4.2.8) 
 

It is known from experience that thermal equilibrium is reached un-
der equality of the empirical temperatures τ' and τ" in subsystems meas-
ured in an arbitrary temperature scale (Celsius, Réaumur, Fahrenheit, 
etc.). Hence, the potentials Ψt' and Ψt" are some functions of these tem-
peratures, i.e. Ψт' = Ψt'(τ'); Ψt"  = Ψt"(τ"). Since this statement is a gener-
ality and does not depend on the kind of substances in subsystems, the 
above functional dependence must be unified for all substances (univer-
sal) 1). Furthermore, equality (4.2.7) is valid as long as heat exchange be-
tween subsystems is possible, i.e. until the heat motion in subsystems 
caused the particular type of energy exchange has ceased. From this it 
follows that the temperatures τ' and τ" differ from zero as long as heat 
exchange exists between any cogitable bodies. This means that the poten-
tials Ψt' and Ψt" must be measured in the so-called absolute temperature 
scale, which zero corresponds to the total degeneracy (disappearance) of 
heat motion. It is the Kelvin scale that is known to meet these require-
ments. Designating the temperature in this scale thru T leads to a conclu-
sion that the variation of the thermal process coordinate Θt in equilibrium 

                                                 
1) This chain of discourse makes quite evident the necessity to measure in absolute 

scale not only temperature, but also pressure, chemical, electrical and any other potential 
of a system under investigation.  It is a matter for regret that this statement has not yet be-
come common property of a great number of investigators.  
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systems is related to heat exchange via the same relationship as the Clau-
sius’ entropy: 
 

dΘt = đQ/Т = dS .                                     (4.2.9) 
 

From this it follows that the thermal process coordinate Θt coincides 
with the Clausius’ entropy S to an accuracy of some constant (which may 
be set zero, though). This allows expressing thermodynamic identity 
(4.1.7) thru informal variables: 
 

dU ≡ TdS – рdV.                                        (4.2.10) 
 

Fundamental difference of this identity from the joint equation of the 
first and second laws of thermodynamics, where unequal sign figures in-
stead of identity sign (for irreversible processes), lies in the fact that the 
former remains valid for also irreversible processes. Undoubtedly, in this 
case the terms of this identity do not characterize any more heat exchange 
and expansion work as it would be for reversible processes. The reason of 
this, as indicated above, is that entropy and volume have internal sources 
caused by dissipative processes running in heterogeneous systems. The 
variations of volume and entropy are, in this case, caused by not only the 
expansion work and the heat exchange, but by even more general proc-
esses, viz. cubic strain and thermal process both including an irreversible 
component. Such is the price that has to be paid for retaining the body of 
mathematics in thermodynamics in the form of equalities.  
 
 
 

4.3. Principle of Entropy Rise (Second Law for Irreversible 
Processes) 

 
In accordance with the law of existence of entropy the entropy means 

a state parameter, which variation in reversible processes is equal to the 
process heat Q related to the process average temperature T. However, 
the name of this parameter given by R. Clausius (entropy in Greek means 
“internal conversion”) emphasized a quite other and unusual for science 
of that time property of entropy to increase also in the absence of heat ex-
change (due to a spontaneous conversion of ordered forms of energy into 
the heat energy). First S. Carnot in his “Réflexions…” (1824), then R. 
Clausius in “The Dynamic Theory of Heat” (1850) showed by different 
ways that if a heat engine was arranged so that in its reverse-direction op-
eration all mechanical and heat effects were converted into their inverses, 
the engine would do the maximal amount of work. That meant that “the 
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mechanical energy thus expended might be returned to the initial state” 
(R. Clausius, 1950). Thus the concept of reversibility as a possibility to 
return a system to its initial state appeared immediately having taken the 
character of an initial postulate. From how this term was applied, the 
classicists construed it as a possibility to recover the “motive force of 
heat”. In particular, W. Tomson in his article “On Dynamic Theory of 
Heat” directly writes, “When heat or work is obtained with irreversible 
process, the dissipation of mechanical energy occurs and its complete re-
turn to the initial state is impossible”. Since the mechanical energy is 
measured by the amount of work that a body (system) can do, the irre-
versibility, as the founders of thermodynamics understood it, was a syno-
nym for loss of capability to do work by the body (or, as we term it now – 
“dissipation” of energy).  

Since all known thermodynamic systems being isolated are tending to 
equilibrium (where any macro-processes cease), the capability of such 
systems to do work decreases when spontaneous processes are running. 
To describe such a behavior mathematically, R. Clausius considered two 
“mating” heat engines – one engine working by direct cycle, while the 
other – by reverse cycle. He took for granted that the thermal efficiency ηt 
of any irreversible heat engine was less than in the reverse Carnot cycle 
(at the same temperatures of heat absorber and heat source). If so, then 
the equal sign in relationship (4.2.3) must be replaced by the unequal 
sign: 

 
ηt ≡  1 – đQ"/đQ' < ηt

К = 1 – Т"/ Т' .                       (4.3.1) 
 
In this case, repeating the same operations we immediately come to a 

conclusion that entropy of a system increases if any irreversible processes 
are running in the system: 
 
  

dS > đQ/Т,                                                             (4.3.2) 
 

Thus the law of increase of entropy appeared. It reflects the unilateral 
directivity of spontaneous processes and has acquired the status of the 
second law of thermodynamics. According to this law the entropy of an 
isolated system increases when any irreversible processes are running in 
it. R. Clausius, not having conceived restrictions to this law, extended it 
to the entire Universe. Such “absolutization” of the law of increase of en-
tropy is best of all highlighted in his winged words, “The energy of the 
Universe is invariable. The entropy of the Universe is increasing”.  

Clausius’s contemporaries immediately traced far-reaching effects in 
that conclusion – from “the Creation” up to inevitability of “heat death” 
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of the Universe. A good few of investigators even at that time treated 
such an extrapolation of the law of increase of entropy as extremely un-
convincing (J.M. Gelfer, 1979). It is impossible to textually duplicate 
here even the least of the objections ensued. Under these circumstances 
the deduction of the law of increase of entropy from the positions of en-
ergodynamics is a matter of great interest. The definition of the internal 
heat energy Uт given above makes quite natural and predictable its in-
crease not only due to the heat exchange Q, but also due to internal 
sources of the dissipation heat QD: 
 

 dUт = đQ + đQd.                                           (4.3.3) 
 

Since the quotient obtained when the exact differential of any func-
tion of state (in this case – of Ut) is divided by any parameter Ψt (in this 
case – by absolute temperature T) is also the exact differential, the ex-
pression dΘт = dUt/Т does not demand the proof of holonomy and di-
rectly leads to the entropy balance equation I. Prigogine (1947) set forth: 
 

dS = dеS + dsS .                                         (4.3.4) 
 

Here dеS = đQ/Т ≤ ≥ 0 – reversible part of the entropy variation 
caused by the external heat exchange đQ; dsS = đQd/Т ≥ 0 – irreversible 
part of the entropy variation caused by internal sources of the dissipation 
heat Qd ≥ 0. Under this expression the entropy S of adiabatically isolated 
systems (where đQ = 0) increases when any internal sources of the dissi-
pation heat appear in them.  

At the same time expressions (4.3.2) and (4.3.3) manifest clearly the 
inapplicability of the law of increase of entropy to irreversible processes, 
where the work counter the dissipation forces affects other components of 
the internal energy and does not initiate internal sources of the dissipation 
heat Qd. In particular, metal cutting and material crushing processes in-
volve changing the internal potential energy depending on the system 
structure. This is estimated in practice by the heat output ratio which is 
the dissipation heat Qd related to the work expended W. For many proc-
esses the ratio Qd/W is less than unit. Thus, from the positions of ener-
godynamics, it becomes absolutely evident that the thermodynamic en-
tropy is not a measure of “each and either” irreversibility, but just reflects 
the fact of increasing the internal heat energy at the expense of other 
“non-entropy” forms of energy. The understanding of this circumstance is 
considerably facilitated by comparing the exact differential of the internal 
heat energy (4.3.3) dUt = ТdS with the similar expression for the kinetic 
energy dEk

 = vdP (where v – velocity of a system, P – its momentum): 
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             dUт = ТdS ; dEk
 = v·dP .                              (4.3.5) 

 
It is easy to notice that the entropy S behaves toward the internal heat 

energy Ut of a system in the same way as the momentum P of the system 
toward its kinetic energy. In other words, the entropy of a system is a 
thermo-momentum of a kind, i.e. the sum of momentum magnitudes of the 
particles comprising the system, which has lost its vector nature due to 
the randomness of heat motion. It is natural therefore that the entropy as a 
thermo-momentum of a system increases not only at its transfer from the 
environment during heat exchange with the same, but at any dissipation 
processes involving the conversion of ordered forms of energy into the 
internal heat energy. The interpretation of the entropy as a thermo-
momentum is a matter of no small consequence for conception of ther-
modynamics and its further generalizations. In particular, it becomes evi-
dent that the thermodynamic entropy can not serve as measure of the dis-
order not relating to heat motion, including the disorder of structure or 
uncertainty of information. In this respect the conversion of the inergy of 
a system into its anergy (see chapters 7, 8 and 14) is a much more general 
criterion of an isolated system evolving toward equilibrium. Such a con-
version has an experimental confirmation, which may be, e.g. the so-
called “effect of increasing heat content measured” (L. Brovkin, 1960, 
1964). Those experiments revealed an increase of the mean integral tem-
perature during the relaxation of gaseous or solid medium (paper, card-
board, rubber) with heterogeneous temperature field, whereas that tem-
perature should seemingly have decreased. Characteristic are herein the 
experiments with a roll of paper, where throughout the length a resistance 
thermometer was inserted. After the tightly packed roll had been non-
uniformly heated from an external source of heat, the system was lagged 
(heat insulated) and the resistance variation of such a “spread” thermome-
ter was recorded. Series of such experiments revealed a considerable in-
crease of the mean integral temperature of the roll for the initial period of 
its “cooling”, which amounted to 17.2% thru 36.4% depending on the de-
gree of its heating. For rubber that effect appeared to have been even 
higher. That unambiguously evidenced the fact that the equilibrium com-
ponent of the internal heat energy of the body (its anergy) Ūt = ТS in-
creased whereas the Ut itself remained constant, i.e. that the thermal yn-
ergy existed and transformed into the anergy during the relaxation of the 
system. Hereafter we will time after time advert to the concept of inergy 
as more “physic”, more informative and more general criterion of evolu-
tion that entropy.  
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4.4. Principle of Excluded Perpetual Motion of the Second Kind 
 

Operation experience on heat engines and their theoretical investiga-
tion have led to the comprehension that there should exist in them, along 
with a heat source, also a heat absorber (or, to use the common locution – 
a “cold source”). Scientists have come to this conclusion by different 
ways: S. Carnot (1824) – from analogy of heat engines with hydraulic 
engines using the inlet-outlet water level differential; W. Thomson (1847) 
– from impossibility for working medium to be cooled below the ambient 
temperature; R. Clausius (1850) – from necessity of the “compensation” 
for converting heat into work as partial removal of this heat to surround-
ing bodies; W. Ostwald (1901) – from impossibility of using inexhausti-
ble heat supply from the ocean. It was him, who offered to name engines 
lacking heat absorber the “perpetual motion of the second kind” (unlike 
the “perpetual motion of the first kind” lacking heat source and thus dis-
turbing the first law of thermodynamics). The postulates stating impossi-
bility of creating such engines make up an inseparable part of the second 
law of thermodynamics and are united by the “law of excluded perpetual 
motion of the second kind”.  

However, the initial statements of this law referred to cyclic heat en-
gines only and did not take into account the wide process variety of con-
verting energy from one form into another. Therefore to many investiga-
tors the consideration of non-cyclic and non-heat engines has always 
seemed violating the “don’ts” of the mechanical theory for heat engines. 
This causes numerous discussions that have periodically arisen in scien-
tific and popular press. In this context it is a matter of interest to clarify 
the limits of validity of the said postulates from the positions of a more 
general theory which energodynamics is.  

Let us consider a heat source with a temperature of Т1 capable of heat 
exchange with the environment, but incapable of ceaseless mechanical 
work. In this case, to do work, a working medium has to be applied to ca-
pable of both heat-exchange and work, i.e. having both the thermal and 
mechanical degree of freedom. To avoid expenditure of working medium, 
let us make it perform a cyclic process (Fig.3-1). Providing such a work-
ing medium (e.g. steam or gas) is homogeneous in its physical properties 
(internally equilibrium), while the processes comprising the cycle are 
quasi-static (i.e. not disturbing this equilibrium), the joint equation of the 
first and second laws of energodynamics (2.2.5) becomes (4.1.5). Ac-
cording to (4.1.4) the work Wc of such a cycle is equal to the heat of the 
cycle: 

 

             Wc = Qc = ∫ .TdS                                                    (4.4.1) 
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From this equation it fol-
lows that the work Wc in the 
cyclic process under consid-
eration is other than zero only 
in the case, when the tem-
perature T at various stages 
of the cycle accepts different 
values. Otherwise, factoring 
it outside the integral sign 
(4.4.1) and taking into ac-
count that the circuit integral 

of entropy, like of any state parameter, is equal to zero, gives immedi-
ately Wc=0. Thus working medium in a cyclic engine must periodically 
contact with at least two heat sources having different temperatures T1 
and T2. In other words, both a “hot” and a “cold” heat sources are needed. 
However, it does not mean at all that the working medium can not take 
heat from both of them. To show that the cold source must be a heat ab-
sorber, let us note there is part 1–2 in the cycle, where the entropy in-
creases and the heat Q1= ∫T1dS > 0, i.e. is supplied to the working me-
dium, and part 2–1, where the entropy decreases and the heat Q2 is re-
moved (Q2 = ∫T2dS < 0). Thus to run a cyclic process, both heat sources 
and absorbers are needed, which conceptualizes the law of excluded per-
petual motion of the second kind. It is worth noting that this statement, as 
itself, directly ensues from the thermokinetic identity in the form of 
(2.2.5), where the terms of the addend sum characterize nothing but the 
useful work done by the system. These terms are structured as Хi·dZi, 
which is a direct evidence that only heterogeneous systems (Хi ≠ 0) can 
do useful work, while this work itself involves transfer of energy carrier 
between the parts of such a system (dZi ≠ 0).  

Following the chain of our discourse one can easily come to a con-
cept of the degree of convertibility of heat into work. If to construe Q1 
and Q2 as the heat, respectively supplied to and removed from the cycle, 
then according to (4.4.1) the work of an arbitrary cycle Wc = Q1 – Q2 and 
is expressed by the cyclic area, while the ratio ηt of the cyclic work Wc to 
the heat Q1 supplied from a hot source is: 

 
ηt ≡ Wц/Q1 = 1 – Q2/Q1 < 1.                                     (4.4.2) 

 
This ratio was named the thermal efficiency of heat engine. Accord-

ing to (4.4.2) it is always less than unit. This fact is sometimes errone-
ously ascribed to shortcomings of heat engine leaving out of account the 
circumstance that removing a part Q2 of the supplied heat Q1 to the envi-
ronment is not a loss, but the necessary provision to close the cycle. Only 
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       Fig.4.1. Generalized Cycle of Heat Engine 
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that part Q2 may be considered as losses, which is removed to heat ab-
sorber in excess of the minimum required. To define this minimum, let us 
represent Q1 and Q2 as: 

 
Q1 = ∫T1dS1-2 = 1T (S2 – S1);                                  (4.4.3) 

 
              Q2 = ∫T2dS2-1 = T2(S1 – S2),                                  (4.4.4) 

where 1T ,T2  – the so-called mean thermodynamic temperatures of, re-
spectively, heat supply and heat removal in a cycle. In Fig.4.1 those are 
expressed as the height of a rectangle equal in area to, respectively, the 
curvilinear trapeziums S1–1–2– S2 and S1–2–1–S2. This allows expressing 
the efficiency of any cycle thru these temperatures by the relationship: 
 

ηt = 1 – T2 / 1T < 1.                                        (4.4.5) 
 

From here it directly follows that the efficiency of the cycle under 
consideration will be maximal providing the temperatures of heat sup-
plied and removed are constant and equal to, respectively, maximal and 
minimal temperature of the working medium in Fig.4.1. Such a cycle 
consisting of two isotherms and two adiabats was first set forth by S. 
Carnot and named after him. The removed heat Q2 is there minimal and 
equal to Q2

min. Hence only the heat difference Q2–Q2
min may be referred to 

as losses. It also ensues from (4.4.5) that the thermal efficiency of heat 
engine is defined by exclusively mean temperatures of heat supplied and 
removed in a cycle and, providing those are equal, does not depend on the 
working medium of the engine1). This statement is in substance equiva-
lent to the Carnot theorem which he proved from the theory of thermogen 
and the assumption of reversibility (ideality) of his cycle. In our case we 
have come to all these statements without any assumptions regarding the 
cycle configuration and equilibrium of the processes comprising the cy-
cle. From our consideration undertaken it also follows that the “compen-
sation” for the Clausius-mentioned conversion of heat into work consists 
in removing the heat Q2 into the environment (heat absorber) and in in-
creasing its entropy by the value (S2 – S1) theoretically equal to the de-
crease of the entropy of the heat source. In other words, to provide the 

                                                 
1)  This fact means that the value of ηt does not depend on features of heat engine and its 
design perfection, but is defined by exclusively those resources that nature provides for 
the human, including the temperatures of heat source and heat absorber. Therefore some 
investigators have reasonably proposed to name ηt not “efficiency”, but “degree of re-
versibility” of the heat supplied. 
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heat conversion process, it is necessary to arrange a flow of entropy from 
the hot source to the cold one like the water flow in hydraulic engines. 
Yet S. Carnot noted this analogy between heat and hydraulic engines. 
Looking now back one can not choose but regret that after the theory of 
thermogen as the “indestructible fluid” failed this term has never been 
used to describe the carrier of the heat form of motion.  

 
 

4.5. Principle of Unattainable Absolute Temperature Zero 
(Third Law of Thermodynamics) 

 
This fact means that the value of ηt does not depend on features of heat 
engine and its design perfection, but is defined by exclusively those re-
sources that nature provides for the human, including the temperatures of 
heat source and heat absorber. Therefore some investigators have rea-
sonably proposed to name ηt not “efficiency”, but “degree of reversibil-
ity” of the heat supplied. 

Thorough investigation tests on substances to study their low-
temperature behavior were undertaken in the early 20th century. As a re-
sult of these studies it has been found (W. Nernst, 1929) that on ap-
proaching the absolute temperature zero the entropy of any equilibrium 
system in isothermal processes ceases to depend on whatever thermody-
namic state parameters Θi and in its limit at T=0 accepts a value the 
same for all system, which may be taken zero (I.P. Bazarov, 1991). This 
is mathematically expressed by the relationship: 

 

0lim
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Θ∂
∂

→
TiT

S  .                                              (4.5.1) 

                
The validity of this statement named the third law of thermodynamics 

is presently substantiated for all equilibrium systems. Apparent deviation 
from this law revealed for some substances (glycerol, CO, NO, some al-
loys) appeared to have been attributed to a “freezing” of them in a meta-
stable non-equilibrium state that passed off in some (sometimes very 
long) time.  

Practical value of the third law consists in its advanced facilitation of 
calculating the thermodynamic functions. Before that law stated, to calcu-
late entropy, it was necessary to know the dependence of heat capacity on 
temperature and the thermal state equation. Now this has become need-
less, since according to the heat capacity definition  

 
Cv = T(∂S/∂T)V ; Cp = T(∂S/∂T)P                                              (4.5.2) 
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integration of these equations gives: 
 

 S(T,V) = ∫( Cv/T)dT ; S(T,p) = ∫( CP/T)dT ,                       (4.5.3) 
 
where the integration is performed from the absolute temperature zero. 

Since according to the third law 
the entropy is finite at any tem-
perature, the integrals (4.5.3) 
must be converging. From this it 
follows that the isochoric and 
isobaric heat capacities at Т→ 0 
tend to zero faster than the tem-
perature (Einstein, 1966).  

The availability of relation-
ships (4.5.3) substantially facili-
tates calculating the entropy of 
bodies, when the dependence of 
their heat capacity on tempera-
ture is known.  

At the same time the third 
law is a matter of no small theo-

retical consequence in the context of its interpretation as the law of unat-
tainability of absolute temperature zero. From the positions of equilib-
rium thermodynamics such a conclusion may be drawn taking into con-
sideration that on approaching the absolute temperature zero all isother-
mal processes are becoming simultaneously adiabatic. Hence at T = 0 
heat exchange becomes impossible and this state can not be attained yet 
by the reversible heat exchange. This becomes even more evident taking 
into account the irreversibility of heat exchange, i.e. the provision that a 
temperature differential between a body and the environment is required 
to provide it. In this case, to attain the absolute temperature zero, bodies 
need to be available with a temperature below zero, which do not occur in 
nature. This is what W. Nernst, who did not welcome the notion of en-
tropy, interpreted as the unattainability of absolute temperature zero.  

From here it does not yet follows the impossibility of approaching the 
absolute temperature zero by whatever other way. It is possible to lower 
some potential Ψi (including temperature T) by varying one of the ther-
modynamic forces Xi acting in a system. This, in particular, makes the 
basis for the method of attaining extremely low temperatures by the adia-
batic demagnetization (V. Sychev, 1977). This method is based on the 
magneto-caloric effect, viz. on the phenomenon of decreasing the tem-
perature T of magnetic material at its magnetization Zм depressing, the 
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decreasing rate being defined by the derivative (∂Т/∂Н)S,p. At quite low 
temperatures this derivative reaches a noticeable value for a number of 
magnetic materials, which allows realizing the method offered by Debye 
and Gioque in 1926. Fig.4.2 explains the process by a T–S diagram. The 
diagram depicts a family of magnetization curves Zм = const. Since with 
the temperature decreasing, the entropy ceases depending on whatever 
parameters of magnetic material (including Zм), all curves at T = 0 con-
verge to the same point. In this case the character of the curves them-
selves depends on the behavior of the heat capacity cp of the magnetic 
material nearby the absolute temperature zero. Since with the temperature 
decreasing, the heat capacity cp of a number of magnetic materials de-
creases even faster, the curves at T=0 have a common vertical tangent. 
Let point 1 (S > 0) on the T–S diagram characterizes the initial state of the 
magnetic material. Then running a single adiabatic demagnetization proc-
ess (1–2) to the state Zм = 0 we are still quite far from the state T=0. 
However we can isothermally magnetize the material once again simulta-
neously removing the heat herein released to an intermediate coolant (2-
3) and then repeat the adiabatic demagnetization. Iterating the process it 
is possible to become asymptotic to the absolute temperature zero. Tem-
peratures of 0.001K have been reached by this way at present time. Thus 
one can only insist on unattainability of absolute temperature zero for a 
single process. In this context it is advisably to put forward one more, let 
us say, philosophical sanction. The unattainability of absolute tempera-
ture zero or any other generalized potential means the “indestructibility” 
of heat or any other form of energy at all and by whatever way. It follows 
from here that all known forms of energy either have always existed or 
were “created” for ever and aye by a disposition of Providence so that 
new forms of energy can not occur in nature. Antiscientific character of 
such a deduction is evident. Therefore, from the positions of energody-
namics it is more preferable to adhere to the ”asymptotic attainability” of 
absolute temperature zero as a result of infinite sequence of adiabatic-
isothermal processes (1-2-3-4-5-6-7-etc.). From this viewpoint the heat or 
any other form of energy can “degenerate” under certain conditions. For 
the heat form of motion featuring a “symbiosis” of kinetic and potential 
energies of particles this can occur in two events – at infinitely high com-
pression, when kinetic energy of all kinds of particle motion degenerates, 
and at infinite expansion (scattering) of particles, when potential energy 
of their interaction degenerates. Both events apparently occur in the Uni-
verse, which makes the extension of the thermodynamic laws to the Uni-
verse an impermissible extrapolation.  
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4.6.  Principle of Entropy Maximum as Equilibrium Condition 
 

The equilibrium self-non-disturbance principle is one of the primary 
postulates of classic thermodynamics. It reads that an isolated system 
with time always comes to a state of thermodynamic equilibrium, and 
only an action from outside can make it out of this state. Being a result of 
the experience accrued, this statement is a basis of thermodynamics as a 
whole and defines the limits of its applicability.  

From the viewpoint of statistical physics internal equilibrium in a 
system corresponds to such a state of the incessantly moving micro-
particles of the system which occurs most frequently and thus is most 
probable. From this it follows that the spontaneous transition of a system 
to equilibrium is not an absolute law of nature, but expresses just the 
most probable behavior of the system. Based on this principle, thermody-
namics restricts the spectrum of the systems that may be considered as 
thermodynamic and leaves out of consideration the ones that develop 
missing equilibrium. Such systems, in particular, include microscopic ob-
jects, which never ceasing motion leads to their spontaneous deviation 
from the most probable state (system fluctuations). Here come also sys-
tems of galactic size, where, due to lag of interaction, instead of dying the 
fluctuations down their “build-up” may arise like in the regulation sys-
tems with positive (regenerative) feedback. Such systems become the 
subjects of energodynamics allowing for processes of “self-ordering” of a 
number of degrees of freedom against disordering of other ones and never 
coming to the total equilibrium state. However, this discipline is also 
rested on the statistical foundation of the collective behavior of a great 
number of particles (collective degrees of freedom) resulting in the mac-
roscopic (observable) character which the microscopic motion acquires. 
From this it follows that the thermodynamic and statistical approaches are 
not alternative, but mutually complementary.  

In accordance with its laws classic thermodynamics deals with transi-
tions in-between two and more equilibrium states disregarding the kinet-
ics of these transitions. Therefore the concept of equilibrium and equilib-
rium conditions are top-priorities in this theory.  

The theory of system equilibrium and stability was first developed by 
Lagrange for mechanical systems. That was based on the virtual dis-
placement principle. It says that a mechanical system at ideal constraints 
remains in equilibrium providing the sum of works done by all forces at 
any virtual (possible) displacement of the system is equal to zero. That 
theory was then extended by Gibbs to thermodynamic systems. The pecu-
liarity of that principle as applied to thermodynamics was that depending 
on the conditions of the interface between a system and the environment 
there were several equilibrium conditions in thermodynamics instead of 
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one condition for mechanical systems. In particular, the condition of sta-
ble equilibrium for isolated systems means maximality of their entropy: 
 

δS = 0, δ2S <0 ,                                                     (4.6.1) 
 
where δS, δ2S – respectively, first- and second-order variation of entropy. 
The equality of the first-order variation of entropy δS to zero means equi-
librium, while the negativity of its second-order variation δ2S (maximality 
of entropy) characterizes the stability of equilibrium.  

The general method of definition of equilibrium conditions set forth 
by Gibbs may be instantiated by a system that has, besides the thermal 
and the mechanical degrees of freedom, also some ith degrees of freedom 
(related to, e.g., interchange of the kth substances between the parts of the 
system). Let us consider a heterogeneous in whole system consisting of 
two homogeneous subsystems (phases or zones). Designating the pa-
rameters of these subsystems with correspondingly one or two primes let 
us express, according to (2.3.6), the variations of energy δS for both sub-
systems as: 
 

δU' =  T'δS' – p'δV' + Ψi' δΘi' ,                               (4.6.2) 
 

δU" =  T"δS" – p"δV" + Ψi" δΘi" .                         (4.6.3) 
 

For the sake of simplicity we have only considered here one addi-
tional degree of freedom with the coordinate Θi  and the potential Ψi, 
which, however, does not affect the generality of consideration. Since the 
system in whole is isolated, the variations of the extensive coordinates in 
(4.6.2) and (4.6.3) have the constraints imposed: 
 

δU' + δU" = 0; δS' + δS" = 0;                             (4.6.4) 
  

        δV' + δV" = 0; δΘi' + δΘi" = 0.                            (4.6.5) 
 

To use the principle of entropy maximality in equilibrium conditions, 
let us represent equations (4.6.2) – (4.6.3), allowing for (4.6.4) – (4.6.5), 
in the form: 
 

δS = (1/T' – 1/T")δU' + (p'/T' – p"/T")δV' + (Ψi'/T' – Ψi"/T")δΘi' = 0. 
(4.6.6) 

 
Since the variations δE', δV' and δΘi' caused by, respectively, possi-

ble heat exchange, increase of volume of one part at the expense of other 
and by transfer of the ith energy carrier, do not depend on each other and 
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can take any values, the necessary and sufficient criteria of equilibrium 
assume the form: 
 

T' =  T" (thermal equilibrium);                             (4.6.7) 
         

         p' = p" (mechanical equilibrium);                        (4.6.8) 
 

         Ψi' = Ψi" (ith - kind equilibrium).                            (4.6.9) 
 

However the conditions of equilibrium of ith sort found in such a 
way are fair only in the presence of thermal equilibrium (4.6.7) as other-
wise they assume more difficult air Ψi΄/T ΄ = Ψi˝/T ˝. It leads to a conclu-
sion about a special role of thermal equilibrium. It is considered to be, 
that for lack of thermal balance can not come other kinds of equilibrium, 
for example, the material balance characterised by the termination of an 
exchange by k substances (R.Haaze, 1964). Meanwhile this conclusion 
does not prove to be true at use more the general power criteria of bal-
ance (V.Etkin, 1999). In particular, from an obvious condition (2.3.10) 
follows: 

 
Xi ≡ – (∂Е/∂Zi) = 0.                                       (4.6.10) 

 
That is equivalent to conditions (4.6.7) … (4.6.9). Further this posi-

tion will be confirmed on a number of concrete examples, testifying 
about discrepancy of this position to merits of case . 

It is worth noticing in conclusion that the substantiation of the basic 
laws pertaining to equilibrium thermodynamics as consequences from 
thermokinetics allows to refuse their postulation and to expose the very 
gist of them. This makes the assumptions laid into the foundation of this 
theory clearer and the reasons of its inferiority more understandable. This 
allows outlining the ways how to generalize the classic theory and to 
overcome the difficulties revealed. These ways will be realized in subse-
quent chapters of the book. 
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Chapter 5 
 

THERMODYNAMICS OF IRREVERSIBLE PROCESSES 
 

The rise of engineering interest in phenomena at the interface be-
tween various disciplines and perception of their close relation with the 
phenomena of the energy dissipation led to creating, in the early 20th cen-
tury, the thermodynamic theory of real process rate. This field in macro-
scopic physics of the 20th century was named the theory of irreversible 
processes (L. Onsager, 1931; I. Prigogine, 1947, 1955; H. Cazimir, 1945; 
K. Denbigh, 1951; S. De Groot, 1952, 1962; J. Meixner, 1954, I. Gyar-
mati, 1960, 1970; R. Haase, 1962, etc.). It has enriched the theoretical 
mind of the 20th century with a number of general physics principles and 
notably contributed to cognition of the in-depth interrelations between 
different-type phenomena. That contribution was appreciated by two No-
bel prizes awarded in the field (Onsager, 1968; I. Prigogine, 1977).  

However, the theory of irreversible processes (TIP) was constructed 
by extrapolating classic thermodynamics beyond the strict framework of 
applicability of its system equilibrium and process reversibility concepts. 
This has led the TIP to its losing the rigor and completeness intrinsic for 
the classic thermodynamic method. In this context it becomes a question 
of significant importance to provide a consistent thermodynamic substan-
tiation of the TIP fundamentals from the more general positions of ther-
modynamics.  

 
 

5.1. Linear Theory of Dissipation Processes Rate 
 

More than centenary had passed before it became clear that “thermo-
dynamics unaware of time” (to a Brian’s figurative locution) was sub-
stantially thermostatics wherein only Fourier’s, Navier’s, Ohm’s, Fick’s, 
Darcy’s, Newton’s, etc. equations prefigured the coming theory of non-
static (running with finite rate) processes, viz. energodynamics. However, 
the development in that direction demanded introducing in thermodynam-
ics the transfer concepts intrinsically extraneous for it. One of these be-
longs to N. Umov (1873), who wrote the law of conservation of energy in 
terms of the mass elements of resilient media as: 

∂ρε /∂t + ∇⋅je
о

 = 0 ,                                      (5.1.1) 

where ρ, ε – density of a system and its specific energy, respectively; je
о – 

local density of the energy flow across the stationary borders of the sys-
tem; t – time.  
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The flow concept in application to entropy (G. Jaumann, 1911) be-
came another stride. Note, that application was quite novel, because of 
the statistic-mechanical interpretation of entropy as a measure of state 
probability for which the transfer concept is absolutely senseless. G. 
Jaumann set forth the equation of entropy balance: 
 

 ∂(ρΣs)/∂t + ∇⋅js
о

 = σs ,                              (5.1.2) 
 
where the specific entropy variation rate s (J/kg⋅K) is represented as a 
consequence, on the one hand, of its transfer across the system borders by 
the entropy flow with the density js (W/m2⋅K), while, on the other hand, 
of availability of its internal sources with the volume density σs 
(W/m3⋅K). A little bit later De Donder (1927) related the entropy source 
σs with the rate of the rth chemical reactions in the volume unit wr of the 
system and with the affinity Ar of those reactions: 
 

            σs = Σr Ar wr /T .                                    (5.1.3) 
 

That was how the concepts of flow and process rate started 
their introduction into thermodynamics. The most decisive move in 
that direction was not, however, made, until 1931 (L. Onsager). 
Onsager built his theory of physicochemical process rate (he named 
it “quasi-thermodynamics”) based on the expression for the entropy 
generation rate, having thus emphasized the irreversible part of real 
phenomena. The entropy S of a closed adiabatic isolated system in 
equilibrium state is known to be maximal. If the parameters x1, x2 
...,xn (temperature T, pressure p, concentrations сk of kth substances, 
etc.) of non-equilibrium state differ from their equilibrium values 
x1o, x2o,..., xno  by a value of αi = xi - xio, it is naturally to assume that 
the difference between the entropies of the current S and equilib-
rium So states ΔS = S – S0 is a some function of α1, α2,...,αn. In this 
case the reason of the ith scalar process generation (the scalar ther-
modynamic force Xi) and the generalized rate of this process 
(named by L. Onsager the flow Ji) could be found from the expres-
sion for the entropy generation rate: 

 dS/dt = Σi(∂S/∂αi) dαi/dt = Σi XiJi ,              (5.1.4) 

where 
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Xi = (∂S/∂αi);     Ji = dαi/dt .                 (5.1.5) 

Thus L. Onsager endued the force Xi with a meaning quite different 
from that in Newton’s mechanics and construed it as a parameter measur-
ing the deviation of a system from internal equilibrium. At the same time 
L. Onsager postulated that for minor deviation from thermodynamic equi-
librium any of the flows Ji obeyed the law of linear dependence on all the 
thermodynamic forces Xj active in the system: 

 
 Ji = Σj Lij Xj .     (i,j = 1, 2, …, n) .                      (5.1.6) 

L. Onsager referred to those laws of relaxation processes, as well as 
the associated coefficients Lij, as “phenomenological” (i.e. practice-
based). The off-diagonal summands in expression (5.1.6) were introduced 
by Onsager to allow for various “superposition” (interrelation) effects of 
different-type irreversible processes running simultaneously in the same 
spatial zones.  

The proof of reciprocity relationships between the “off-diagonal” 
phenomenological coefficients Lij and Lji (i ≠ j) was most important in the 
L. Onsager’s theory: 

 Lij = Lji .                                         (5.1.7) 

These symmetry conditions are called the reciprocity relationships. 
They reduce the number of the coefficients Lij to be experimentally de-
fined from n (for mere empirical description) down to n(n+1)/2 (where n 
– a number of independent flows) and lead to setting up a before un-
known relationship between the rates of different-type irreversible proc-
esses. L. Onsager was afterward awarded the Nobel Prize (1968) for his 
studies in that field. Those studies attributed to non-equilibrium thermo-
dynamics just as much as the R. Clausius’ studies to the making of classic 
thermodynamics. They have embodied the odds and ends of concepts and 
facts representing them in an accessible and understandable form. Their 
publication made a good start to the intensive development of the TIP in 
macroscopic and statistical physics. After Onsager, H. Cazimir (1945) ex-
tended the Onsager’s theory to cover vector processes, having herein 
proved that in case the α– and β–type forces (even and odd time func-
tions) acted simultaneously, the reciprocity relationships (6) would go 
over into the anti–symmetry conditions: 

 
Lij = –Lji                                    (5.1.8) 
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A little bit later (1956-62) I. Prigogine (the 1977 Nobel prizewinner) 
based on Curie’s symmetry law showed that in case the scalar and vector 
processes ran simultaneously, only the processes of the same (or even) 
tensor range could interact (superimpose). Insufficiency of the Onsager’s 
postulate (see 5.1.6) was thus revealed. Besides, I. Prigogine showed that 
the stationary (unvaried with time) state of non–equilibrium systems was 
characterized by minimal rate of the entropy generation (minimal entropy 
production dS/dt) and corresponded to disappearance of the flows Jj sub-
script–similar to the non–fixed forces Xj. He also showed that the part of 
the entropy production dXS/dt associated with the force variation de-
creased as having approached the stationary state. That allowed further 
solving a number of problems associated with the evolution of non-
equilibrium systems.  

An especially rapid development of the TIP started post–World War 
II. The interest in that field of knowledge was caused not only by its gen-
eral theoretical significance, but rather its important applications having 
been outlined in the forties and fifties and having involved the thermal 
diffusion isotope separation, the allowance for additional terms in the hy-
drodynamic equations for missile art and plasma physics, the develop-
ment of membrane technique, biophysics, etc. Due to the resumptive 
studies of H. Cazimir (1945), I. Prigogine (1947, 1976), K. Denbigh 
(1951), S. De Groot (1952, 1962), J. Meixner (1954), I. Gyarmati (1960, 
1970), R. Haase (1962), etc. this theory has become a separate field of 
thermodynamics with its own method and the certain spectrum of the 
problems to be solved.  

Important investigations in this field have been carried out by domes-
tic scientists. In particular, in 1947 M. Leontovich and L. Mandelshtamm 
developed a thermodynamic theory of acoustic relaxation distinguished 
from the Onsager’s theory. L Landau and E. Livshits greatly contributed 
to the TIP, when showed in 1951 that under the symmetry conditions 
(5.1.7) the phenomenological coefficients in Onsager equation were 
terms of a substantially positive matrix and therefore had the constraint 
imposed: 

(Lij + Lji)2 < 4LiiLjj .                                 (5.1.9) 

Domestic scientists were among those, who much advanced practical 
applications of that theory to various processes, viz. chemical (Bak-
hareva, 1967; Bulatov and Lundin, 1984), metallurgical (Veinik, 1966; 
Gurov, 1978), biological (Rubin, 1984; Gladyshev, 1988, etc.), as well as 
a popularization of that field of knowledge (Zhukovsky, 1979; Burdakov, 
1985, etc.). They especially contributed to having developed statistical 
methods of substantiation and construction of the linear and non-linear ir-
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reversible process theory (Zubarev, 1971; Stratonovich, 1985, Kvas-
nikov, 1987; Bazarov, 1989, etc.).  

The development of the phenomenological and statistical TIP has ad-
vanced the approximation of the heat-mass transfer theory to hydrody-
namics, electrodynamics and continuum mechanics. It appeared to have 
been especially useful to study phenomena at interfaces between those 
disciplines. However, those theories never did eliminate the abovemen-
tioned line of demarcation between thermodynamics and the heat transfer 
theory. The reason is that the TIP is restricted to studying the dissipation 
processes like heat conductivity, electric conductivity, diffusion, as well 
as effects of their superposition, but does not deal with the processes of 
useful energy conversion, which are the main object of investigation in 
thermodynamics. This is the reason why the necessity appeared to call 
thermodynamics into being as a unified theory of energy transfer and 
conversion rate and capacity, which, unlike W. Thomson’s “pseudo-
thermostatics” and L. Onsager’s “quasi-thermodynamics”, would not 
“unfile” some part of a phenomenon, but would cover the entire spectrum 
of real processes.  

 
 
 

5.2.  Motive Forces and Generalized Rates of Transfer Processes 
 

As it follows from expression (5.1.4), the selection of the motive 
forces Xi and the flows Ji in the TIP depends on how the expression for 
the entropy generation rate is broken up into separate components. The 
only demand herein is that the flows to be linearly independent and, at 
equilibrium, become zero along with the thermodynamic forces. Such ar-
bitrariness was acceptable till the moment the different-type summands 
Xi⋅Ji characterized the power of the same energy dissipation processes. 
However, that arbitrary rule appeared to have been absolutely unaccept-
able in terms of the useful energy conversion processes, e.g. in biophys-
ics, since that would lead to an equivocal assessment of the energy con-
verter efficiency (see chapters 16, 17). Furthermore, expression (5.1.4) is 
inapplicable to evaluate the reversible component of the motive forces, 
since the reversible processes are known to have no influence on entropy 
(M.P. Vukalovich, I.I. Novikov, 1968; I.P. Bazarov, 1991). If, e.g., 
chemical reactions are described running in an ideal fuel cell (without en-
tropy production due to thermodynamic irreversibility of chemical reac-
tions), expression (4.1.4) gives zero value for these forces. For this reason 
it does not allow finding the true value of the motive forces including a 
reversible component. Moreover, in some instances expression (4.1.4) 
does not allow defining even the sign of these forces. If useful work is 
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done on a system, the product of the subscript-similar forces Xi and flows 
Ji appears to be always negative, whereas the value dS/dt in (4.1.4) being 
always positive. Furthermore, all summands of phenomenological laws 
(4.1.5) are always positive, whereas for useful energy conversion proc-
esses they are partly negative (the flow Ji decreases as the forces Xj being 
overcome increase). Besides, from relationship (5.1.7) some relative effi-
ciency constraints ensue, which are alien for real energy converters. As a 
result of the said, the vastest spectrum of real processes with a relative ef-
ficiency above zero appeared to have been “extra vires” the TIP.  

Thermodynamics allows avoiding this arbitrariness, when referring 
the forces Xj and flows Ji to the non-equilibrium state parameters, and 
enables finding them irrespectively of what causes them – either the dis-
sipation or useful work done. As shown in chapter 2, any vector proc-
esses arise providing there is no internal equilibrium in a system, i.e. they 
are heterogeneous (M.P. Vukalovich, I.I. Novikov, 1968). This allows 
finding the thermodynamic forces of any nature Xi as the derivatives of 
the system energy E with respect to the corresponding distribution mo-
ment  
 

 Хi ≡ – (∂E/∂Zi),                                      (5.2.1) 

while the flows Ji – as the partial time derivatives with respect to these 
moments: 
 

 Ji = ∂Zi/∂t = Θivi .                                    (5.2.2) 
 
Such a definition of thermodynamic forces univocally represents their 

local values xi in terms of negative gradients of the generalized potentials 
xi ≡ –∇ψi. This approach endues the thermodynamic forces with a con-
crete physical meaning as intensive measure of system heterogeneity. 
Their “global” (for a system in whole) analogs Xi are herein the system-
averaged values of these gradients. As shown in chapter 2, the forces Xi 
mean the forces Fi in their traditional (Newtonian) interpretation per a 
unit amount of the energy carrier Хi = Fi/Θi, i.e. are analogs of the spe-
cific mass, volume, surface, etc. forces in hydrodynamics. Unlike them, 
the thermodynamic forces in the TIP may be represented as ∇ψi, Т-1∇ψi, 
∇(1/ψi), θi∇ψ/Т, etc. (De Groot, 1956). This, naturally, deprives them of 
an explicit physical meaning and impedes comprehension of the back-
bone of the phenomena occurring.  

The said appertains as well to flows that may have different dimen-
sionalities and meanings depending on the way the product Xi·Ji is bro-
ken up into cofactors. Besides, flows in the TIP are often construed (after 
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L. Onsager) as the generalized rates of scalar processes vi = dΘi/dt, e.g. of 
chemical reactions. Thermodynamics “restitutes” the general physical 
conception of flow as a vector value thus allowing to distinguish it from 
the generalized rate vi  of scalar process not only physically, but also ana-
lytically.  

 
 

5.3. Entropy Balance Equation and Dissipation Rate 
 

The core of the TIP comprises the balance equations for mass, mo-
mentum, charge, angular momentum and energy of multi-component sys-
tems, which allow further determining the entropy balance and finding 
from this the motive forces and generalized rates for a system under con-
sideration. Setting up these balance equations is the most burdensome 
and laborious part of the TIP and its applications, especially taking into 
account that each of the equations mentioned has a local (spatial)  

 

∂ρi/∂t + ∇⋅ji
о

 = σi                                                                       (5.3.1) 

and a substantial (material) form : 

ρdθi/dt + ∇⋅ji = σi ,                                           (5.3.2) 

where ji
о

 = ρθivi , ji  = ρθi(vi – vо) – density, respectively, of local and sub-
stantial flow of the field value Θi; vi , vо – transfer velocity, respectively, 
of the Θi value and selected volume element in the stationary (laboratory) 
coordinate system; σi – density of internal source for the value Θi.  

To set up such balance equations for a particular field value Θi, thor-
ough knowledge of an applicable scientific discipline is necessary, which 
should precede the associated TIP application. Naturally, one can hardly 
expect some corrections to such disciplines would be done.  

Next step toward a TIP application denotes setting up energy balance 
equations – for both kinetic (translation and rotation) and potential (me-
chanical, electromagnetic, chemical, etc.) energies in some form or other 
(spatial or material). These equations are similar to expressions (5.3.1) 
and (5.3.2) except that θi , ji

о
 ,ji  and σi are construed as specific values of 

a relevant energy form, densities of their flows and internal sources (if 
applicable). Since classic thermodynamics does not operate in terms of 
time as a physical parameter, the above data is also entirely taken from 
outside, viz. from applicable scientific disciplines. Only then thermody-
namics proper starts off with using the joint equation of the first and sec-
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ond laws of classic thermodynamics for open systems in the form of the 
Gibbs relationship (see 2.5.1). Using it for irreversible processes under 
investigation is based on the local equilibrium hypothesis which assumes 
this equation to be true locally (for continuum elements) despite the gra-
dients of various potentials presenting in the elements and the irreversible 
processes running in them (internal sources of the entropy σs presenting 
there). From joint consideration of equation (2.5.1) and the abovemen-
tioned balance equations for mass, momentum, charge and angular mo-
mentum the energy balance equation is formulated, which, due to the 
above, now includes time and an irreversible part can be derived from it. 
This part formally looks like equation (2.5.1) that contains the sources of 
all actual values. This is the entropy balance equation that is formulated 
based on it relating the density of the entropy internal sources σs with the 
generalized rates of scalar and vector processes wi and ji and their motive 
forces Ar and xi. Along with the entropy increase rate in a system the dis-
sipation function Tσs  
 

 Tσs = Σi ji ⋅xi + ΣrArwr ,                                  (5.3.3) 
 

is often used, defining the energy dissipation rate in the system.  
Next step denotes the formulation of Onsager’s (5.1.6) kinetic equa-

tions (phenomenological laws) for particular processes under investiga-
tion. These equations are then considered jointly with Onsager’s symme-
try conditions (5.1.7) or (5.1.8) in order to define the relationship between 
the flows ji and jj arising from the static character of irreversible proc-
esses. The last investigation stage reveals the expressions for the so-
called “stationary superposition effects” associated with disappearance of 
one of the actual flows ji while the system non-equilibrium state main-
tained.  

As it follows from the above, the superposition effect definition 
based on the TIP is a quite complicated multi-stage problem involving 
the whole intellectual arsenal of special disciplines. This makes ener-
godynamics even more attractive as a short cut method of finding a solu-
tion to the problem. This becomes possible due to the fact that the ther-
modynamic equations of (2.3.1) type already contain time, flows and 
thermodynamic forces and, therefore, do not need setting up complicated 
mass, charge, momentum, energy and entropy balance equations. These 
equations eliminate whatever arbitrariness in choosing the physical val-
ues defining motive forces and generalized rates of scalar and vector 
processes. Their meaning and analytical expression are unequivocally de-
termined by choosing the coordinate Θi as a quantitative measure of a 
particular energy form carrier. In this case the thermodynamic forces, ac-
cording to (2.2.8), are expressed in terms of negative gradients of the 
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generalized potential Θi-related, while the flows Ji or ji – by the product 
of these values and the rate of their transfer under the action of the forces 
Xi or xi. Applications of this method to various problems will be specifi-
cally instantiated in the chapters following hereafter. Other advantages of 
this approach will simultaneously become evident.  
 
 

5.4.  Phenomenological Laws of Transfer Processes 
 

The Onsager’s assumption that the around-equilibrium generalized 
rate of a relaxation process (he named this rate the flow Ji) is a linear 
function of all thermodynamic forces Xj acting in the system (L. Onsager, 
1931) is one of the postulates lying in the TIP foundation. This statement 
named the linearity law is reflected in Onsager’s phenomenological laws 
(see 5.1.6).  

Such a (matrix) form of kinetic equations differed from Fourier’s, 
Ohm’s, Fick’s, Darcy’s, Newton’s, etc. laws by the presence of additional 
(off-diagonal) terms (with subscripts j ≠ i). L. Onsager introduced those 
terms to allow for the interrelation between different-type phenomena, 
which he had found experimentally and explained by the “superposition” 
of different-type flows. He expressed that interrelation in his well-known 
“reciprocity relationships” which stated the symmetry of the phenome-
nological coefficients matrix (see 5.1.7).  

L. Onsager obtained those relationships based on a known statement 
of statistical mechanics regarding the reversibility of micro-processes in 
time under the assumption that the coefficients Lij and Lji were constant, 
while the subscript-dissimilar flows Ji and Jj were linearly independent 
and became zero with disappearance of the forces Xi and Xj.  

The above postulate was not objected to for more than a half a cen-
tury and was reproducible in all study guides on irreversible process 
thermodynamics but with a proviso that according to Curie’s symmetry 
law only processes of the same (or even) tensor order could be interre-
lated. The question did not anyhow arise in that context how the flows Ji 
and Jj found to (5.1.4) as the time derivatives of the system independent 
state parameters dαi/dt could be interrelated. There were no objections ei-
ther to the fact that some (moreover the simplest) equations appeared to 
have been laid as a foundation of the thermodynamic theory which was 
known to have imported particular data on system properties (expressed 
in terms of state and transfer equations) “from outside” as uniqueness 
conditions of a kind while its body of mathematics itself was universal as 
based on the properties of exact differential of a number of functions of 
state. The investigators were not at all embarrassed either by the fact that 
the above postulate undermined the centuries-old buttress of mechanics 
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which stated that each independent process (movement, acceleration, 
tending to mechanical equilibrium, etc.) was associated with the only (re-
sultant) force and ceased as soon as the force disappeared. Meanwhile, 
the existence of such a force followed from those equations of anisotropic 
heat conductivity and electric conductivity which, to Onsager’s confes-
sion, prefigured his phenomenological laws. In fact, for anisotropic heat 
conductivity and electric conductivity the motive forces Xj were compo-
nents of the only force – the negative temperature gradient vector ∇Т and 
the electric field intensity E (j = 1,2,3), respectively. There were also 
other reasons to doubt the Onsager’s postulate was adequate to the point. 
L. Onsager and his followers, based on equations (5.1.6), derived numer-
ous thermo-mechanical, thermo-electrical, thermo-diffusive, etc. effects 
from the interrelations between the generalized rates of irreversible proc-
esses ran in the same spatial zones, i.e. from the “superposition of flows” 
or their “mutual entrainment” (N. Bulatov, A. Lundin, 1984). Meanwhile, 
the above effects are known to reach maximum in the so-called stationary 
states, when the flows not fixed by an external constraint disappear and, 
therefore, evidently can not superimpose on those remained. E.g., in elec-
trolytic solutions, where electric conductivity and diffusion phenomena 
take place, the electric potential difference (Kwinke effect) is maximal 
whenever current ceases (R. Haase, 1967). This is the case with the Soret 
effect – arising gradient of the kth substance concentration in a system ini-
tially homogeneous with the temperature gradient building up, the con-
centration gradient reaching maximum as soon as diffusion flows disap-
pear. Hence the reason of such superposition effects should have been 
searched from the very first not in the interaction between independent 
flows, but in the superposition of unlike forces as it takes place in me-
chanics and electrodynamics. Furthermore, the laws (see 5.1.6) L. On-
sager named “phenomenological” (i.e. practice-based) are really not so. 
First of all, the coefficients Lij in Fourier’s, Ohm’s, Fick’s, etc. laws de-
pend on the state parameters of a system (its temperature, pressure, com-
position, etc.), i.e. are inconstant, whereas the requirement the coeffi-
cients Lij to be constant is a substantial part of Onsager’s linearity law 
and bears a principal character. In fact, the forces Xi in the Onsager’s the-
ory are functions of the system parameters (temperature T, pressure p, 
concentration ck, etc.), therefore the dependence of the coefficients Lij on 
them would mean their dependence on also the forces Xj, i.e. non-
linearity of the phenomenological laws (5.1.6).  

Furthermore, according to practice many phenomena arise only 
when the force reaches some “threshold” value Fjо depending on the acti-
vation energy for a process under consideration (see chapter 2). However, 
this circumstance can not be allowed for in Onsager's laws since in this 
case the flows Ji would disappear earlier than the forces Xi become zero. 
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Lastly, the terms of equation (5.1.6) not necessarily always have the same 
sign – in many cases the process rate (flow Ji) decreases with increase of 
the force Xj “being overcome” in this process. So are, as it will be hereaf-
ter shown, the phenomenological laws of all processes involving useful 
energy conversion.  

All the said means that Onsager’s kinetic laws are not phenomenol-
ogical, while his postulate itself does not hold water. This nothing but en-
hances interest toward finding their allowable form proceeding from the 
demands thermodynamics imposes on the uniqueness conditions of trans-
fer processes. It is easy to show then that the so-called Onsager’s phe-
nomenological laws are just a particular case of thermodynamic kinetic 
equations (2.6.10), when the coefficients Кij

ср do not depend on the vari-
ables Θj,Fj. As a matter of fact, introducing the thermodynamic force Xi ≡ 
Fi/Θi instead of Fj and assuming Fjо = 0 gives: 

 Ji = Σj Lij Xi, (i, j = 1, 2, ..., nj)                            (5.4.1) 

where Lij = ΘjКij – constant coefficients L. Onsager named “phenomenol-
ogical”; ji – density of the flow Ji; xj – specific (per unit of the Θj value 
being transferred) thermodynamic forces Xi in their “ energy” representa-
tion (in terms of generalized potential).  

The same laws may be expressed as functions of the flows Jj и jj : 
  

      Xi = Σj RijJj   or   xi = Σj Rijjj ,   (5.4.2) 
 
where Rij – resistance coefficients inverse to the conductivity coefficients 
Lij.  

As one can see, they actually integrate the thermal Θj and the kinetic 
Кij factors. This is the reason why the coefficients Lij or Rij can be referred 
to neither state parameters nor mere kinetic coefficients (R. Haase, 1967, 
S.R. De Groot, R. Mazur, 1964, etc.). The values of these coefficients for 
a particular system are determined experimentally or, as the simplest 
case, based on statistical theories.  

Representation of the phenomenological laws in the form of (5.4.2) 
allows generalizing the concept of inertia to non-mechanical processes. If 
to write Newton’s law F = Mа = dP/dt in the same form of (5.4.2) substi-
tuting F/M for xm and the acceleration а = dv/dt for jm (i.e. to represent 
the acceleration of a body as the generalized rate of its momentum varia-
tion process), then Newton’s second law will appear to be a particular 
case of phenomenological laws (4.4.2), where the off-diagonal coefficient 
Rji = M. In this case the mass M as a measure of inertia of a system takes 
a meaning of one of the coefficients of resistance the system offers to 
running a relevant process (in this case the acceleration process). Thus 
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the concept of inertia as a measure of resistance a system offers to a 
process running in it acquires the general physics meaning.  
 
 

5.5.  Reciprocal Relation in Transfer Processes 
 

As it has already been mentioned above, the substantiation of recip-
rocity relationships (5.1.7) was one of the most important statements of 
the Onsager’s theory of irreversible processes (TIP). To substantiate 
them, he had to apply to the fluctuation theory, microscopic reversibility 
principle and additional postulate on linearity of the fluctuation damping 
laws. These three statements outstep the framework of thermodynamics. 
Therefore in the phenomenological TIP reciprocity relationships (5.1.7) 
are usually adopted as an additional primary postulate sometimes named 
(after D. Miller) the “forth law of thermodynamics”.  

At present statements often and often occur that these relationships 
do not need any thermodynamic proof since they are statistically substan-
tiated. Discussions about the L. Boltzman’s and J. Gibbs’ statistical theo-
ries, “which grounds are obscure in many ways” (R. Cubo, 1970), are 
seemingly sunk into oblivion. So, one of the basic statements of statistical 
mechanics regarding the system ergodicity 1) has remained a hypothesis 
so far. By the early nineties of the 20th century as a result of the critical 
analysis conducted on the body of mathematics of statistical mechanics, 
as well as a result of digital experiments on high-performance computers, 
it became clear that only hypothetical systems of non-interacting particles 
might be ergodic. Interaction between particles (e.g. Coulomb or Van der 
Waals forces) leads to losing ergodicity, therefore the real systems of in-
teracting particles should be described not by statistical, but dynamic 
methods. 

The fact that these reciprocity relationships often vindicate their va-
lidity far beyond the restrictions imposed by the method itself of their 
substantiation evidences the means of proving the relationships L. On-
sager offered are inadequate to the point. In fact, the microscopic reversi-
bility principle with one of its statement about equal rates of any direct 
and reverse molecular processes is valid, strictly speaking, for only equi-
librium states. This principle is indubitably inapplicable to the processes 
of transfer from one non-equilibrium state to other because a system re-
turns to equilibrium state just because the frequency and amplitude of the 

                                                 
1) The system is referred to as ergodic, where space averaging of a physical value gives 
the same result as time averaging. 
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micro-processes running toward equilibrium dominate. Therefore the re-
ciprocity relationships, providing these really vindicate the principle 
above, should have been valid in close proximity to the equilibrium state 
and violated more and more as the system was withdrawing from it. 
Meanwhile, as it will be instantiated for the helium and argon interrelated 
filtration and diffusion processes in graphite membranes, to vindicate the 
reciprocity relationships, just a partial equilibrium is enough, when just a 
part of the processes running in a system ceases.  

Another weak point has been an assumption that the microscopic 
laws of fluctuation damping obey the same linear phenomenological laws 
(5.1.6) as the macroscopic processes of heat, substance, charge, etc. trans-
fer. Meanwhile, the real laws of fluctuation damping demonstrate rather 
exponential character. Even kinetic equations (5.1.6) are, strictly speak-
ing, non-linear. This is especially evident for Fourier’s, Ohm’s, Fick’s, 
Darcy’s, Newton’s, etc. laws written in the integral form (in terms of the 
temperature T, pressure p, concentration ck, etc. differentials), when the 
proportionality factors appear to be dependent on the temperature, pres-
sure, concentration, etc. fields.  

Lastly, should the linear laws be really necessary to prove the recip-
rocity relationships, the latter would be violated each time whenever the 
phenomenological laws cease to be linear. However, as it will be shown 
hereafter, the reciprocity relationships may be valid as well for the sys-
tems, where only the off-diagonal terms of equations (5.1.6) describing 
the superposition effects are linear. As a result, both the Onsager’s theory 
and TIP in whole fail to reach those rigor and completeness which are in-
trinsic for the classic thermodynamic method. Therefore C. Truesdall 
(1975) was positively right, when confirmed that “once the reciprocity 
relationships are valid, then the possibility of their merely phenomenol-
ogical deduction should as well exist”. Let us show that the Onsager’s 
symmetry conditions ensue directly from the differential relationships of 
thermodynamics. It follows from independence of the second derivative 
of the system energy U with respect to the coordinates Zi and Zj: 

 
(∂Zi/∂Хj) = (∂Zj/∂Хi).                  (5.5.1) 

 
These equalities remain valid as well after deriving the total deriva-

tives of both parts with respect to the time t: 
 

d(∂Zi/∂Хj)/dt = d(∂Zj/∂Хi)/dt .                    (5.5.2) 

In the stationary redistribution processes (at Θj, Хi = const) the time 
differentiation involves only the coordinates Zi, Zj. Their time derivatives 
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in the absence of the transfer (recharging) and reorientation processes (Θi, 
φi = const) define the flows Ji and Jj. Allowing for this and changing in 
(5.5.2) the sequence of differentiation with respect to the time t and 
forces Хj, Хi, gives: 

(∂Ji /∂Хj) = (∂Jj/∂Хi).                                  (5.5.3) 

These equations may be well referred to the differential reciprocity rela-
tionships between flows and forces (V. Etkin, 1991, 1999). They state the 
cross-impact balance among different-type flows and their motive forces 
and therefore may be rather named the reciprocal relations than the 
symmetry conditions of phenomenological coefficients matrix (5.1.7). 
This statement is reasonable to be called for easy reference as the 
reciprocal principle: dissimilar processes simultaneously running in 
the same domains of a space exert the equal influence on each 
other. 

Risselberghe (1962) was the first who postulated the existence of 
such-type relationships and proposed to name them the “generalized re-
ciprocity relationships”. This is justified since the above Onsager’s sym-
metry conditions may be obtained as a corollary of these relationships for 
a particular case of linear systems. In fact, applying (5.5.3) to equations 
(5.1.6) one can obtain: 

 

(∂Ji /∂Xj) = Lij = (∂Jj/∂Xi) = Lji .                             (5.5.4) 

Thus the Onsager’s reciprocal relations (symmetry conditions) ensue 
as a corollary of more general differential relationships of thermodynam-
ics and do not need involving whatever statistic-mechanical considera-
tions. Though attempts to substantiate these relationships were made time 
and again (Gyarmati, 1958, 1960; Li, 1058, 1988; Pitzer, 1961; Rissel-
berghe, 1962), they failed till the lacking coordinates of redistribution 
processes were introduced. Note, relationships (5.5.3) do not impose any 
constraints on the process irreversibility degree and the system remote-
ness from equilibrium. They do not depend either on particular form of 
the state or transfer equations and, as it will be shown hereafter, are 
equally applicable to reversible and irreversible processes.  

It is worth particular mentioning that from the positions of thermody-
namics Onsager’s symmetry conditions (5.1.7) are valid as well in the 
case, when only additional (off-diagonal) terms of equations (5.1.6) are 
linear, i.e. only the “cross” coefficients Lij or Lji  (i ≠ j) are constant. This 
significantly extends the applicability of the differential reciprocity rela-
tionships once the diagonal terms of the matrix comprising the phenome-
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nological coefficients Lii or Ljj may remain herein any functions of the 
thermodynamic forces Xi or Xj subscript-similar to them. This is what 
Fourier’s, Fick’s, Ohm’s, Darcy’s and Newton’s laws are. As for the ad-
ditional (off-diagonal) terms, these describe less order infinitesimals and 
in a number of cases may be considered as linear. Thus approaching the 
problem from the positions of thermodynamics reveals excessiveness of 
the demand the coefficients Lii or Ljj in equations (5.1.6) be constant, 
which is substantial in all preceding theories of irreversible processes. 
The demand of close proximity of the system to equilibrium Onsager has 
laid down in his theory appears to be the same excessive. In fact, the 
symmetry conditions (see 5.1.7) ensuing from the differential reciprocity 
relationships (see 5.5.3) are valid for arbitrary large values of the forces 
Xi or Xj in the diagonal terms of the phenomenological laws. This is what 
explains why the Onsager’s theory appears to be applicable far beyond 
the restrictions imposed by the method itself of their substantiation.  

Finally, according to (5.5.4) symmetry conditions (5.1.7) may give 
place to the anti-symmetry conditions Lij = – Lji (named the Cazimir’s re-
lationships in the TIP) providing the terms in equation (4.1.6) have oppo-
site signs. This occurs, when in a transfer process the flow Ji or Jj is di-
rected against the forces Xj or Xi, i.e. “overcomes” them. Such are, in par-
ticular, all energy conversion processes, where energy source works 
against loads. This manifests itself in the occurrence of the so-called “no-
load conditions”, when with increase of the force Xj or Xi being over-
come the flow Ji or Jj becomes zero. A demonstrative example to the case 
is loss of the secondary current in the welding transformer with arc ex-
tinction. The above statement as well outsteps the TIP, where laws (5.1.6) 
were postulated by Onsager with only the same sign for all terms.  

Thus the reciprocity relationships do not need assumptions on close 
proximity of a system to equilibrium, constancy of all phenomenological 
coefficients and linearity of the fluctuation damping laws, which are laid 
in the foundation of their statistic-mechanical substantiation. According 
to the above, they ensue from the first laws of thermodynamics and, 
therefore, feature universal character. This enhances the heuristic value of 
these relationships and makes them a reliable tool to analyze the interrela-
tions between different-type processes in the real world.  

 
 
 
5.6.  Law of Minimum Entropy Production 
 
The insufficiency of formalism intrinsic for the linear TIP has caused 

numerous attempts to give other – variational statement of non-
equilibrium thermodynamics. Calculus of variations is a quite universal 
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mathematical method that allows, subject to a suitable model selection, 
detailing a process under investigation and deriving the associated math 
laws (including the transfer equations) based on the only variational prin-
ciple. However, these principles themselves need their substantiation, 
while their corollaries each time have to be experimentally checked.  

L. Onsager set forth the first variational principle of non-equilibrium 
thermodynamics (1931). He took note of the fact that for the dissipation 
processes (Jj = Jj

р) his phenomenological laws  
 

Xi = Σj Rij Jj
р

 . (i, j = 1, 2, …, n) ,                        (5.6.1) 
 

(where Rij = Lij
-1 – resistance coefficients inverse to the phenomenologi-

cal conductivity coefficients Lij) along with the reciprocity relationships  
 

      Rij = Rji                                           (5.6.2 ) 

are equivalent to the statement that the expression ΣjXidJj
р is the exact 

differential of some potential function Ф(Ji
р

 ,Jj
р) = ½ Σj Rij Ji

р
 Jj
р, the first 

derivatives of which with respect to the flows Jj
р give linear phenomenol-

ogical laws (5.6.1), while the mixed derivatives (∂2Ф/∂Ji
р∂Jj

р) give recip-
rocity relationships (4.6.2). The function ПX (Xi ,Xj) = ½ Σj Lij Xi Xj fea-
tures the same properties, which leads to phenomenological laws (5.1.6) 
and reciprocity relationships (4.1.7). In linear systems the functions Ф(Ji 
,Jj) and ПX (Xi ,Xj) are equal to half the dissipation function P =Тσs  
 

ΦJ(Ji
р, Jj

р) = ПX(Xi , Xj) = ½ P                        (5.6.3) 

and are named the local dissipation potentials (expressed in terms of 
flows and forces, respectively).  

It is easy to make sure that the variation of the potentials ΦJ(Ji
р, Jj

р) 
and ПX(Xi ,Xj) with respect to flows at all forces Xj being constant gives 
the same value of Xj so that the extreme condition is met: 

δ[Y(Xj ,Jj
р) – ΦJ(Ji

р, Jj
р)]Xj = 0,                        (5.6.4) 

where δ – variation symbol; the subscript to the function being varied de-
notes the value remaining constant at variation.  

The extreme determined by (4.6.4) can be only the maximum owing 
to positive determinacy of the dissipation potentials. Therefore L. On-
sager named statement (5.6.4) the “principle of least energy dissipation”.  
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Another form of the same principle was later offered by I. Gyarmati 
(1974) for the functional Υ(Xj ,Jj

р) – ПX(Xi ,Xj) expressed in terms of 
forces at constant flows: 

 δ(Y – ПX) = Σj (Jj
р – ∂П/∂Xj)δXj = 0.                       (5.6.5) 

I.Gyarmati further merged both forms of that principle in a single 
variational condition: 

δ(Y – ФJ – ПX) = 0,                                     (5.6.6) 

where variation may be conducted with respect to both forces and flows. 
This condition reflects the extremity of the so-called “Onsager-Machlup’s 
function” (the expression in brackets) and includes all statements of On-
sager’s “quasi-thermodyanmics”.  

A number of other variational principles convenient for particular ap-
plications were offered by G. Tzigler (1966). As I. Bakhareva then 
showed (1967), all the said variational principles could be obtained by 
simple transformations of the same expression: 
 

 Σj(∂ФJ / ∂Jj
р

 – Xj)δαi = 0.                      (5.6.7) 
 

This eliminates the necessity to provide thermodynamic substantia-
tion for each of the principles mentioned – it is enough to substantiate the 
validity of condition (5.6.7). This may be done based  on some (linear or 
non-linear) phenomenological laws. In fact, whereas differential reciproc-
ity relationships (5.5.3) do not depend on character of these laws, the dif-
ferential form  

 Σj Jj
рd Xj = dПX                                       (5.6.8) 

is always the exact differential of the dissipation function П. Applying 
the Legendre transformation, it can be easily shown that the expression 
ΣjXjdJj

р is as well the exact differential of other function of state of the 
non-equilibrium system Ф. From this it follows that ∂Ф/∂Jj

р
 = Xj. Expres-

sion (4.6.7) is thereby valid with the same generality degree, i.e. not only 
for linear systems, but also in a more general case, when the differential 
reciprocity relationships are valid. In this case P = ФJ + П even when ФJ 
≠ ПX.  

The law of minimum entropy production occupies a special place 
among the TIP extreme principles. Its first statement belongs to I. Prigog-
ine (1947) and refers to discontinuous systems. According to the Prigog-
ine-proven theorem the minimal production of entropy σs = min in a sta-
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tionary-state system with the constant forces X1, X2,…,Xk (k < m) corre-
sponds to the state, where flows with the indices j = k+1, k+2,…, m dis-
appear. The alternative statement of this law for continuum systems reads 
that in the stationary state compatible with the external constraints the 
dissipation function P is minimal: 
 

 Р = ∫TσsdV = Σj ∫ Xj ·Jj
рdV = min;    δР = 0.                (5.6.9) 

 
This statement is usually substantiated involving linear phenomenol-

ogical laws (5.4.1) and the Onsager’s reciprocity relationships and is, 
therefore, considered valid for only the systems being in close proximity 
to equilibrium. From the positions of thermodynamics this law acquires a 
more general character. According to the evolution criterion (see 4.6.6) it 
is quite evident that if an external force prevents a system from reaching 
equilibrium, the system comes to a halt in the minimal-dissipation state. 
Using flow balance equation (2.4.8) the condition of inergy constancy for 
a stationary-state system may be written in the form: 

 dUi/dt = –∫ xi·(ji
е + ji

р)dV = 0,                                  (5.6.10) 

From this it directly follows that if some of the external flows ji
е sup-

porting the stationary state (xi = const) disappears (ji
е = 0), the subscript-

similar relaxation flow ji
р also disappears along with the associated com-

ponent of the dissipation function P. This statement does not depend on 
character of the phenomenological laws and is so evident that hardly 
needs some theorems to be proved.  

Thus all basic statements of the current linear TIP may be obtained as 
deductions of thermodynamics without appeal to whatever postulates and 
hypotheses. This makes superfluous formulating complicated balance 
equations for mass, charge, momentum, energy and entropy, which has 
always been the most time-consuming part of the theory. It is not less im-
portant that such an approach excludes the necessity for preliminary and 
thorough knowledge of a number of fundamental disciplines to formulate 
the balance equations. This allows one to solve problems being not over-
burdened with hardened paradigms and dogmas associated with these 
problems. Furthermore, this approach opens up new possibilities to sub-
sequently overcome the profound narrowness of non-equilibrium thermo-
dynamics that is restricted to only linear systems and close-to-equilibrium 
states.  
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Chapter 6 
 

HEAT-MASS TRANSFER THEORY 
 

The development of the theory of irreversible processes (TIP) has 
created the prerequisites for a cardinal rapprochement between thermo-
dynamics and the heat-mass transfer theory. Firstly, this theory has from 
the very beginning operated with the heat-mass transfer concepts: fields 
(both stationary and non-stationary), energy flows (including heat), gra-
dients of potential (temperature), uniqueness conditions, etc. Secondly, 
energodynamics is based on the equations of a more general form, from 
which the equations of heat conductivity, electric conductivity, diffusion, 
etc. ensue as a particular case. Thirdly, it also uses the balance equations 
for extensive values and expresses their sources in terms of the measur-
able parameters of a system. In a word, the TIP already contains the 
whole arsenal of tools necessary to describe and investigate the heat-mass 
transfer processes. Energodynamics spreads still further and allows ob-
taining all statements of this theory essentially from thermodynamic. 
Therefore the TIP fundamental principles, laws and equations are most 
advisable to be stated from the positions of energodynamics.  

 
 

6.1.  Elimination of Strange Delimitation of Thermodynamics 
and the Heat Exchange Theory 

 
No sooner had the heat theory appeared, it immediately separated 

into two directions. In 1822 a known J. Fourier’s work appeared, which 
laid the foundation of the heat transfer theory; in 1824 not less famous S 
Carnot’s work laid the foundation of thermodynamics. Both works were 
based on the afterward-rejected theory of thermogen as the indestructible 
fluid, both considered temperature as some potential which gradient con-
ditioned the heat transfer direction or conversion of heat into ordered 
forms of energy. However only Fourier operated with time as a physical 
parameter, and that left an imprint on the whole further development of 
those theories. The concept of entropy introduced by R. Clausius in 1850-
1865 as the coordinate of reversible heat exchange and the S. Carnot’s 
method of reversible cycles widely used in thermodynamics connected 
thermodynamics for a long time with the concept of equilibrium and 
quasi-static character (infinitesimal rate) of processes under investigation 
as the condition of their reversibility. A lot of time had passed before it 
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became evident that “timeless” thermodynamics (to Brayan’s locution) 
was substantially thermostatics.  

Meanwhile the J. Fourier’s ideas were running their course. Yet in 
1822 the L. Navier’s work appeared having laid the foundation of hydro-
dynamics of viscous liquids, G. Ohm derived his famous law in 1827, A. 
Fick set forth the diffusion equation in 1855. Those equations and the like 
described kinetics of momentum, charge, substance, etc. transfer. How-
ever both directions mentioned developed quite independently without 
any points of contacts. Their difference showed not only in terminology, 
but it rather rooted in a basic methodological nature. Carnot-Clausius’ 
thermodynamics maintained aloofness from the transfer ideas and the 
heat exchange rate concept. The heat exchange theory, on the contrary, 
had nothing to do with the conversion of heat into other forms of energy 
and considered entropy as an extraneous concept. The so “fancy separa-
tion of two directions within the same area in macroscopic physics” (to 
K. Denbigh’s locution) was too hard to be overcome by the TIP as well. 
Even today the definition of heat concept remains different in thermody-
namics and the heat exchange theory. In thermodynamics this is the part 
of energy exchange caused by exclusively the temperature difference be-
tween bodies and not associated with substance exchange between them 
(Thermodynamics. Terms, 1973). The heat exchange theory, on the con-
trary, considers heat as the part of internal energy associated with random 
motion (because a system can exchange just what it has) and studies, 
along with heat conductivity, the heat transfer carried out by substance 
and enabled by heterogeneity of the fields of other physical values (Heat 
Transfer. Terms, 1980). Such a situation demands searching more cardi-
nal means to unify the two said fundamental disciplines.  

 
 
6.2.  Conductive Heat Exchange  

 
The heat exchange processes may be classified into three classes: 

conductive, convective and radiant heat transfer. The conductive heat 
transfer (heat conductivity) features the absence of observable 
(macroscopic) motion in a heat conductive medium with direct contact 
between bodies or parts of a body having different temperatures. The 
basic law of heat conductivity was stated, as it has been already 
mentioned, by J. Fourier having proceeded from interpreting heat as the 
indestructible fluid. According to this law the heat flow density jq is 
directly proportional to the temperature gradient ∇Т reversed in sign: 

 
jq = –λ∇Т,                                         (6.2.1) 
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where λ (W/m⋅K) – proportionality factor named coefficient of heat con-
ductivity. 

Classic thermodynamic interprets the heat flow as a conductive (not 
associated with the substance transfer) flow of the internal energy u with 
the density jq. Here the coordinate of a heat transfer process is construed 
as the entropy S. Therefore it is more correctly, from the positions of en-
ergodynamics, to refer to rather the entropy flow with the density js = jq/T 
than to a heat flow. In this case Fourier’s law for stationary heat conduc-
tivity directly ensues from kinetic equations (2.6.11) written down in the 
local form: 

 
js = Lsxs ,                                    (6.2.2) 

 
where xs = –∇Т – motive force of the process; Ls = λ/T – coefficient that 
should be rather named coefficient of entropy conductivity. Note that the 
“thermokinetic” form of heat conductivity law representation (see 6.3.1) 
is much closer to the original form (see 6.3.1) than the one ensuing from 
Osager’s laws, where the thermodynamic force is used in the form of xq =  
Т-1∇Т or xq = lnT even when choosing the heat flow jq as the generalized 
rate of the process.  

The differential equation of non-stationary heat conductivity ensues 
from energodynamics equally as directly. It is enough just to use the bal-
ance equation for the arbitrary field specific value θi of generalized form 
(6.3.1) assuming there θi ≡ u and σi ≡ σq/Т. Using the definition of the spe-
cific heat at constant volume (isochoric) сυ ≡ ∂u/∂Т in the absence of mass 
transfer and work (i.e. at constant ρ и сυ) one can find: 
 

 ρсυ∂Т/∂t + ∇⋅jq = σq .                               (6.2.3) 
 

This expression is the most general form of the differential equation 
of heat conductivity valid for both linear and non-linear processes. It is 
available in a more ordinary form if considered jointly with (6.2.1) 
assuming constant λ and introducing, to shorten the formula, the thermal 
diffusivity αq = λ/сυρ: 
 

∂Т/∂t = αq∇2Т + σq/ρсυ .                                  (6.2.4) 
 

This equation relates the heating rate of a body directly proportional 
to the temperature field and heat sources in it. The latter is very important 
as allowing for chemical reactions running in a heat-conductive medium 
(see 6.1.3), high-frequency and induction (eddy-current) heating, friction, 
etc., i.e. the availability of any entropy sources σs.  
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Just like other differential equations of energodynamics, expressions 
(6.2.3) and (6.2.4) describe the entire group of the like phenomena. To 
extract a process under investigation from this entity and to completely 
describe it mathematically, it is necessary to take into consideration par-
ticular properties of the object. These are defined by uniqueness condi-
tions including for a general case of non-stationary processes the initial, 
geometrical, physical and boundary conditions (including the initial tem-
perature distribution, body configuration and size, body thermo-physical 
properties, surrounding relations, etc.). The problem thus stated is solved 
by either analytical, or numerical, or theoretical-experimental methods 
with an appeal to the heat exchange phenomena similarity theory. These 
methods are considered in special disciplines (A. Lykov, Y. Mikhailov, 
1963).  

 
 

6.3.  Convective Heat Exchange and Transfer 
 

Convective heat exchange (or heat transfer) is usually understood as a 
heat exchange between a moving medium and a stationary one without a 
substance exchange between them. This process is always accompanied 
by heat conductivity dominating nearby the stationary surface. Therefore 
the basic law of convective heat exchange may be derived based on the 
same kinetic equations of energodynamics in the form of (6.2.2) substi-
tuting herein the coefficient of heat conductivity λ for some empirical 
value α multiplied by the thickness δт = ∆n of the thermal boundary layer 
of liquid (i.e. the liquid layer within which the liquid temperature varies 
from the wall temperature Тс to the temperature Tw of the bulk liquid 
flow). Taking into account that in stationary conditions Тw = Тw(n), i.e. 
depends on only the normal coordinate n to the heat exchange surface, 
and substituting on this basis ∇Т ≡ ∂Тw/∂n for dТw/dn expression (6.2.1) 
may be represented thru separation of variables in the form: 

dТw = (jqδТ/αq)dn.                                     (6.3.1) 

Integrating this with respect to  δт one can find: 
 

jq = αq ∆Т,                                           (6.3.2) 
 

where α = λ/δт (W/m2⋅К) – proportionality factor having been referred to 
as heat transfer coefficient; ∆Т = (Тw – Тс) – thermal head. The further 
problem comes down practically to the definition of how this coefficient 
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depends on various factors, viz. liquid properties, liquid flow pattern, 
body configuration and streamline, etc.  

Differential equation of convective heat exchange may be found in 
the same way as expression (6.2.3). It is only necessary to take into ac-
count that the temperature of a moving liquid is a function of not just 
time, but also the coordinate r of this liquid, i.e. Тw = Тw(r, t). Therefore 
its total variation in the time domain dТw/dt, along with the local variation 
∂Т/∂t, includes the so-called convective variation (∂Т/∂r)dr/dt = ∇Т⋅v, de-
fined by the flow velocity v. Allowing for this component equation 
(6.2.3) assumes the form: 
 

 dТw/dt = аq∇2Т + σq/ρсv .                      (6.3.3) 
 

This equation is usually named differential equation of energy in or-
der to distinguish it from the other differential equation characterizing the 
heat exchange conditions at the wall–moving liquid interface. To derive 
this equation, let us heed the fact that there is a thin layer of stationary 
liquid nearby the wall (n = 0), wherein the heat transfer is provided by 
exclusively heat conductivity. Therefore, along with (6.3.2), one can 
write jq = – ∇Тn = 0, wherefrom it directly follows: 
 

 αq = – λ∇Тn=0 /ΔT.                                        (6.3.4) 

This is the differential equation of heat exchange manifesting that 
convective heat exchange so many times exceeds heat conductivity in in-
tensity, as temperature gradient in the boundary layer exceeds thermal 
head in value.  
 
 

6.4. Radiant Heat Exchange 
 

The radiant heat exchange is construed as a rather minor part of the 
radiant energy exchange that lies within the 0.8µm-0.8mm wavelength 
spectrum and is perceived as heat, i.e. completely dissipates. The over-
whelming part of the radiation responsible for such phenomena as photo-
synthesis, photoeffect, photoionization, photoluminescence, as well as for 
photoacoustic phenomena, photonuclear reactions, etc, is the ordered 
form of motion and by no means reducible to heat. Nevertheless, physi-
cists of the XX century persistently ascribe a certain temperature to radia-
tion as a whole (including the relict one). However, the question of defi-
nition of specific potentials which equality provides radiant equilibrium 
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between stars and relict radiation (or interstellar matter) has never been 
raised, as far as we know.  
 To realize the energodynamic approach (from the general to the 
particular), let’s apply a known expression for density ρЕв of the wave 
energy Ев (F. Crawford, 1965): 
 

            ρЕв = ρAв
2v 2/2 ,  Дж/м3                             (6.4.1) 

 
where v – wave freqiency, s-1.        

To further maintain generality in describing the energy of waves fea-
turing any nature, which is built into equation (6.4.1), let's operate with 
not the medium density, but rather with the concentration of the wave 
motion form carrier. This concentration has a dimension of photon/m3 in 
the case the radiant energy flux is represented through the photon flux in 
void.                         

According to (6.4.1) 

dЕв = Aвνd(Aвν).                                 (6.4.2) 

Comparing (6.4.2) with the general expression for work of the ith 
kind dWi (2.2.12) gives that for the wave form of motion  

 
ψв = Aвν  ;    Хв = – ∇ψв .                        (6.4.3) 

 
     The value ψв is to be reasonably called as the amplitude-frequency 
wave potential.   
     It will be shown hereafter (see Chapter 9) that based on these ideas the 
black body radiation law can be derived not resorting to the Planck's pos-
tulates, i.e. not disregarding the ensuing from (6.4.1) dependence of wave 
energy on its amplitude and the proportionality of wave energy to the 
second, but not the first power of frequency. 

The further integration of the Planck’s radiation law within the 0–∞ 
frequency spectrum is known to give the Stefan-Boltzmann law for the 
black body radiant exitance J [W/m2]:  

 
J  = σлT4 ,                                           (6.4.4) 

           
where σл [W/m2 К4] – Stefan-Boltzmann constant. This expression re-
lates, as required, the amplitude-frequency potential to the temperature 
for the particular case of thermal equilibrium between bodies. Note, how-
ever, that the mentioned “derivation” of the fourth-powers law (6.4.4) as-
sumes the existing black body absorbing all the radiation dropping onto it 
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(regardless of the radiation frequency). This assumption contradicts ex-
periment, too. Therefore purely experimental approaches are so critical in 
the radiant heat exchange theory. One of them is based on the ensuing 
from (6.4.3) necessity for the radiant energy to dissipate in not only bod-
ies as themselves, but also in the medium separating them, i.e. the neces-
sity of the available energy exchange motive force Хв. From these posi-
tions the radiant energy exchange is appropriate to be considered as the 
“photonic conductivity” (G. Muchnik, I. Rubashov, 1974). In the last 
case the law may be written as: 

jq = λf ∇Т,              (6.4.5) 

where λf – coefficient of “photon heat conductivity”. For optically dense 
media this coefficient is defined by the Henzel equation: 

λf = 16 kб Т 
3/3æг ,                             (6.4.6) 

where æг – absorption factor of a medium. 
For the stationary heat exchange ∇Т may be represented, as shown 

above, in the form of the fraction dТ/dn. Separating on this basis the vari-
ables in (6.4.1) and integrating this expression with respect to the ray path 
length ℓ in-between the bodies with temperatures Т1 and Т2, one comes to 
the radiant heat exchange law expressed as: 
 

    jq = [kб/(1+ æгℓ)] (Т1
4 – Т2

4) .                        (6.4.7) 
 

This expression is a good approximation for media with low optical 
density (weak absorption).  

Thus all integral and differential equations of the heat exchange the-
ory may be derived from energodynamics. This is what provides a meth-
odologically unified approach to thermodynamics and the heat exchange 
theory.  
 
 

6.5. Heat - Mass Exchange in Open Systems 
 

Classic thermodynamics is known to have always distinguished only 
two kinds of system–environment energy exchange, viz. heat exchange 
and work. The former has been considered as a random form of energy 
supply, whereas the latter – as its ordered form. We owe the application 
of the thermodynamic method to open systems with mass transfer therein 
to J. Gibbs, who introduced the parameters Mk and Nk as additional inde-
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pendent state variables and derived the joint equation of the first and sec-
ond laws of thermodynamics for open systems in the form which can be 
more conveniently expressed in terms of the mole numbers of the kth sub-
stances: 

 
dU = TdS – pdV + Σk μk dNk ,                               (6.5.1) 

 
where U, S, V – internal energy, entropy and volume of a system, respec-
tively; T, p – absolute temperature and pressure, respectively;            μk ≡  
(∂U/∂Мk)S,V,Nm – component potential determined at constant S, V and 
mole numbers of all other components Nm mass transfer process involv-
ing a variation of the system composition due to the kth substances trans-
fer across the system borders and from the mass transfer process involv-
ing the substance transfer without system composition variation.  

The last term in this expression, by Gibbs’ assumption, characterizes 
an independent process irreducible to heat exchange and cubic strain and 
involving a composition and mass variation for a system as a whole. He 
also assumed that the term TdS still (as in closed systems) characterized 
the elementary heat exchange đQ. In fact, he writes, “…if a system con-
sists of parts supposedly not thermally interconnected, then any entropy 
reduction in either of these parts should be deemed impossible since such 
variations can not occur without heat transfer”. However, as investigators 
were striking into the issue, they clarified the necessity to exclude from 
the total entropy dS and volume dV variations for open systems a part 
caused by the kth substance transfer. Despite the existing disagreement in 
identification of this part (S.R. De Groot, R. Mazur, R. Haase, 1967), the 
great majority of investigators have come to construing the heat exchange 
and work in open systems as the part of energy exchange caused by ex-
clusively the temperature gradient and not associated with the substance 
transfer across the system borders. In the same way heat is understood 
and referred to in the collection of terms recommended by the Academy 
of Science, “Process heat is the energy transferred at interaction from a 
one body to another depending on exclusively temperature of the bodies 
and not associated with substance transfer between them” (Thermody-
namics. Terms, 1973).  

To confirm the validity of such an approach, let us proceed from the 
joint equation of the first and second laws of thermodynamics derived for 
one mole of the pure kth substance and, therefore, valid for both closed 
and open systems. Designating the molar energy, entropy and pure sub-
stance volume as ukо, sko and υko, respectively, and considering them as 
temperature and pressure functions (skо

 = skо(р,Т), υkо = υkо(р,Т, rk)) the 
joint equation of the first and second laws of thermodynamics has the 
form: 
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 dukо = đqk - đwk = Tdsko – рdυko .                          (6.5.2) 

 
Here đq = Tdsko,  đw = рdυko – elementary neat and expansion work 

of an open system under consideration.  
Multiplying all terms of this equality by the mole number of the kth 

substance and applying the Legendre transformation Nkdukо = dUkо – 
ukоdNk, equation (6.2.2) may be modified as: 

 
dUkо = đQk - đWk + ukоdNk,                                 (6.5.3) 

where đQkо = Nkđqkо = NkTdsko and đWkо = Nkđwkо = Nkрdυko – respec-
tively, elementary heat exchange and expansion work of the same pure kth 
substance taken to the amount of the Nk moles if the heat and work con-
cepts maintain their classic meaning. It is easy to see that once the terms 
TdS and pdV in Gibbs’ relationship (5.5.1) are still understood as the heat 
exchange đQ and expansion work đW, then in a particular case of a sin-
gle-component system (sk  = sko; υko = υko ; uk = ukо и μkо = ukо – Tskо + 
pυkо) this relationship does not go over into (6.5.3) as should be expected. 
Hence the terms of (6.5.1) do not characterize independent processes as 
Gibbs assumed and the principle of effect distinguishability demands, 
while the term ΣkμkdNk does not determine the energy exchange caused 
by the kth substance transfer across the system borders.  

Thus there arises a problem in open systems how to distinguish the 
heat transfer, work and mass transfer. The decision to the problem sup-
poses finding such coordinates of these processes which remain inde-
pendent from processes of other kind simultaneously running. It is quite 
evident that the total entropy S and the total volume V of an open system 
are not any more coordinates of heat transfer and expansion work therein 
since they vary at mass transfer as well (variation of the total number of 
moles N at constant composition of the system). The specific entropy s = 
Σkskrk and specific volume of the mixture υ = Σk skrk are not these coordi-
nates either since they vary even at N = const due to the system composi-
tion variation (variation of the mole fractions rk of the kth components). 
The partial molar entropies sk and the volumes υk of the kth components 
can not either serve as coordinates of heat transfer and work in open sys-
tems since they vary with the variation of relationship between the mole 
numbers Nk of the kth substances, i.e. sk

 = sk
 (р,Т, rk) и υk

 = υk
 (р,Т, rk) 1). 

Lastly, not quite adequate are the coordinates skо(р,Т) and υkо(р,Т, rk) 

                                                 
1) Remember that partial molar function of the kth substance means an increment in ade-
quate extensive value when introducing into the system one mole of this substance at con-
stant temperature, pressure and other potentials. 
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since they do not allow for the heat and bulk effects arising at the irre-
versible mixing of the introduced component with the substance of the 
system. Thus the concepts of “heat” and “work” loose their intrinsic 
meaning in the systems where diffusion takes place (M. Tribus, 1970). In 
this connection the classic division of the external energy exchange into 
heat transfer and work looses its heuristic value and should give place to 
other process classification having nothing to do with the energy ex-
change means. Such is, in particular, the “heat process” featuring a tem-
perature variation in a system at constancy of its volume, mass and com-
position irrespective of what causes the process – external heat exchange 
or internal heat sources. A coordinate of this heating process may be the 
entropy of a mixture irreversibly composed So = ΣkNksko (in the absence 
of the heat mixing processes), where sko is considered a function of exclu-
sively intensive parameters (temperature and pressure as the simplest 
case). Then: 

 
đQ = ΣkNkTdsko  = TdΘSo,                                                         (6.5.4) 

 
where dΘSo – part of the entropy variation caused by exclusively heating 
and not associated with the system volume and coordinate variation (in-
cluding Nk). This heat keeps the same meaning as in classic thermody-
namics, i.e. is defined by internal energy variation in the system at con-
stancy of its volume V and the coordinates Zi of all other kinds of work 
(đQ = [dU]V,Zi). It is easily seen that the heat Q absorbed or released by 
the body is defined in this case in terms of the “isocoordinate heat capac-
ity” СΘ = (∂U/∂Т)V,Zi of the system, which is a conceptual generalization 
of the isochoric heat capacity CV for the case of a polyvariant system. 
Since the derivatives of some parameters of the system (U in this case) 
with respect to its other parameters (T in this case) are also its state pa-
rameters, the system isocoordinate heat capacity СΘ becomes state pa-
rameter (like CV), while the heat đQ – measure of internal heat energy 
variation: 
                 

               đQ = dUт = СΘdТ.                                               (6.5.5) 
 

Similarly the expansion work for an open system đWр may be found 
as: 

 
đWр = ΣkNk рdυko = рdψVo,                                 (6.5.6) 

 
where Vo  = ΣkNk υko – volume of a reversibly composed mixture (in the 
absence of the bulk mixing effects); dψVo – volume variation due to ex-
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clusively bulk deformation of the system components and not associated 
with the system intensive parameters’ variation ψi  (including р, Т and сk).  

The above proposed definition of heat and work in open systems as 
notions keeping their classic meaning corresponds to the axiom of proc-
ess distinguishability and allows to distinguish these processes as inde-
pendent (irreducible to each other). In this case the heat-mass exchange 
process should be first of all distinguished from the diffusion process of 
the kth substances across the system borders, which involves the variation 
of system composition with the system mass invariable. Accordingly, the 
heat-mass exchange will be construed as an exchange of internal heat en-
ergy between bodies if caused by the substance transfer across the system 
borders and having nothing to do with the variation of the system compo-
sition.  

It is easy to see that the term TdS in relation (6.5.1) includes the com-
ponent ΣkTskodNk caused by the transfer of the pure kth substances across 
the system borders. This is the component that ought to be construed as the 
analytical expression of the heat-mass exchange đQm: 

 
đQm = ΣkTskodNk .                        (6.5.7) 

 
Similarly, the term pdV in open systems, along with the usual expan-

sion work đWp = ΣkNkрdυko, also includes the so-called “input work” đWin 
= Σkрυko dNk : 

 
đWin = Σkрυko dNk.               (6.5.8) 

 
Substituting (6.5.7) and (6.5.8) into the Gibbs relation (6.5.1) gives: 

 
dU = đQ + đQm – (đWp + đWm) + Σk μk dNk . (6.5.9) 

 
From this it follows that the term ΣkμkdNk in the Gibbs relation char-

acterizes the heat-mass exchange with the diffusion of the kth non-
reacting substances across the system borders đUd. This process should be 
called the diffusion energy-mass exchange 1), unlike the diffusion in its ex-
act meaning. In such a case the total energy-mass exchange ΣkukоdNk can 
be represented as an algebraic sum of the heat-mass exchange đQm, the 
input work đWin and the diffusion energy-mass exchange đUd.  

Thus the heat exchange in open systems includes the conductive 
and convective components of the heat flow caused by the heat conduc-
                                                 
1) The term “diffusion” (from the Latin “diffusio” – spreading) relates, strictly speaking, 
to the other process – the equalization of the component concentrations all over the bulk 
of the system with its composition and mass invariable. 
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tion jq
c and the heat-mass exchange jq

k, respectively. The latter is insepa-
rable from the density of the kth substance flow across the system borders 
jk = ρkvk (mol/m2⋅s) and according to (6.5.4) equals jq

к = Tskо jk. Then the 
basic law of heat exchange in open systems becomes: 
 

jq = –λ∇Т + ρk Tskо vk .   (6.5.10) 
 

This expression fundamentally differs from that traditionally used in 
the heat-mass exchange theory because it contains not the enthalpy hk of 
the kth substance input having nothing to do with the internal heat energy of 
the substance, but the associated energy Tskо of the substance input.  

Summing up, it is possible to conclude, that the approach to the the-
ory of heat exchange from energodinamic positions allows to eliminate 
strange delimitation of two directions of the theory of warmth and to re-
ceive the basic integrated and differential equations of the theory of 
heat exchange at the minimum volume of new concepts.  

 
 

 
 
 
 
 
 
 
 
 
 

Chapter 7 
 

HYDRO- AND AERODYNAMICS 
 

In the late XIX century the liquid flow science disintegrated into two 
branches scarcely interconnected. On the one part, theoretical hydrody-
namics, having proceeded from Euler’s equation for ideal (frictionless) 
liquid, attained high perfection. On the other part, however, the results of 
this the so-called classic hydrodynamics sharply contradicted experiment, 
especially with regard to resistance the liquid offered to the bodies mov-
ing in it. Engineers were thus challenged to create their own liquid flow 
science in order to tackle practical problems. The science was named hy-
draulics. This discipline acquired a pronounced empirical character and 
sharply distinguished from theoretical hydrodynamics both in its goals 
and methods.  
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The theory of boundary layer L. Prandtle developed in the early XX 
century connected theory and practice and gave rise to a new direction 
that enabled to again merge the branches of the liquid flow science hav-
ing hitherto drifted far apart. Nevertheless, up to the present a rational 
theory of mature turbulent flows has not yet existed (H. Schlichting, 
1974). This explains the ever rising interest in the thermodynamic meth-
ods of calculating dissipation loss for compressible liquid flow, in the 
boundary layer stability, dynamic system evolution, etc. from the posi-
tions of the theory of irreversible processes (I. Prigogine, 1947, 1980, 
1986; S.R. De Groot, R. Mazur, 1964; I. Gyarmati, 1974, and others). 
Hereafter we are going to consider the basic statements of hydro- and 
aerodynamics from the positions of energodynamics.  

 
 

7.1. Basic Laws of Hydrodynamics 
 

Whenever continuums are moving, the forms of energy are being 
converted into each other. To calculate these conversions, the energy bal-
ance equation serves as derived in thermodynamics. Therefore the deduc-
tion of basic statements of hydro- and aerodynamics is impossible with-
out application to thermodynamics. The specific approach to studying the 
non-static processes of gas and liquid flows in classic thermodynamics 
was restricted to studying just steady flows, wherein the state of the 
gas/liquid elements in each point of the velocity or pressure fields re-
mained unvaried. As the object of investigation the unit mass of 
gas/liquid was considered therein so that to reduce the flow as an open 
system to a closed one. All laws of thermodynamics were applied to such 
a system in the form of equalities despite the non-static character of the 
associated processes and heterogeneity of the unit mass of gas/liquid 
which occupied a certain part of the flow path with parameters having 
varied along its length and cross section. Additional simplifications 
meant the so-called “extended” systems under consideration, which com-
prised, along with the moving gas or liquid, also external force fields in-
cluding the external pressure field. In that case the total energy E of the 
liquid or gas flow was represented as the sum of the internal energy of 
liquid U, its external kinetic energy Еk

 = Mv2/2, the external potential en-
ergy of pressure Еп = рV and the positional energy in gravity field Еg

 = 
Mg·rg, where rg – distance to the surface of the Earth. The external poten-
tial energy of gas or liquid PV was therein measured by the “work to ad-
mit” the mass M into a medium with unvaried pressure and density (p,υ = 
const) and was defined as the imaginary work Wс = ∫рdV = ∫рυdМ to 
compress the gas separated with an imaginary partition from the gas ad-
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mitted (M.P. Vukalovich, I.I. Novikov, 1968; A.I. Andrushchenko, 1975, 
and others).  

All those artificial procedures were applied in order to justify using 
the conceptual system and the body of mathematics for equilibrium ther-
modynamics of closed systems in the form of relationship (3.1.5). In that 
case the generalized equation of the first law of classic thermodynamics 
was supplemented with the components of the system external energy 
and with the new type of work đWр', which different authors named 
“available”, “useful external”, “technical”, etc. 

 
                đq = dh + d(v2/2) + gdRg + đwр',               (7.1.1) 

 
where h ≡ u + pυ – enthalpy of liquid or gas. 

One more simplification was that the analytical expression of spe-
cific work đwр' was found by comparing (7.1.1) with the equation of the 
first law of thermodynamics for closed systems  
 

 đq = dh – υdp,    (7.1.2) 
 
wherefrom, if to neglect the gas gravitational energy variations (gdRg = 
0), it ensued đwр' = – υdp. However, the fact was missed that the gas-in-
flow work as a particular case of mechanical work F·dr characterized 
thereat not local variations of the system energy in the particular point of 
space (as all terms of 7.1.1), but rather the so-called convective variations 
of state due to the transport of the object in space. Thus the work đwр' is 
defined in this case by the product of the pressure resultant force Fp = υХp 
and the gas displacement dr in the field of pressure with the gradient ∇р. 
Then đwр' = - υ∇р·dr = - υdrр, i.e. relates to the pressure variation drр in 
the direction of the gas displacement, whereas in classic thermodynamics 
of stationary systems the dp means just a time variation of pressure in a 
particular point of space. Such “fitting to classic” by substituting the spa-
tial variations of pressure drр for the local ones dp did not, fortunately, 
tell on the calculation results, though considerably impeded comprehend-
ing that section of thermodynamics (A.F. Kotin, 1976).  

Our goal is to obtain the same results not resorting to all these sim-
plifying subterfuges. Energodynamics is properly equipped to do this. Let 
us apply its identity (2.3.9) to an arbitrary stream tube or a channel with a 
steady flow of compressible liquid within the gravity field of the Earth. 
The liquid flow under consideration receives generally the heat đQе from 
the environment and does work against some jth forces đWj

е. In this case 
the liquid has the thermal (Ψт ≡ Т, Θт ≡ S), mechanical (Ψр ≡ р, Θр ≡ V), 
kinetic (Ψw ≡ v, Θw ≡ P = MV) and gravitational (Ψ ≡ Ψg, Θg ≡ М) de-
grees of freedom. The system in a whole is heterogeneous (non-
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equilibrium internally) and characterized by the available pressure gradi-
ent Хp = - ∇р and gravitational potential Хg = -∇Ψg = g. These forces are 
the conjugate of the extensive state coordinates Zp, Zg и Zi which mean-
ing has been earlier clarified. A new parameter is here the moment of 
momentum distribution Zw = Рrw defined, like the other parameters of 
heterogeneity, by the product of the value being transferred (in this case 
the momentum P) and the vector of center-of-inertia displacement rw for 
the body. The latter defines the center of system momentum being apart 
from the wall as far as just the displacement thickness of boundary layer 
(H. Schlichting, 1974). This makes superfluous such a specific parameter 
as the displacement thickness of momentum1)  to be introduced into hy-
drodynamics. The moment of momentum distribution Zw is conjugated to 
the thermodynamic force Хw defined by the value of the velocity gradient 
vector xi ≡ - ∇v = Gradv system-averaged. In this case the basic identity 
for the system under consideration becomes: 
 

 dU = TdS – рdV –Хw·dZw – Хp·dZp – Хg·dZg – Хi·dZi ,    (7.1.3) 
 
where TdS = đQе + đQd – the sum of heats resulting from the system heat 
exchange đQе and the dissipation process đQd; Хj·dZj = đWj + đWj

d – the 
sum of useful and dissipation works the system does; T, р – mass-average 
absolute temperature and pressure of the system in whole.  

Since according to the law of heat and work equivalence the dissipa-
tion heat đQd released in a system is equal to the work done on the system 
against the dissipation forces in it (đQd = – đWd), energy balance (7.1.3) 
remains valid in their absence: 
  
đQ = dU + pdV + Хw·dZw + Хp·dZp + Хw·dZw + Хg·dZg + đWj,    (7.1.4) 

 
To facilitate comparing with the results of classic thermodynamics, 

let us change to the scalar form of all terms in (7.1.4). At the same time 
we will use the energodynamics–associated law of parameter averaging 
when changing from local to global description of a system (see 2.5.11) 
construing Ψi as the generalized potentials of the system averaged over 
the stream tube (channel) cross section. Taking into account that the po-

                                                 
1) As an example, let us find the moment of momentum distribution in a laminar 
flow within a tube with the radius R and the velocity vs. radius distribution law 
v(r) = 2Vх(1 – r2/R2). Representing the bulk element dV as the product of the ele-
mentary ring square 2πrdr and the tube length ℓ one can find: Zw = МVх∆rw = 
2πℓМ∫[2Vх(1– r2/R2) – Vх ]ρr2dr = – ⅔МVхr (the minus sign in this expression 
means the displacement occurring in the direction of tube axis). 
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tentials Ψi in a stationary flow vary only along the stream tube axis with 
the coordinate r, i.e. Ψi = Ψi(r), one can find : 

    Хi·dZi = –∇Ψi·Θidr = –Θi (dr i·∇)Ψi = – Θi dΨi .              (7.1.5) 

From here, in particular, Хp·dZp = –Vdp 1); Хg·dZg = –Mgdrg; Хw·dZw 
= – Mv·dv = –Mdv2/2, so instead of (7.1.4) we have: 
 

                      đQ = dH + Mdv2/2 + Mgdrg + đWi,    (7.1.6) 
  
 
where H ≡ U + pV – enthalpy of liquid; d(pV) = pdV + Vdp – the sum of 
the local and spatial variations of the potential energy of pressure.  

This equation corresponds to the first law of thermodynamics for 
moving gases and liquids (M.Vukalovich, I.Novikov,1968; A. 
Andrushchenko, 1975). However, this is obtained without any assump-
tions about the equilibrium state of a system and the reversible (quasi-
static) character of the processes running in it.  

From this equation in a particular case of isothermal flow (dU = 0) 
of incompressible liquid (ρ = const) in the absence of heat exchange 
and work (đQ, đWi = 0) Bernoulli law ensues: 
 

 p/ρ + v2/2 + grg = const ,                  (7.1.7) 
 

stating energy conservation for liquid moving along the stream-line.  
In a more particular case of stationary liquid (v = 0) Archimedean 

principle ensues from (7.1.7): 
 

р + ρgrg = const ,                                           (7.1.8) 
 
describing the conditions of liquid equilibrium.  

In the same way other relationships of fluid thermodynamics and hy-
draulics can be found, which are, however, beyond the scope of this 
book. These are described in special literature, whereto we kindly refer 
all concerned readers. 

 
 
 

 

                                                 
1) It is taken into account here that Θi = – V < 0 and dRр < 0, i.e. the volume redis-
tribution spreads into the overpressure zone. 



 136 

7.2. Relationships between Thermodynamic and Geometrical          
Parameters  in Gas Flows 

 
 To study energy conversion processes when compressible liquid 
is moving along channels of an arbitrary cross section, let us use the part 
of thermodynamic identity (2.3.9) directly characterizing such processes, 
i.e. describing reciprocal conversions of various forms of the system 
inergy Е. When such conversions run without losses,  
 

 dЕ  = – Хp·dZp – Хw·dZw – Хg·dZg  = 0.  (7.2.1) 
 

Neglecting in case of gas its position energy variation Хg·dZg and tak-
ing into account that Хp·dZp = –Vdр; Хw·dZw = – Mvdv one can directly 
obtain after changing to specific values: 
 

 vdv = – υdp .                                     (7.2.2) 
 

Note, this expression interrelates the spatial variations of the local pa-
rameters v and p. Integrating this relationship from the state vo = 0 one 
can easily come to the expression for theoretical velocity of gas outflow 
from nozzles vt: 
 

 vt = ∫(– 2υdp)0,5 .         (7.2.3) 
 

In case of an outflow with friction (when internal sources of the dis-
sipation heat đQd = – đWj

d appear in the system) the additional term – 
đWj

d appears in the right part of (7.2.1), then expression (7.2.2) becomes: 
 

v = (– 2 ηоi
p υdp) 0,5 ,                               (7.2 4) 

 
where ηоi

p = 1 – wj
д/wj

t – internal relative efficiency of the expansion 
process defined by the ratio of the dissipation work wj

д of gas to its theo-
retically possible work wj

t. The ratio of actual-to-theoretical outflow ve-
locities v/vt is usually named the nozzle efficiency. Designating this ratio 
as φс and comparing with (7.2.4) one can find that φс2 = ηоi

p, i.e. depends 
on the dissipation loss share.  

To ascertain the relationship between the flow parameters and the 
channel profile, let us play on the constancy of the liquid flow rate Ii =ρvf 
along the stream tube (ρvf = const). After taking the logarithm of this ex-
pression (lnρ + lnv + lnf = const) followed by its differentiation we can 
find the steady flow continuity equation: 
 

 dv/v + df/f – dυ/υ =   0 .   (7.2.5) 
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Considering the flow in channels as adiabatic and differentiating the 

adiabatic equation рυk = const the following relationship can be easily de-
rived: 
 

k(dυ/υ) = – dp/p,  or   аs
2dυ/υ = – υdp = vdv,     (7.2.6) 

 
where аs = (kpυ)0,5 – sound velocity in gas. 

Substituting dυ/υ from (7.2.5) into (7.2.4) followed by minor trans-
formations we can obtain the so-called channel profile equation (Hugo-
niot’s equation, 1880): 
 

 (Мsаs
2

 –1)dv/v = df/f,   (7.2.7) 
 

Here Мsаs ≡ v/аs – Mach number characterizing the gas flow condi-
tion, viz. subsonic (Ma < 1) and supersonic (Мsаs > 1).  

Thus the application of energodynamics enables to obtain known re-
sults avoiding voluminous discourses justifying classic thermodynamics 
and omitting such notions referring to work as “input”, “push”, “avail-
able”, “technical”, useful external”, etc.  
 
 
 

7.3. Law of Friction. Shear, Bulk and Rotational Viscosity 
 

Now let us apply energodynamics to investigate such purely irre-
versible phenomena as viscosity. It is known from experience that if two 
selected layers of liquid are moving relative to each other in a direction x 
with a velocity vx, surface friction forces (tangential stress) appear imped-
ing this motion. Extracting from liquid an elementary volume dV with the 
faces dx, dy and dz and designating the specific forces (stress) acting 
along the x axis over the area dxdy as τх each of these forces may be con-
sidered (in linear approximation) proportional to the velocity gradient 
dvх/dу in the direction normal to the moving layers: 
 

 τх = μs dvх/dу.    (7.3.1) 
 

This expression has been named Newton’s law of friction, while the 
associated proportionality factor μs – absolute viscosity coefficient for liq-
uid.  

However, Newton’s law of friction allows for only one of the possi-
ble physical characteristics of liquid viscosity, viz. the coefficient of 
shear viscosity (see the subscript for μ). Meantime, when real (incom-
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pressible) medium is moving, other sources of dissipation losses are 
available, e.g. those causing from the rapid (non-static) compression and 
expansion of the elementary volumes of the medium being strained, i.e. 
associated with a phenomenon of the so-called bulk viscosity. In this case 
the normal stress σn in compressible liquid should evidently differ from 
the thermodynamic (hydrostatic) pressure p by a value proportional, in a 
first approximation, to the liquid cubic strain velocity ∇·v. Designating 
the proportionality factor ηv one can find the expression for any normal 
component of the stress tensor: 
 

 σn
 = – р + μv∇·v .   (7.3.2) 

 
Later on the value ηv was named the coefficient of bulk (volume) vis-

cosity (S.P. De Groot, R. Mazur, 1964). The bulk viscosity is the second 
property of a liquid uniformly (isotropic) compressible, which should be 
taken into consideration in calculations and analyses.  

G. Stokes in his intention to reduce the number of properties charac-
terizing the stress field in compressible liquid to the same number as for 
incompressible one set forth in 1945 a hypothesis that μv = – ⅔ μs. Then 
instead of (7.3.2) one can write: 
 

 σn
 = – р – ⅔ μs∇·v.   (7.3.3) 

 
The laws of friction (7.1.1)…(7.1.3) allowed to introduce an addi-

tional “viscosity” term into the equation of the second law of motion and 
to obtain on this basis the law of viscous liquid motion known as the Na-
vier-Stokes equation. However, before deriving this law as a deduction of 
energodynamics let us note that the dissipation losses may also appear 
from the rotation of the elements (“moles”) of liquid. Yet J. Boussinesq 
(1877) assumed that the “apparent” turbulent tangential stress τт was de-
fined by a formula similar to Newton’s law of friction: 

 τт = Ат d v̄х/dу ,                                     (7.3.4) 

where to instead of the actual velocity vx the averaged velocity vx en-
ters and instead of the coefficient μs – the turbulent exchange coefficient 
Ат. Unlike the coefficient of shear viscosity this coefficient is not a con-
stant of liquid since depends on velocity and its distribution. This ensues, 
at least, from the fact that friction forces in turbulent motion are propor-
tional to not simple velocity, but to approximately its squared value.  

Considering the laws of friction (7.3.1), (7.3.2) and (7.3.4) from the 
position of energodynamics one can easily notice that these equations are 
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particular cases of the TIP linear kinetic laws of (5.6.5) type, wherein the 
flow motive force is expressed by a negative gradient of the generalized 
potential (velocity gradient vector xi ≡ –∇v = Gradv). This tensor charac-
terizes the velocity field heterogeneity that causes internal processes of 
the momentum redistribution among various parts of the system. These 
processes feature shear and cubic strain as well as rotation of the bulk 
elements. From the position of energodynamics the shear strain process is 
irreducible to the cubic strain one, much less to the rotation of the liquid 
elements. Therefore all above processes are independent and possess their 
own coordinate and motive force. This demands resolution of the tensor 
∇v ≡ Gradv per three components. One of them – the trace of the tensor – 
is the invariant scalar ∇·v composed of diagonal entries of the velocity 
matrix with the components ∂vα/∂xα, where α,β = 1,2,31). This value char-
acterizes strain velocity of continuum unit volume and is connected with 
normal stress arising in the liquid and described by expression (7.1.2). 
The associated stress deviator causes the force xр = –∇р generating, in its 
turn, the bulk viscosity phenomenon (I. Gyarmati, 1974). The residuary 
non-diagonal part ∇v may be resolved into the symmetrical ∇vs and anti-
symmetrical ∇va components. The former is defined by the expression 
∇vs = ½(∂vβ/∂xα + ∂vα∂xβ) and characterizes the “slip” velocity of the liq-
uid layers. The latter is defined by the expression ∇va = ½(∂vβ/∂xα – 
∂vα∂xβ) = ½∇×v and means an axial vector known in hydrodynamics as 
the vortex one. The symmetrical part of the velocity tensor characterizes 
the velocity of the shear strain and answers for the shear viscosity phe-
nomenon. The anti-symmetrical part characterizes the rotational speed of 
the bulk element and generates the vorticity turbulent transfer process, i.e. 
the kinetic rotation energy exchange among various zones of the moving 
liquid.  

All three phenomena, viz. bulk, shear and rotational (turbulent) vis-
cosity may be described with generally the same non-linear kinetic equa-
tions (2.7.10) of energodynamics as other phenomena. Neglecting in 
(2.7.10) the threshold force Fjо and changing to the local form by substi-
tuting Fj for the thermodynamic forces, as it done in (5.6.5), one can de-
scribe the phenomenon of, say, bulk viscosity by a kinetic equation in the 
form: 
 

 Тn
 =  μv∇·v ,        (7.3.5) 

                                                 
1) The velocity gradient toward the center of the bulk element within a com-
pressible liquid arises because the velocity of the element-comprised particles 
decreases as they are approaching the center (wherein the velocity is zero). 
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where Тn – normal component of the stress tensor T.  

Similarly the momentum transfer between the layers of a moving liq-
uid (the shear viscosity phenomenon) may be described by expression 
(5.6.5), wherein the motive force of the process is represented via the 
symmetrical part Тs ≡ (∇v)s of the tensor ∇v 
 

 Тs =  μs(∇v)s ,         (7.3.6) 
 
while the vorticity transfer (the turbulent viscosity phenomenon) – by the 
same equation, wherein the thermodynamic force is the anti-symmetrical 
part Та ≡ (∇v)a of the tensor ∇v equal to half the so-called vortex vector 
(∇×v): 

 Та =  μт(∇v)a ,           (7.3.7) 
 
wherein instead of the turbulent exchange coefficient Ат the coefficient of 
turbulent viscosity μт figures. 

From the positions of energodynamics the coefficients μv, μс and μт 
are neither pure thermodynamic, nor pure kinetic values and, as the other 
phenomenological coefficients Lij = ΘjКij, depend in general on both the 
thermodynamic Θj, and the kinetic Кij factors (chapter 2). Therefore equa-
tions (7.3.5 thru 7.3.7) are, strictly speaking, non-linear. This especially 
concerns equation (7.3.7), which at first sight does not reflect squared re-
lationship between the losses in a mature turbulent liquid flow and the ve-
locity of the main flow. It should, however, be taken into consideration 
that in energodynamics the kinetic coefficient Кij may be any function of 
motion state, i.e. Кij = Кij(∇v)a. The nature of this relationship is defined 
from experiment. However, to explain the above peculiarity of a turbulent 
flow, it is no need to enter into details of the turbulence mechanism. The 
velocity v of some point of rigid body is known to be possibly repre-
sented as the sum of the velocity of translational motion of its center of 
mass V and the velocity of rotational motion ω×r ≡ [ω,r] (L.D. Landau, 
E.M. Livshits, 2004). The respective translational Мv and rotational 
ω×Мr components of the system momentum P are coordinates of two 
independent processes i.e. represent two independent degrees of freedom 
of the system. In the basic identity of energodynamics (see 2.5.1) those 
are described by the two terms, which pertain to different types of proc-
esses, and by the two different components of system kinetic energy. In a 
laminar motion only one of the above degrees of freedom is “energized”, 
and the energy losses are proportional to the first power of v. However, as 
the velocity is rising and the laminar flow loosing its stability, a rotational 
motion is energized in the flow, i.e. an additional degree of freedom ap-
pears. In a mature turbulent motion according to the law of uniform dis-
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tribution of energy among degrees of freedom (L.D. Landau, E.M. 
Livshits, 2004) the total momentum of the translational and rotational 
motions is summed up increasing twofold so that the losses of the kinetic 
energy Мv2/2 increase fourfold. In an immature turbulent motion the in-
dex of power for (∇v)a is expected to be from 1 to 2, which conforms to 
experiment.  

However, it seems to be more valuable that the above explanation 
that the laws of shear, bulk and turbulent viscosity may be directly ob-
tained from energodymanics as particular cases of its kinetic equations.  

 
 

7.4. Derivation of Navier-Stokes’ Generalized Equation 
 

In the general case of a 3D-motion of the viscous compressible liquid 
the flow field is defined by five values, viz. the vector of the velocity v 
with the components vα, vβ, vγ; the pressure p and the density ρ. There are 
three equations to find these five values, viz. three equations of motion 
(law of momentum conservation), continuity equation (law of conserva-
tion of mass) and equation of thermodynamic state р = р(ρ).  

To formulate the equations of motion, let us proceed, as usual, from 
the second law of motion (see 3.3.2), reading that the rate of change of 
momentum of a body P in time t is equal to the resultant F of all forces 
acting on the body. According to (2.3.7) there are several categories of 
the thermodynamic forces xi ≡ –∇ψi (2.3.8) acting on the liquid particles 
in a flow. Firstly, these are the mass forces Fm comprising the gravita-
tional forces, which specific values are expressed by a negative gradient 
of the gravitational potential ψg: xg ≡ g = – ∇ψg (N/kg). Secondly, these 
are bulk forces, to which also the forces xр = –∇р (N/m2) should be at-
tributed as caused by heterogeneity of the pressure fields (ψр ≡ р)1). 
Thirdly, these are surface forces comprising the shear stress arising in 
case of a body strain.  

In continuum mechanics the forces from pressure and the tangential 
stresses are merged in a single mathematical object, viz. the stress tensor 
T, wherein diagonal and non-diagonal components correspond to these 
forces. In this case the second law of motion directly adopts the most 
compact form of the Cauchy equation: 
 

 ρdv/dt = ρF + ∇·Т.   (7.4.1) 
 
                                                 
1) Note that in energodynamics pressure is construed not as a surface force (vec-
tor) with a dimension of N/m3, but rather as a concentration of potential energy 
with a dimension of J/m3 (scalar). 
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Substituting all components of the tensor T (7.3.5) thru (7.3.7) into 
(7.4.1) gives: 
 

 ρdv/dt = ρF –∇р +∇·{μс[(∇v)s – ⅔ μс∇·v]} +μт(∇v)a. (7.4.2) 
 

This expression is the Navier-Stokes’ equation generalized so as to 
allow for the turbulent viscosity phenomenon (I. Gyarmati, 1974). For 
incompressible liquids (∇·v) under an assumption that μs = const this 
equation may be simplified: 
 

 ρdv/dt = ρF -∇р + μs∇2v   (7.4.3) 
 

Equations (7.4.2) and (7.4.3) make the foundation to all continuum 
mechanics, hydrodynamics and aerodynamics.  

To complete the set of equations of hydrodynamics, it is necessary to 
supplement the equation of flow energy balance (7.4.2) with also the con-
tinuity equation for a more general case of non-stationary processes. The 
latter reflects the law of conservation of mass of a system and supports 
the statement that the sum of the masses flowing into and out of unit vol-
ume of a system per unit time is equal to the variation of mass of the sys-
tem for the same time due to its density variation. This equation also di-
rectly ensues from the balance equation for the arbitrary field value Θi  
(2.4.8) in the absence of internal sources of mass (σi = 0). Substituting 
there Θi ≡ М, ji  ≡ jm= ρv gives the integral form of the continuity equa-
tion: 
 

 dМ/dt + ∫∇⋅jm dV = 0.       (7.4.4) 
 

The differential form of this equation depends on the uniqueness 
conditions of processes under investigation. If a compressible liquid is 
considered, which bulk elements dV remain unvaried under its strain 
(such description of a continuum under strain is named spatial), then dif-
ferentiation of mass with respect to time pertains to only the value ρ = 
ρ(t). Then dМ/dt = ∫(dρ/dt)dV, which leads to the so-called substantive 
equation of mass balance: 
 

 dρ/dt + ∇⋅jm = 0,   (7.4.5) 
 
where jm = ρv – density of local mass flow. 

If, on the contrary, the mass elements dМ = ρdV of a continuum re-
main unvaried under its strain, then ρ = ρ(М,t), and differentiating (7.4.4) 
gives: 
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 ∂ρ/∂t + ∇⋅(ρv) = 0.      (7.4.6) 
 

In case of an incompressible liquid ρ = const, and the continuity 
equation becomes: 
 

 ∇⋅v = 0.                          (7.4.7) 
 

Temperature variations in compressible fluids makes it necessary to 
supplement the equations of motion with additional thermodynamic rela-
tionships, e.g. the equation of gas state in aerodynamics or plasma state in 
magnetic hydrodynamics. In a more general case of flows aggravated 
with heat exchange or mass exchange the equations of the heat- and mass 
exchange theory should be taken into consideration. Therefore it is very 
important that energodynamics does not have to “import” these relation-
ships from outside.   

It is worth noting that due to great mathematical difficulties not a 
single general solution of the Navier-Stokes’ equation has been obtained 
up-to-date in its complete form, i.e. containing all terms allowing for vis-
cosity, as well as the convective terms. The reason is that such a solution 
demands the knowledge of all stress tensor components for all continuum 
elements, which can not be measured or assigned by uniqueness condi-
tions. Therefore it is quite important to consider those additional oppor-
tunities which energodynamics gives. 

  
 

7.5. Momentum Transfer in Boundary Layer 
 

It has been known for a long time that disagreement between classic 
hydrodynamics and practice arises from disregarding friction. Although 
Navier-Stokes’ equations for frictional flow were formulated yet in mid-
19th century, it remained, nevertheless, beyond understanding for a long 
time why the minor frictional forces, which might be considered negligi-
ble in the classic theory, made a decisive impact on motion of bodies.  

In 1904 L Prandtle showed the way that made the streamline prob-
lem with friction of multi-configuration bodies available for theoretical 
investigation. He showed from theoretical considerations and some sim-
ple experiments that a flow in the vicinity of a body might be divided into 
two zones, viz. a very thin boundary layer nearby the body, wherein fric-
tion dominated, and a zone outside that layer, wherein friction might be 
disregarded.  

The Prandtle’s hypothesis about existence of a boundary layer ap-
peared to have been very fruitful and gave a mighty impetus to the devel-
opment of theoretical investigations. With the problems set in the early 
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last century by a boom in the aircraft technique the boundary layer theory 
has quite soon became a basis of the up-to-date fluid mechanics (along 
with other theories, viz. the airfoil theory and transonic flow theory).  

L. Prandtle first defined the relationship between the turbulent ex-
change coefficient Ат and the averaged velocity in 1925 based on a notion 
of the mixing path length ℓ. The Prandtl’s turbulent flow mechanism may 
be simplified to the following pattern: particular “moles” (particles) aris-
ing in liquid and having their own velocity are moving both in the longi-
tudinal and transverse directions. While moving in this direction for some 
distance ℓ, the particle enters a zone of other velocity giving to (or taking 
from) it a corresponding momentum. This momentum is defined by the 
velocity transverse fluctuation, which allows interpreting the ℓ value as 
the path length the particle must cover in the transverse direction until the 
said velocity difference becomes equivalent to the velocity fluctuation in 
the longitudinal direction. This allows expressing the turbulent exchange 
coefficient Ат in terms of dvх/dу by the relationship 
 

 Ат = ρℓ2dvх/dу,                 (7.5.1) 
 
and then obtaining the law of friction in the form: 
 

 τт  = ρℓ2(dvх/dу)2.                   (7.5.2) 
 

J. Tailor derived (1935) the similar relationship from an assumption 
the “vorticity” dVх/dу was constant. This relationship differs from (7.5.2) 
by only a factor of 0.5 added.  

Equation (7.5.2) is successfully applied when calculating the flows 
alongside the walls and the free (not restricted to walls) turbulence. How-
ever, this is inapplicable to those flow zones, where dvх/dу = 0, e.g. be-
yond the boundary layer or downstream of an obstacle equalizing the ve-
locity. Alternative may be applying to the momentum transfer in the 
boundary layer the same semi-empirical kinetic equations as for other 
transfer processes.  

When solving this problem, let us take into account that the forces 
entering into equations (7.3.7) thru (7.3.9) have different tensor order and 
kind. The bulk viscosity motive force xw

n – scalar, the shear viscosity mo-
tive force xw

s – tensor with a zero trace, the turbulent viscosity motive 
force xw

т – axial vector named in hydrodynamics the vortex vector. Ac-
cording to the Curie’s principle (chapter 5) forces of different tensor or-
der and kind can not interact. This means that Onsager’s phenomenologi-
cal laws (5.1.6) or (5.4.1), wherein the flows depend on simultaneously 
all forces acting in a system, are inapplicable to the boundary-layer mo-
mentum transfer and give place to the diagonal laws of (7.3.5) thru 
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(7.3.7) type. However, from the positions of energodynamics the stress 
tensor components T must be replaced there by the momentum flow 
components jw which according to their general definition should be con-
strued as the product of the value being transferred (momentum ρv) and 
its transfer velocity vw in the corresponding (stationary or concurrent) 
reference system jw = ρvvw. In this case from the positions of energody-
namics the momentum flows jw

n which liquid layers exchange due to the 
shear viscosity phenomena should be distinguished from the momentum 
flows jw

s arising from the particle deceleration in the bulk strain processes 
(bulk viscosity phenomena), while the latter – from the rotational mo-
mentum flow jw

т caused by the vorticity turbulent transfer (turbulent vis-
cosity phenomena). These three independent flows are supported in ener-
godynamics by the three respective kinetic equations of momentum trans-
fer in the boundary layer: 
 

 jw
n = – μv∇·v ,                (7.5.3) 

 
 jw

s = – μс(∇v)s ,    (7.5.4) 
 

 jw
т = – μт(∇v)a ,    (7.5.5) 

 
where xw

n ≡ –∇·v, xw
s ≡ – (∇v)s и xw

т ≡ – (∇v)a = – ½(∇×v) – motive 
(thermodynamic) forces; ηv, ηs  and ηт – phenomenological coefficients. 
Unlike the stress tensor components T the flows jw

n, jw
s and jw

т are func-
tions of process, but not state. Thus energodynamics makes logic free of 
violation when interpreting the stress tensor components (i.e. functions of 
state) as the momentum flows (S.P. De Groot, R. Mazur/ 1964; I. Gyar-
mati, 1974, and others).  

Equations (7.5.3) thru (7.5.5) allow separately estimating the contri-
bution each of the three said processes makes to energy dissipation 
caused by the boundary layer and to the associated flow kinetic energy 
loss. To facilitate the calculations, let us change to the integral form of 
these equations, where the intractable velocity gradients are replaced by 
the velocity differentials. For this let us divide the hydrodynamic bound-
ary layer with a thickness of δw into sub-layers with a thickness of dn and 
introduce the integral thermodynamic force Xif

 thru the expression: 
 

 Xif
 = ∫xi·dn = – ∫(dn·∇)ψi = –∆Ψi,  (7.5.6) 

 
where –∆Ψi = Ψi' – Ψi" – difference in the generalized potentials between 
those apart from the wall and on the wall. In our case xw

s ≡ – (∇v)s = – 
dvх/dу, i.e. is defined by the velocity gradient in the normal direction to 
the boundary layer. Since due to adhesion the on-wall velocity Vх = 0, 
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then for the shear viscosity the integral force Xwf
s = v, i.e. is equal to the 

velocity of incident flow (or the main flow beyond the boundary layer). 
Similarly, taking into account that (∇v)a means the rotational speed ω of 
the liquid element, which also becomes zero on the wall, one can find that 
Xwf

т = ω, i.e. is defined by the main flow vorticity. It hardly needs prov-
ing that such (integral) forces are much more prone to measurement and 
imposition of boundary conditions.  

Next step is to define the momentum flows Jw
s and Jw

т when stream-
lining a body with a surface of f in whole. Assuming the liquid as incom-
pressible (∇·v) for the sake of simplicity and construing ηs, ηт  and δw as 
some values averaged over boundary layer length and thickness let us 
change to the “global” (integral) form of the boundary layer equations: 
 

 Jw
s = ∫ jw

s·xw
sdfdn = - ∫ (μs/δw)dvdf = μsfδw

-1v,   (7.5.7) 
 

 Jw
т = ∫ jw

т·xw
тdfdn = - ∫(μт/δw)dωdf = μтfδw

-1ω .    (7.5.8) 
 

Knowing the momentum flows Jw
s, Jw

т and the motive forces of the 
energy dissipation processes V and ω, the contribution of each of them to 
the power dissipation Nd may be easily calculated: 
 

 NS
d = Jw

s · v ;  NT
d = Jw

т · ω.   (7.5.9) 
 

Since, on the other hand, the per-second work of frictional forces Fd 
is defined by the expression Nd = Fd ·v, the tractive resistance of a body or 
the frictional losses in the channel may be found from the balance: 
 

 Fd = Jw
с + Jw

т ·ω/v.   (7.5.10) 
 

These equations do not demand knowledge of the detailed pattern of 
velocity distribution in the boundary layer, its evolution along the surface 
being streamlined, the laws of viscosity coefficient variation against the 
thermodynamic state parameters, etc. Therefore in some instances, when 
their averaging is not too complicated, equations (7.5.10) can facilitate 
the streamline resistance calculation. Such an approach is intrinsically 
quite close to the wind-tunnel test results with regard to velocity fields 
upstream and downstream of the body under testing. In both cases not the 
boundary layer itself becomes the object of investigation, but the bound-
ary layer-conditioned integral losses in the surrounding stream or the 
“wake” of the liquid being compressed. The advantage of such an ap-
proach lies in the rejection of whatever hypotheses and patterns of 
boundary layer behavior. Besides, particularly noticeable are simplicity, 
obviousness and conciseness of the math calculations leading to the re-
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sults already known, whereas usually the statement of these problems 
covers hundreds of pages and the body of mathematics applied is far from 
everybody’s comprehension. Furthermore, energodynamics abolishes the 
necessity to introduce a number of new notions, such as the “boundary 
layer displacement thickness”, “momentum displacement thickness”, etc. 
It is also quite understandable from the positions of energodynamics how 
the linear law of resistance goes over into the square law with the vortex 
motion evolving.  

 
 
 
 
 
 
 
 
 
 

Chapter 8 
 

ELECTRODYNAMICS 
 

Despite indubitable achievements of the modern theory of electro-
magnetism and creating on its basis such directions as electrical engineer-
ing, radio engineering and electronics, this theory is certainly far from 
completion. This chapter is dedicated to corrections to be made to elec-
trostatics and electrodynamics from the more general positions of ener-
godynamics with the consecutive modifications to be imparted to our vi-
sion of the laws of motion and interaction between charged bodies. 
 
 

8.1. Free, polarization and dipole Charges 
 

As shown in Chapter 1 (Fig. 1.2), the redistribution of the density ρi 
for any field value Θi including the free charge Θе is associated with a 
displacement of its center position. As a result, some “moment of distri-
bution” Zi appears with the arm ri – riо  featuring the deviation of the 
system from homogeneous state. In the particular case of open conduc-
tors inserted into the electric field Е the parameter Θi is the free charge 
Θе so that the value Zi assumes a meaning of the electric displacement 
vector in the system as a whole, which density ZеV = ∂Zе/∂V = ρе(rе – rео) 
is identical in its sense to the electric displacement (induction) vector D 
in unit volume of homogeneous dielectric:  
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div D = div ZеV = ρе.                               (8.1.1) 
 
According to (2.4.10) the total time t derivative of the vector Zi de-

fines the displacement flux Ji
с ≡ (∂Zi/∂t)φ = Θivi , while the similar de-

rivative of this moment density ZеV defines the density of this flux1) 
(8.1.2) 

 
Ji
с ≡ (∂Zi/∂t)φ = Θivi ;   ji

с
 =  (∂ZеV/∂t)φ = ρivi.            (8.1.2) 

This expression generalizes the Maxwell-introduced notion of flux to 
other-kind phenomena. According to energodynamics the displacement 
fluxes appear in the course of redistribution of any energy carrier Θi over 
the bulk of the system regardless of what caused that redistribution – ei-
ther the system relaxation or non-uniform inflow of the energy carrier Θi 
across the borders of the system (flux divergence Ji). 

 
 

 ri' = (Σ ri'dΘi')/Θi' ; ri'' = (Σ ri''dΘi")/Θi" .  (8.1.1) 
  
The said approach is as well applicable to the processes of polariza-

tion and magnetization in dielectric and magnetic materials. Their unity 
may be more easily comprehended if imagining these processes as a re-
sult of creating dipoles with unlike (opposite in sign) elementary electric 
or magnetic “charges” (Ch. Coulomb, 1785). Marking them with single 
and double prime, respectively (dΘi' = ρi'dV and dΘi" = ρi"dV), one can 
find the positions of their centers ri' and ri'' for the system as a whole: 
 

 ri' = (Σ ri'dΘi')/Θi' ; ri'' = (Σ ri''dΘi")/Θi" .  (8.1.3) 
 

Since in the polarization processes the system in whole remains neu-
tral (θi' = - θi"), its moment of polarization charge distribution ZI = θi'ri' + 
θi''ri'' will be similar to (8.1.1): 

 
 Zi =  Θi''(ri'' – ri') ,                   (8.1.4) 

 
where ri'' – ri' – mean value of dipole arm. The value Zi should be con-
veniently represented as the total moment of dipole both arms. To do this, 
let us express the dipole arm ri'' – ri' as (ri'' – riо) – (ri' – riо) =  Δri'' – 
Δri', where riо = (ri'+ ri'')/2. With the sign of the dipole arms arbitrarily 
chosen; let us assume Δri' ≤ 0 и Θi' ≤ 0. Then the moments of the arms 
Θi'Δri' and Θi''Δri'' receive the same sign, and the total dipole moment of 
the system becomes equal to their sum Zi = Θi'Δri' + Θi''Δri''. The deriva-
tive Ziv ≡ (∂Zi/∂V) = ρi'Δri'+ ρi''Δri'' defines the dipole moment in the unit 
volume of dielectric and magnetic: ZеV = ρе'Δrе'+ ρе''Δrе'' and ZмV  = 
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ρм'Δrм'+ ρм''Δrм'', respectively, which corresponds to the notions of the 
polarization vector P and the magnetization vector M usually introduced 
by definition (L.D. Landau, E.M. Livshits, 1982). Hereafter we will be 
using these more common terms referring, however, to the unlike electric 
and magnetic charges Θi' and Θi'' as “dipole charges to clarify their ori-
gin, and the values ρе and ρм – densities of these charges. 

According to the thermodynamic methodology the relationship be-
tween the extensive dipole moments Zе and Zм of dielectric and mag-
netic, their absolute temperature T and volume V, the electric and mag-
netic field intensities E and H, may be expressed by the state equations in 
the general form: 
 

Zе = εoεr(T)VE ;    Zм = μoμr(T)VH,     (8.1.5) 
 
where εo, μo – dielectric and magnetic permeability of “void”, respec-
tively; εr(T) and μr(T) – relative permeability of dielectric and magnetic as 
a function of their absolute temperature T. The known relationships be-
low may be a modification of the above equations: 
 

 D ≡ εоЕ + Р ;    B ≡ μоН + М .  (8.1.6) 
 

These equations define internal state of dielectrics and magnetics. In 
the particular case of conductors with no polarization the state equation 
becomes D = εоЕ. The fact is quite important that according to the ther-
modynamic methodology it is the electric displacement vector D that de-
fines the sum of free and bound charges of imperfect dielectric rather 
than the external field E existing, by the way, in vacuum, too (in the ab-
sence of any charges at all). Should it be otherwise, i.e. should the field E 
characterize internal state of the system, one more state equation would 
evidently be needed to relate the E with the external field. The same may 
be referred to the magnetic induction vector, too, which is often taken for 
the external field feature. 

The introduction of the extensive parameters of heterogeneity Zi not 
only absolutely clarifies the problem, but also allows better visualizing 
the generation of polarization charges. If the boundaries of a system un-
der consideration are marked correctly, i.e. do not “intersect” dipoles, the 
system contains a whole number of dipoles, which total charge Θi'+Θi'' is 
equal to zero: 

 
 ∫ (ρе'+ ρе'') dV = 0 ;  ∫ (ρм'+ ρм'') dV = 0.      (8.1.7) 

 
This integral relationship holding true for a body of any volume 

means that the integrand (ρе'+ ρе'') or (ρм'+ ρм'') is expressed by diver-
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gence of some vector values named the polarization vector P and the 
magnetization vector V (L.D. Landau, E.M. Livshits, 1982): 
 

 divP =  ρе'+ ρе'' ;      divM = ρм'+ ρм''.      (8.1.8) 
 

In a dielectric or magnetic homogeneously polarized these charges 
add up to zero, so that divP = 0 and divM = 0. However for the heteroge-
neous polarization (when the dipole arm being changed, a part of like di-
pole charges are “withdrawing” beyond the check bulk boundaries) the 
so-called “polarization” charges1) may appear (electric ρеp = – divP [2] 
and magnetic ρмp = – divM ones, respectively (K.M. Polivanov, 1982)). 
In distinction from ρеp and ρмp the dipole charges ρi', ρi'' do not disappear 
with the homogeneous polarization of a dielectric or magnetic, and this 
fact plays, as we will see hereafter, an important part in formulating the 
Maxwell’s equations. 

  
 

8.2.  Thermodynamic Derivation of Maxwell’s Electrodynamic                   
Equations 

 
Let us consider, for generality, a stationary system being in the exter-

nal electric E and magnetic H fields and adequately possessing the elec-
tric and magnetic degrees of freedom. The unit volume ordered energy Еv 
for such a system is a function of the electric D and magnetic B induction 
vectors which in their turn depend on the intensities E and H of these 
fields. The energodynamic relationship between them is 
 

 dЕv = E⋅dD + H⋅dB .   (8.2.1) 
 

The terms on the right side of the equation characterize, respectively, 
the elementary polarization đWеV = E⋅dD magnetization đWмV = H⋅dB 
works of the system.  

Let us assume that in such a system the reciprocal conversions of 
electric and magnetic field energies run, which powers are 
 

 Nе = E⋅dD/dt;  Nм = H⋅dB/dt.   (8.2.2) 
 

Providing these processes do not change the system energy and en-
tropy (i.e. the energy of the system entirely converts from a one ordered 
form into the other), the power balance Nе = – Nм is evident. This directly 
leads to the following relationship: 
 

 E⋅(dD/dt) = – H⋅(dB/dt).            (8.2.3) 
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These simple relationships may be given the form offered by Max-

well. For this let us consider a system consisting of a closed electric cir-
cuit with an arbitrary length ℓe and variable (in general case) cross section 
fe, which comprises an as well closed magnetic circuit with a length ℓm 
and cross section fm variable thru the length. Taking this variability into 
consideration, (8.4.2) should be changed to the integral form: 
 

     Nе = ∫ E⋅(dD/dt)dVe;  Nм = ∫ H⋅(dB/dt)dVм ,  (8.2.4) 
 

The bulk elements may be represented in the form dVe = dℓe·dfe and 
dVм = dℓм·dfм, where dℓe, dℓм and dfe, dfм – orthogonal vector elements of 
length and cross section, respectively, of the electric circuit and dielectric. 
The expressions (8.4.4) may be rewritten in terms of energodynamics as 
follows: 
 

 Nе = ∫ E⋅dℓe ∫ (dD/dt)dfe = Xe Je
d ;   (8.2.5) 

  
 Nм = ∫ H⋅dℓм ∫ (dB/dt)dfм = Xм Jмd,   (8.2.6) 

 
where Je

d = ∫(dD/dt)dfe, Jмd = ∫(dB/dt)dfм – total fluxes of electric and 
magnetic displacements, respectively, sometimes named the “linkage 
fluxes” and traditionally represented by the number of the lines of force 
linking the cross section of the electric and magnetic circuits, respectively 
(K. Polivanov, 1982); Xe = ∫E⋅dℓe, Xм= ∫ H⋅dℓм – the so-called electromo-
tive and magnetomotive forces (emf and mmf) defined by the circulation 
of the vectors E and H, respectively, along the closed electric and mag-
netic circuits.  

Now the electromagnetic field equations may be given the form of 
phenomenological laws (5.1.6): 
 

 Je
d = Lee Xe + LeмXм;   (8.2.7) 

 
 Jмd = LмeXe + LммXм .   (8.2.8) 

 
Here the terms Lee Xe and LммXм characterize the relaxation part of the 

displacement fluxes, which relates to the conduction current Ie = Lee Xe 
and its magnetic analog Iм = Lмм Xм and is caused by, respectively, electric 
and magnetic energy dissipation; the terms LeмXм и LмeXe, on the contrary, 
relate to overcoming the “extraneous” forces by the flow, i.e. to conver-
sion of the electric energy into magnetic one and vice versa. Since Nе = – 
Nм relationships (8.4.5)–(8.4.6) may take a more simple form: 
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 Je
d/Xм = – Jмd/Xe  .              (8.2.9) 

 
Comparing this equation with phenomenological laws (8.2.7) and 

(8.2.8) one can find that the left-side part of (8.2.9) defines the coefficient 
Leм, while the right-side part – Lмe. From this the Cazimir’s anti-
symmetry conditions (5.1.7)1) follow: 
 

Leм = – Lмe .         (8.2.10) 
 

The value and dimensionality of these coefficients depend on the 
system of units chosen. In the international system of units (SI) Lem = – 
Lme = 1, therefore it may be written instead of (8.4.10): 
 

      Xe =  – ∫(dB/dt)dfм , (8.2.11) 
 

 Xм =  ∫(dD/dt)dfe ,                   (8.2.12) 
 

The first of these relationships represents Faraday’s law (flux rule) 
reading that emf is equal in value, but opposite in sign to the variation 
rate of the electric circuit-linking flux. Let us now change, based on the 
Stokes theorem, in the force equation Xe= ∫ E⋅dℓe from the curvilinear in-
tegral taken over the closed electric circuit with a length of ℓe to the inte-
gral ∫rotЕ⋅dfм over the magnetic circuit cross section fм. In the similar 
way one can change in the force equation Xм= ∫ H⋅dℓм from the curvilin-
ear integral over the closed magnetic circuit with a length of ℓм to the in-
tegral ∫rotH⋅dfe over the surface fе covering the electric circuit. Then 
(8.2.11) and (8.2.12) become: 
 

       ∫rotЕ⋅dfм  = – ∫(dB/dt)dfм . (8.2.13) 
   

 ∫rotH⋅dfe = ∫(dD/dt)dfe ;          (8.2.14) 
 

Or in the differential form 
 

        rot E = – dB/dt, (8.2.15) 
 

 rot H = dD/dt .                     (8.2.16) 
 
                                                 
1) Availability of such relationships once again confirms that electricity and 
magnetism are two independent phenomena with interrelation between them 
seen only in dynamics. 
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These equations differ from the corresponding Maxwell’s equations 
in that they contain the total time derivatives of electric and magnetic in-
duction vectors. This is not a surprise since the primary equations of en-
ergodynamics (see 8.4.1) as well contain the exact differentials of polari-
zation and magnetization vectors. It is significant that Maxwell himself 
initially defined emf as well thru the total derivative dФ/dt of magnetic 
flux Ф (K. Polivanov, 1982).  

To form equations (8.4.15) and (8.4.16) into a more common shape, 
let us expand the derivatives dB/dt and dD/dt on the assumption that po-
larization and magnetization processes are absent in a system under con-
sideration (Р, М = 0). Since (∂Е/∂r) = ρе/εо, whereas magnetic analogs to 
the free charge ρе do not exist, we have: 
 

dB/dt = (∂B/∂t);  dD/dt = (∂D/∂t) + jе.  (8.2.17) 
 

Here jе = (∂D/∂r)vе = ρеvе – conduction current caused by the free charge 
transfer.  
 Thus finally: 
 

rot E = – (∂B/∂t),   (8.2.18) 
 

           rot H = jе + (∂D/∂t) . (8.2.19) 
 
 As for another couple of Maxwell’s equations: 
 

 div D = ρе ,                   (8.2.20) 
 

  div B = 0 ,        (8.2.21) 
 
the first of them is a direct consequence from expression (8.1.1) written 
in the differential form since the electric displacement vector D is identi-
cal by implication to the vector ZеV. Relationship (8.4.21) just states the 
fact of the absence of magnetic “monopolies” analogous to the electric 
charge ρе.  

The thermodynamic derivation of electromagnetic field equations set 
herein forth rebuts the popular opinion that the Maxwell’s equations are 
non-derivable from whatever primary laws. At the same time this deriva-
tion discloses a number of assumptions laid into their foundation. First of 
all, electromotive and magnetomotive forces have been defined in 
(8.2.11) and (8.2.12) for closed electric and magnetic circuits. Hence the 
Maxwell’s equations are inapplicable to non-closed electric currents and 
their elements. This is what Maxwell himself stressed. Secondly, such 
processes as the re-polarization in semiconductors and the magnetic cir-
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cuit re-magnetization were excluded from consideration. As a result, the 
losses from irreversibility of the electric-to-magnetic (and vice versa) 
field conversion were allowed for only the electric form of energy (due to 
conduction currents). The magnetic loss (re-magnetization, eddy currents, 
etc.) which lead to a magnetic analog of the conduction current was not 
taken into consideration in that case. It was assumed further that the elec-
tric and magnetic fluxes in equations (8.2.11) and (8.2.12) were homoge-
neous so that the power balance Nе = Nм was observed for each of the lo-
cal zones of a system under investigation (otherwise changing to the dif-
ferential form (8.2.13)…(8.2.14) of the above equations becomes incor-
rect). These circumstances cause some incompleteness of the Maxwell’s 
equations and disable interpreting on their basis a number of effects 
hardly prone to analysis.  

 
 

8.3.  Theoretical Derivation of Coulomb’s Law 
 

The theoretical substantiation of Coulomb’s law (1785) usually pro-
ceeds from interpreting the “field flow” E as something flowing “out 
from” a point charge and then “out into” a space just like it occurs with a 
gaseous mass or heat flow, i.e. preserved values (R. Feynman and others, 
1979; L.D. Landau, E.M. Livshits, vol. 8, 1982).  

However such analogy looks excessively artificial concerning elec-
tric field. It is a matter of interest thereby to derive Coulomb’s law from 
more reliable data. According to (1.6.4) ρе = ∇⋅ ZеV, so the electric 
charge Θе to area with volume V is equal  
 

              Θе = ∫ ρе dV  = ∫∇⋅ZеV dV,       (8.3.1) 
 

where ZеV = ∂Zе/∂V – density of charge distribution moment meaning for 
electric phenomena the electric displacement vector in dielectric unit vol-
ume ZеV ≡ D = εоЕ + Р. The Gauss’ law (8.3.2) directly follows from 
here: 

 
∇⋅Е = ρе/εо,                                                 (8.3.2)  

where εо – vacuum inductive capacity. 
The Gauss’ law is seen to be a direct consequence of charge hetero-

geneous distribution. Substituting in (8.3.1) εоЕ for ZеV and changing as 
per the Gauss’ theorem from the integral with respect to volume to the in-
tergal with respect to the closed surface f=4πrс2 of some sphere with the 
radius rс encircling the charge Θе gives: (8.3.2).     
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 Θе =  εо ∫ Е⋅ndf  = 4πεо ∫ Ее drс2.                  (8.3.3) 

     The Coulomb’s law directly follows from here: 

Ее = Θе/4πεоrс2,                                   (8.3.4) 

where ZеV =  ∂Zе/∂V – density of charge distribution moment. 

 
The value ZеV is one of the local measures of spatial heterogeneity, 

the thermodynamic force xе being another measure expressed according 
to (1.5.6) by the negative gradient ψе of electric potential, i.e. xе = –∇ψе. 
The parameters ZеV and xе are interrelated by the general equation of state 
xе = xе(ZеV). Assuming this relationship as linear with the proportionality 
factor 1/εо (i.e. xе = εо-1ZеV), (8.3.2) may be rewritten as: 
 

 Θе = ∫εо xe⋅ndf .    (8.3.3) 
 

Factoring some mean value of electric intensity xе⋅n = xе = |E|  outside 
the integral sign and integrating (8.1.3) with respect to spherical surface 
with a radius Rs enclosing the set of charges Θе under consideration gives 
an expression of the specific force acting on the unit (test) charge from 
the above set of charges: 
 

 xе = Θе/4πεоrs
2.                  (8.3.4) 

 
This expression defines the force of attraction of a test charge oppo-

site in sign lying on the surface of the sphere under consideration. Taking 
into consideration that xе = E  = – ∇φ the electric potential φ = φ(r) in 
any field point r ≥ rs may be found by integrating (8.3.4) between the lim-
its rs and r: 
 

 φ (r)  = (Θе/4πεо)(1/r s  – 1/r).  (r ≥ r s)  (8.3.5) 
 

In this case the force Fе = |Fе| of attraction of the test charge Θе' de-
fined by the derivative Fе/Θе' = – ∂φ/∂ r е complies with Coulomb’s law: 
 

 Fе = |Fе| = ΘеΘе'/4πεоR2 .   (8.3.6) 
 

In accordance with (8.3.5) the applicability of this law is restricted to 
a conventional (equivalent) radius r ≥ r s characterizing the sphere of the 
“field-forming” body, i.e. to the minimal distance two test charges can 
approach each other. This meets the Coulomb’s experiment with a torsion 
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balance, where charged bodies were used, which had though small, but 
finite, dimensions. Each of the charged bodies used in the Coulomb’s ex-
periments also was a heterogeneous system due to the mutual repulsion 
of like charges therein.  

Thus Coulomb law directly ensues from the heterogeneous distribu-
tion of charges in the system of “field-forming” bodies. The validity of 
this assumption is even more evident, because any set of interacting 
charges spatially separated already represents a heterogeneous system. 
From this it follows that the validity of Coulomb law is restricted to the 
minimal distance any two charged bodies can approach each other. This 
statement remains valid also in the case when charged bodies can inter-
penetrate. In fact, when two sets of charges are located concentric on 
each other (so that R = 0), then the potential of the body in the center of 
the charged sphere and its interaction force are equal to zero irrespective 
of values of the charges themselves (R. Feynman, and others, 1976).  

It is significant that neither gravity Fg, nor energy of the “field-
forming” body (potential ψg) becomes infinite. Thereby a way opens to-
ward a solution to the “divergence” problem arisen in quantum electro-
dynamics from treating the material particles as points lacking extent.  

8.4.  The Ohm’s law and its generalisation 

The Ohm’s law experimentally discovered in 1827 for the case of 
stationary conductivity is known to be one of the most important laws 
which gave rise to electrostatics:  

jе = – σе∇φ,                     (8.4.1) 

where σе – coefficient of electroconductivity; E = –∇φ  - intensity of 
electrostatic field. 

This law describes the electric charge motion under the action of the 
Coulomb’s forces. In a more general case according to the laws of ener-
godynamics (5.4.2) the charge motion is affected by all other thermody-
namic forces xi of the same tensor rank and kind available in the system. 
In particular, for the operation of electric engineering devices it is abso-
lutely necessary that processes should run wherein negative charges move 
away from positive ones in defiance of the Coulomb’s forces. To provide 
this, forces of “non-coulomb’s nature” are needed called sometimes as 
“foreign” Efor, “induced” Eind, etc (K.M. Polivanov, 1982). As a result, 
expression (8.4.1) takes the form of the Ohm’s generalized law: 

 
jе = σе(E + v×B).                                    (8.4.2) 



 157 

These “foreign” forces can be most easily found from equation 
(8.2.15) by substituting the total derivative dB/dt of magnetic field for the 
partial one. In this case dB/dt = (∂B/∂t) + (vе⋅∇)B, and according to 
(8.2.15) by vector analysis:  

 
rot E = [v×rotB] – ∂B/∂t = rot [v×B] – rot (∂Ае/∂t).          (8.4.3) 

Since in a closed electric circuit ∫  dℓе ⋅∇φ = 0, the motion of charges 

therein is provided by exclusively foreign forces Efor so that (8.4.3) be-
comes:  

 
E = [v×B] – (∂Ае/∂t).                                          (8.4.4) 

The first of these forces is the Lorentz’ force magnetic component Fл 
= vе×B, while the other – the Ampere’s force FА = I [ℓ,B] found experi-
mentally (1820) by the action of magnetic field B on a conductor with a 
length of ℓ carrying current I and related here to the current density jе = 
ρеvе of the charges moving through the conductor with a velocity of vе . 

As a result the Ohm’s generalized law (8.4.2) takes the form: (8.4.5) 
 

jе = σе(E – ∂Ае/∂t + v×B).                                  (8.4.5) 
 

This expression is presently considered as most general. Meanwhile, 
according to TIP and energodynamics EMF is undoubtedly affected by 
also other physical, physicochemical, thermodynamic, etc processes. As 
will be ascertained hereafter, the Ohm's law for systems with heterogene-
ous temperature field should be supplemented with the “thermo-electric” 
force Хет expressed in terms of temperature gradient. In a more general 
case of electrochemical systems the motion of charged particles is 
caused by also the electrochemical forces Хеk defined in terms of con-
centration gradients for the kth components of the system. Additional ef-
fects arise in also media with pressure gradients or differences, e.g., in 
electrolytic solutions. In this case one more EMF component appears in 
equation (8.3.5). Such an EMF representation will allow obtaining a 
whole number of the so-called superposition effects describing the inter-
relation between electric and non-electric phenomena. 

The available foreign forces answer for introducing in electrical en-
gineering the special scalar EMF ℰ. That notion was first applied with 
discovery of such a phenomenon as electromagnetic induction – EMF 
generation at variation in magnetic flux (Faraday, 1831). The electro-
magnetic induction formula as given by Faraday was very simple:  
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ℰ = – dФм/dt ,                                     (8.4.6) 

where ℰ – electromotive force (EMF); Фм – total magnetic flux which is 
by Faraday the number of magnetic lines “cut” by the magnetic circuit (or 
crossing it). Here each of the lines was associated with unit magnetic 
flux. Accordingly the EMF is evaluated by the work Wе the non-coulomb 
forces of “induction” Еind could do to transport unit charge in closed elec-
tric circuit with a length of ℓe:  

 
ℰ = Wе/Θе. = ∫E 

иdℓе.                              (8.4.7) 

In this case dℰ = (v×B)dℓе, i.e. is totally caused by the action of the 
Lorentz' force magnetic component. Nevertheless, Maxwell expresses the 
EMF in a more general form:  

 
ℰ = ∫(–∇φ – ∂Ае/∂t + v×B)dℓе .                    (8.4.8)  

Thus including also the potential gradient in the number of the non-
coulomb’s (foreign) forces though this gradient features all-electrical na-
ture and dissapears at closed-loop integration. Besides, the summand –
∂Ае/∂t he also refers to the electric field intensity E though, as shown 
above, it also features the non-coulomb’s nature and, hence, should be re-
ferred to the “foreign” forces. This is what evidently explaines the fact 
that this force has not had a definite interpretation and generally accepted 
name so far. All this evidences a certain imperfection of the force classi-
fication adopted in electrodynamics. This shows in the stereotyped state-
ment that the Lorentz’ force magnetic component does not do any work 
since it always acts along the normal to the electron path of motion 1. 
Meanwhile, this conclusion is valid for just a current element, but not for 
the closed circuit as a whole, for which the Maxwell’s equations apply. 
As follows from the above derivation of these equations, they describe 
the law of energy conservation at the conversion of the magnetic field en-
ergy into the electric field one and vice versa. As applied to the DC cir-
cuit, the rotation of a current loop in the magnetic field is the only kind of 
useful work done in the process. In energodynamics this fact is stressed 
through replacing the term H⋅dB in the law of energy conservation (8.2.1) 
by the more essentially adequate product of the torque (orientation mo-

                                                 

1 It means this force is not elecromotive though referred to the “foreign” forces. 
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ment) Ме the magnetic field generates and the angle of the current loop 
rotation dφе as done in the fundamental identity of energodynamics 
(2.2.5). 
 
 
8.5. Flows of Electric and Magnetic Fields Energy. Poynting’s Vector                 

as their synthesis 
 

As it follows from the law of conservation of energy (see 2.3.6), the 
rate of energy E variation in a system is equal to the total energy flux Je 
across the borders of the system. In case of mechanical motion the den-
sity of this flux is defined by the Umov’s vector he introduced in 1873. 
That vector defined the flux ju of internal energy the body transferred if 
had a mechanical stress. Ten years later (in 1884) an analogous expres-
sion for the electromagnetic energy flux П was set forth by Poynting. To 
find this, let us use the expression for the per-second work (power) of the 
electric and magnetic energy reciprocal conversion process (8.2.1), 
(8.2.2).  

Taking into account that according to (8.2.15) and (8.2.16) dB/dt = – 
rot E, dD/dt = rot H, (8.2.1) becomes: 
 

 dЕ v/dt = E⋅rotH –  H⋅rotE = – div⋅(E×H) = – divП. (8.5.1) 
 

From this it follows that the Poynting’s vector is the external product 
of the electric and magnetic intensity vectors: 
 

 П ≡ E×H ,                                         (8.5.2) 
 

and is oriented perpendicular to those in the direction of the electromag-
netic energy propagation. That warranted the consideration of electro-
magnetic energy as a whole. Meantime, as it emerges from (8.5.1), the 
Poynting’s vector reflects just a power balance of these processes. In par-
ticular, with equality of powers Nе and Nм (no losses) dЕv/dt = 0, so that 
divП = 0. This means that despite the vector П differs from zero the elec-
tromagnetic energy as itself is not consumed by the system and not con-
verted into other forms of energy. Only electromagnetic energy compo-
nents are reciprocally convertible with their sum remaining unvaried in 
the absence of dissipation. This explains why the Poynting’s vector is 
equal to zero in this case. Only whenever the electromagnetic energy 
converts into the dissipation heat that according to Ohm’s law (8.3.4) is 
expressed by the product E⋅jе = jе2/σе), the Poynting’s vector becomes 
equal to this loss value Nd = Nе – Nм. In a more general case when energy 
conversion in a system is accompanied by partial energy transformation 
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into the internal potential (mechanical) energy of its elastic deformation 
(strain energy), the right-hand side of the law of conservation of energy 
(see 8.4.1), along with the dissipative work đWd, is supplemented with the 
mechanic work đWmech, then equation (8.6.3) becomes: 
 

 dЕ v/dt = Nе + Nм + Nmech + Nd = – divП – div ju + Nd . (8.5.3) 
 

Only then the conversion of electromagnetic energy into heat and 
mechanical ones may be referred to as the “conversion of Poynting’s vec-
tor into Umov’s vector” (K. Polivanov, 1982). Thus the Poynting’s vector 
reflects neither quantitatively nor qualitatively the reciprocal conversion 
of electric and magnetic energies. This disadvantage is avoided by ener-
godynamics demanding the extensive coordinate to be found for each 
form of energy as a quantitative measure of this motion form carrier. In 
the instant case such are the distribution moments Zе and Zм, which time 
derivatives define the total fluxes of electric and magnetic displacements 
with the densities, respectively, jеs and jмs. This allows separate definition 
of the polarization and magnetization works done by electric and mag-
netic fields, respectively: 
 

 Nе = E⋅jес = ½εoεrdE2/dt;   Nм = H⋅jмс =½μoμrdH2/dt.        (8.5.4) 
 

Thus electric and magnetic fields in dynamics as well are independ-
ent, though interrelated entities, which becomes especially evident only in 
statics. The found unity of the conversion processes for any forms of en-
ergy may appear to be quite useful to overcome difficulties in compre-
hension of electrodynamics.  
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Chapter 9. 
 

QUANTUM MECHANICS 
 

In this chapter we will consider appendices of energodynamics to that 
area of the physical phenomena which is studied by the quantum (wave) 
mechanics. Quantum mechanics proceeded from the assumption that 
the laws the molecules and elementary particles (i.e. the objects of 
the microcosm) obey would radically differ from the classic laws 
regulating the behavior of macro-objects. One of the reasons to 
deny the classic wave theory of light were discovery the properties 
of light as particle (photoeffect, photoluminescence, Compton ef-
fect).  

Other reason was the problem of atom stability. According to classi-
cal mechanics rotating electron should fall on a kernel in connection with 
continuously radiate of energy.  

The above concept supported also Planck’s formula of radiation 
(1900) based on the step-type behaviour of energy and being perfectly 
in agreement with experiment. However, is actual even today the 
question academician Vavilov put: has the wave theory really ap-
peared to be helpless before the light quantum laws?  

 
 

9.1. Planck Radiation Law Classic Derivation 
 

In 1900 M. Planck known for his works in thermodynamics found a 
formula well describing the black body radiation density within the entire 
frequency spectrum. To do so, he had to put forward the hypothesis of 
oscillators’ energy spectrum discreteness. According to Planck the radia-
tion emission and absorption occurs by portions (quanta) later called the 
photons, which energy is proportional to the radiation frequency ν (M. 
Planck, 1935). The atoms of matter were interpreted as oscillator that 
could stay in only certain energy states with the energies εn = nhν, where 
n = 1, 2,… – natural numbers series later called the quantum series. These 
energy levels of oscillator make up a descrete set of values forming an 
equidistant spectrum featuring the same difference between the energies 
hν of any two neighboring levels.  

It is easily seen that in this case the oscillator energy rises infinitely 
with the frequency ν increase, which leads to the so-called “violet catas-
trophe”. Therefore M. Planck assumed that with ν increasing the ratio of 
the number Nν of oscillators featuring the energy εn = nhν (i.e. the quan-
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tum number n) to their total number Nо decreases exponentially, thus, 
obeying the Boltzmann’s classic statictics: 
 

Nν = Nо exp(–εn/kbT) ,                                          (9.1.1) 
 

where kb – Boltzmann’s constant. 
The mean statistical value of the oscillator energy ‹εn› M. Planck cal-

culates here by changing from the integrals to the sums of natural num-
bers infinite series n = 1,2,…,∞: 
 

‹εn›  = Σn εn exp(–εn/kbT)/Σnexp(–εn/kbT) .                         (9.1.2) 
  

This mean value is equal to 
 

‹εn›  = Σn εn exp(–εn/kbT)/Σnexp(–εn/kbT) .                         (9.1.2) 
  

       Planck assumes further that the spectral radiation density u(ν,T)dν 
within the frequency spectrum dν is proportional to ‹εn› and to the num-
ber of stationary waves dNν confined within this frequency spectrum in 
the black body cavity:  
 

dNν = (8πν2/с3)dν.                                              (9.1.4) 
 

       In this case the product ‹εn›dNν leads to his radiation law 
 

u(ν,T) = (8πhν3/с3)/[exp(hν/kbT) – 1] (Дж·c/м3)              (9.1.5)   
 

       Although that formula perfectly well described experimental results, 
its derivation as itself was based on a number of rather arbitrary assump-
tions. Firstly, the oscillator energy quantization as its base came into ob-
vious conflict with the concepts of classic mechanics regarding the en-
ergy spectrum continuity and the electron radiation process if the electron 
is permanently subjected to centripetal acceleration.  

Secondly, the Planck’s hypothesis assumed the radiation quantum 
energy to have been independent on the wave amplitude Ав. That contra-
dicted the expression for plane progressive wave density (6.4.1) known 
from acoustics and hydrodynamics, according to which the wave energy 
is proportional to the squared wave frequency ν [s-1] and to the wave am-
plitude Aв 

1. 

                                                 
1 This expression is valid both for longitudinal and transverse waves in a medium 
where the oscillatory process involves at least one (kinetic or potential) compo-
nent of its energy. It is also valid for electromagnetic waves where the value Ав 
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Thirdly, expression (9.1.5) tacitly assumes that the ratio of the num-
ber of photons the black body cavity emits to the number of stationary 
waves therein is always equal to unit. This assumption poorly complies 
with the photon interpreted as a wave packet – it becomes absolutely in-
comprehensible how an entire train of waves is emitted during one period 
of stationary wave oscillation. Furthermore, it remains fuzzy at all how a 
stationary wave in the black body cavity, which is known not to carry en-
ergy, emits, nevertheless, the energy-carrying photons.  

Fourthly, changing from (9.1.2) to (9.1.3) by Planck is based on the 
infinite geometric progression properties. Meanwhile, the series formed 
by the quantum numbers n is more than quite limited.  

As a matter of fact, such questions arise in a great number. All at-
temts to derive from the primary principles the h value that L. De Broglie 
called a “mysterious constant” appeared to have failed. All this impels to 
searching another justification of the Planck's radiation law not needing 
special quantum hypotheses.  

For this purpose let’s consider not a single atom as an object of in-
vestigation (as in the N. Bohr’s model), but the whole set of the matter 
atoms in variable external force fields. According to the law of energy 
conservation the total energy of the atom considered as oscillator remains 
invariable providing the motion of orbital electrons occurs only under the 
action of internal (central) forces (L. Landau, E. Livshits, 1973). Hence, a 
body may be considered to radiate energy only in the case of the foreign 
(noncentral) forces F from the surrounding electromagnetic fields acting 
on its atoms. When the force F direction coincides with the moving direc-
tion of orbital electrons (F·v > 0), the electrons accelerate. Otherwise (F·v 
< 0), the electrons are subjected to short-term deceleration which duration 
is defined by the electromagnetic wave half-period. In this case the elec-
tromagnetic field unit disturbance appears, which propagates as a wave in 
the electromagnetic field. The sequence of such waves is what we call the 
radiation. Since the process of electron deceleration or acceleration is 
short, the associated process of electromagnetic energy emission or ab-
sorption by atoms is conditioned by the process character as itself and by 
no means contradicts classic mechanics.  

When the field oscillation period exceeds the orbital electron circula-
tion time, the deceleration occurs for two, three and more electron revolu-
tions, on the average. Such orbits remain undisturbed (stable) for some 
time. However, as the frequency ν increases, the electrons will manage to 
successfully undergo not just one, but many (1,2,…, zе) events of decel-

                                                                                                              
[m] is proportional to the intensities of electric Е and magnetic Н fields: Ав = 
КЕЕ = КНН, where КЕ, КН – some factors depending on the system of units cho-
sen. 
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eration or acceleration for one orbit turn. The acceleration of the electrons 
will occur as many times correspondingly, i.e. the electron path will 
change too (from apogee to apogee). For the circular orbit conditional ra-
dius of the order of 1Å and the orbital electron velocity equal to 1/137 of 
the light speed in vacuum the electron at the end of the X-ray frequency 
spectrum (1019 Hz) will manage to undergo about 8·103 events of accel-
eration or deceleration. This leads to the “fuzzy” path, which is inter-
preted as a consequence of the indeterminancy principle in the quantum 
theory.  

As a result of the sequence of radiation and deceleration events of 
orbital electrons the equilibrium between radiation and matter gains dy-
namic character. Therefore the references to the inevitable drop of elec-
tron onto nucleus because of its energy emission as a base of rejecting the 
classic interpretations are also groundless.  
       The divergence between Rayleigh’s and Planck’s radiation is known 
to intensify with decreasing wave length. Therefore we are now interested 
in the case when zе > 1. Then the radiation frequency ν of atom in any 
matter appears to be multiple to not only the number of revolutions the 
orbital electron undergoes, but also to the number zе of its deceleration 
events per a turn of any (both closed and open) orbit1.  

The number of revolutions is known to be defined by the ratio of the 
electron mean velocity ve on the orbit to the orbit length L so that for one 
"revolution" of the electron the radiation occurs zеnе times: 
 

ν = zеnе = ve /le = pe/mele ,                                   (9.1.6) 
 
where pe = meve – mean momentum modulus for the electron on the orbit; 
le = Le/zе – mean “braking length” for the electron.  

According to (9.1.6) all the atoms, which orbits have the same “brak-
ing length” le = Le/zе for electron, radiate energy at the same frequency ν. 
Such orbits will be hereafter called similar for short. Then the radiation 
frequency ν appears to be proportional to the mean momentum pe for the 
electrons on all similar orbits. This complies with De Broglie's ideas 
about a relation existing between wave frequency and particle momen-
tum. What is more, according to (9.1.6) each kind of atoms with similar 
orbits corresponds to certain radiation (absorption) wave lengths. This 

                                                 
1 The latter is confirmed by the fact known from the quantum theory that the length of the 
Bohr’s orbits appears to be multiple to the wave length by De Broglie. 
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also confirms the De Broglie’s hypothesis that wave properties are inher-
ent to all matters.  

Furthermore, since the radiation frequency ν is connected with wave 
length λ by a simple relationship ν = с/λ, it follows from (9.1.6): 
 

с/λ = ve /le.                                             (9.1.7) 
  

Thus the length of the wave radiated is defined by the mean “braking 
length” le of electron and its mean velocity ve. This relationship explains 
why the orbit length Le accommodates the whole number of De Broglie’s 
waves with the length λ.  

Let’s now define the notion of radiant flux as a particular case of the 
any ith energy form flux carrier Ji. In energodynamics any of such fluxes 
is expressed as the product of the value being transferred (mass Mk of the 
kth matter, its momentum Mkvk, charge Θe,, entropy S, etc) and its transfer 
velocity vi. Accordingly, the density of this flux ρJi is defined as the 
product of the density ρΘi and the same velocity. The value Θi can be 
found here from the expression for the elementary ordered work of the ith 
kind dWi

е, which is equal to the decrease – dЕi of this kind energy Еi, and 
can be expressed as the product of the value being transferred Θi and the 
variation of the potential ψi associated (2.2.12). The case of the wave 
form of energy (Еi ≡ Ев; Θi ≡ Θв; ψi ≡ ψв; vi = с) gives: 
 

dWв = – dЕв = – ρΘвdψв = – ρAвνd(Aвν), Дж/м3.           (9.1.8)  
 

 It follows herefrom that ρΘв = ρAвν, so that  
 

Jл = ρVAв сν = hо ν, Дж.                                     (9.1.9) 
  

where hо = ρVAвс (J·s) – some proportionality factor to be experimentally 
defined and meaning the action of the atom at a single event of its orbital 
electrons deceleration.  

As seen, not the wave energy Ев is proportional to the first power of 
the frequency ν, but rather the radiant flux Jл having, according to (9.1.9) 
the dimensionality of energy and the meaning of radiant energy form flux 
carrier. The comprehension of this fact is significantly facilitated with the 
representation of radiation as a sequence of solitons. The soliton is usu-
ally construed as a nonlinear solitary wave featuring invariability of its 
form at motion and collision with the like waves. The properties of soli-
tons are known to be much close to the properties of particles. In particu-
lar, when collided, two solitons do not pass through each other as usual 
linear waves, but rebound as if tennis balls. The sequence of solitary 
waves (solitons) is quite similar to the groups of waves, which move with 
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an overall velocity not depending on their amplitude. The radiation thus 
interpreted easily explains why the radiant flux Jл is proportional to its 
frequency ν since it gains in this case the meaning of soliton flux (soli-
ton/s). Anyway, this fact of Jл proportional to ν does not contradicts as it-
self to classic physics. Here the proportionality factor hо also gains a sim-
ple and clear sense of the energy being transferred by a solitary flux of 
solitons, while the frequency ν – the number of solitons radiated per unit 
time. In such a case the density ρ in expression (10) should be construed 
as the number Nν of waves featuring the frequency ν and being “accom-
modated” in unit volume of the radiating body or radiation field. From 
the theory of waves this number is defined by the expression Nν = 
(8πν3/3с3) so that their spectral density ρν = dNν/dν = 8πν2/с3.  

Representing sine wave as a triangle with a height of Aв and a base of 
λ/2 = с/2ν easily shows that as the wave frequency ν increases the wave 
amplitude Aв decreases subject to the wave form remains invariable. 
Therefore the Planck’s hypothesis (9.1.1) appears to be replaced by a 
quite substantiated statement that, according to (9.1.1), with ν increasing 
the number Na of the oscillators with the same amplitude Aв decreases. 
Hence it follows that the oscillator energy εn drops with increasing ν not 
because an abstract quantum number n increases, but rather with the am-
plitude decreasing, which obeys the said Boltzmann’s statistics: 

 
Na = Nо exp(–hоν /kbT) .                                 (9.1.10) 

  
In such a case the mean statistical value ‹Jл› of the radiant flux Jл 

will be defined similar to (9.1.2) as: 
 

‹Jл› = Σz hоν exp(–hоν/kbT)/Σzexp(–hоν/kbT),               (9.1.11) 
  

and for the infinite series of natural numbers zе = 1,2,…,∞ can be found 
by approximation of (9.1.11) to the same expression (9.1.3): 
 

‹Jл› = ‹hо›ν/[exp(‹hо›ν/kbT) – 1] ,                             (9.1.12) 
 

where ‹hо› – mean statistical value of the factor hо.  
However, this operation is now much more valid than that by Planck 

since the summation is done here for the series including many thousands 
of terms instead of a rather limited set of quantum numbers.  

According to (9.1.9) the product of ρν and the radiant flux mean sta-
tistical value ‹Jл› defines the spectral radiation density of black boby 
u(ν,T), i.e. the spectral density of the energy radiated by the flux unit vol-
ume V at the frequency ν: 
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u(ν,T) = ρν‹Jл› = (8π‹ hо›ν3/с3)/[exp(‹hо›ν/kbT) – 1] (Дж·c/м3) . (9.1.13) 
  

This expression differs from the Planck’s radiation law (9.1.5) just 
because contains the mean statistical value ‹hо› of hо instead of the Planck 
constant h. Since both values, h and ‹hо›, are defined experimentally 
based on the same equation (9.1.5), they may be considered identical. 
Then the Planck constant h gains a simple and clear sense of some func-
tion of the mean statistical amplitude value ‹Aв› for the wave radiated by 
black body: 
 

h =  ‹ho› = ρV‹Aв›с                                                   (9.1.14) 
 

This mean statistical character explains the rather exact fit of the h 
value found by different methods in experiments with real bodies (in par-
ticular, from the data on the black body radiation spectrum, from meas-
urements of photoeffect in a number of metals, from the Josephson effect, 
etc).  

When deriving the radiation law (9.1.14), we did not resort to what-
ever special postulates of quantum-mechanical character mentioned 
above. At the same time, it opens the possibility to interpret a number of 
known experimental facts in a new way. In becomes absolutely clear that 
these are the deceleration and acceleration of electron by non-central 
forces which cause the multiple process of radiation and absorption of 
electromagnetic waves by atom. From these positions the statement about 
an inevitable drop of electron onto nucleus looks like absolutely ground-
less since in the course of the events of “radiation” and “absorption” of 
electromagnetic energy following in turn a dynamic equilibrium state fea-
turing constancy of electrons’ mean energy can well occur. If considered 
from these positions, the Bohr’s postulate of existing “stable” circular or-
bits looks like same groundless, because these are possible only in the ab-
sence of external forces F acting on them. The N. Bohr’s assumption re-
garding the possibility of nonradiative motion of electrons simultaneously 
becomes an intolerable idealization, too. From the energodynamic posi-
tions it becomes also clear that the radiation from atom is caused by not 
the electron “jump” from some stable orbit to another (as N. Bohr postu-
lated), but rather by the multiple deceleration of electron on its orbit. 
Here the moving direction of orbital electrons also changes many times 
due to changing the relative positions of atoms, which contributes to the 
“fuzziness” of the orbit, as well.  

Furthermore, the concept of the radiation energy quantum value also 
radically changes. The soliton energy εс can be found from dividing the 
density ρЕв = ρAв

2ν2/2 of wave energy with the frequency ν by the num-
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ber of waves Nν = (8πν3/3с3) with the same frequency, which are accom-
modated in unit volume: 
 

       εс = ρЕв/Nν  = 3ρAв
2с3/8πν , Дж.                                (9.1.15)                

  
Unlike photons, the soliton energy rises with the wave amplitude in-

creasing and falls with the wave frequency increasing. Comparing this 
value with the photon energy εф = hν and defining the Planck constant as 
(9.1.14) gives that it appears to be 8πν2/3Aвс2 times as much as the soliton 
energy (9.1.15). This explains why atom keeps its stability in the solitary 
event of soliton emission at any quantum numbers. The photon self-
interference discovered yet in 1967 is explained in a natural way, too. 
Since soliton is a wave, though solitary, it should create, according to the 
wave theory, an interference pattern behind two slots or holes. Photon as 
a pack of ν solitons should create this pattern all the more.  

The concept of electromagnetic wave as a sequence of solitons es-
sentially facilitates the comprehension of the “wave-particle” dualism 
served as one of the reasons for rejecting the classic conceptions. The 
properties of solitons are known to be much close to the properties of par-
ticles. In particular, when collided, two solitons do not pass through each 
other as usual linear waves, but rebound as if tennis balls. Thus the soli-
tons’ specific properties as themselves explain why the radiation in some 
cases features the wave properties (interference, difraction, polarization), 
whereas in other cases – the particle properties (photoeffect, Compton ef-
fect).  
 

 
 

9.2. Quantum Yield Consideration in Photoeffect Equation 
 

In 1887 the German physicist H. Herz when having experimented the 
irradiation of electromagnetic waves with a discharger (a couple of metal 
balls placed into an evacuated glass chamber) revealed the intensification 
of the charge under the voltage ∆φ applied to the balls when one of them 
was lighted by ultraviolet rays. So the external photoeffect was discov-
ered.  

The first investigations of the photoeffect A. Stoletov carried out 
(1888) ascertained the following its behavior: 

1) The maximum kinetic energy of photoelectrons Ek demonstrates 
its linear increase with the light frequency ν and does not depend on the 
incident luminous flux Jph; 
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2) The number of electrons torn out from the metal surface per a 
second (photocurrent Je) is directly proportional to the rate of luminous 
flow Jph; 

3) The photoeffect does not occur if the light frequency ν is less 
than a certain minimum frequency νо specific for a particular substance. 
In this case the voltage –Vz = –∆φ impeding the emission of photoelec-
trons (stopping potential) rises linearly with irradiation frequency ν and 
does not depend on the radiation rate Jph. For alkali metals this “photo-
electric threshold” lies within the visible light spectral band. 

These regularities confirmed by subsequent studies of Lenard (1902), 
Richardson and Compton (1912), as well as Millicken (1916), did not 
keep within the frames of the wave theory of light. According to this the-
ory the possibility itself to “tear” the electrons out from metal, as well as 
the energy of the electron torn out, should depend on the oscillation am-
plitude in the wave rather than on the oscillation frequency. Furthermore, 
the wave theory assumes the “swaying” of electron, which needs time 
and contradicts the observed instantaneousness of the photoeffect. 

A. Einstein, while having developed the Planck’s concept of irradia-
tion quantization, assumed that not only the irradiation process was quan-
tized, but also the radiant energy itself contained within whatever closed 
space. The quantum of irradiation being the carrier of this energy has the 
properties of a particle (later called the photon). Based on that, Einstein in 
1905 offered the first theoretical explanation of the photoeffect experi-
mental relationships, which later made him the Nobel Prize winner 
(1922). He expressed the energy conservation law with reference to the 
photoeffect by the following relationship: 
 

                          Ek
 = hν – Wе,                          (9.2.1)  

 
where Ek

 – photoelectron kinetic energy; hν – photon energy 
(h=1,0545887·10-34 J·s – Planck constant; ν – irradiation frequency); Wе – 
photoelectric work function (atom ionization energy Ei).  

According to this expression the photoeffect does not occur if the 
photon energy hν < Wе, i.e. is insufficient to ionize atom (to do photoelec-
tric work). Furthermore, according to (9.2.1), as the frequency ν of the 
photons irradiating a photocathode increases, the kinetic energy Ek of the 
photoelectrons emitted from the photocathode rises linearly, which leads 
to increasing the stopping potential.  

Such an explanation of the photoeffect looked so attractive that the 
investigators did not pay attention even to the some distinction of dimen-
sions of the terms in relationship (9.2.1). It is found out, if in dimension 
somehow to consider the subject whom the given size concerns. In par-
ticular, terms Ek

 and Wе relate to one electron with the charge e 
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(J/electron), whereas the term hν – to one photon (dimension J/photon). 
For alignment of dimensions of members of the equation (9.2.1) com-
posed hν should be divided into size Yе, making sense relations of emit-
ted electrons number to number of the absorbed quanta radiations -
(elektron/photon). This value is known as the “quantum yield”. As ex-
periments have shown, it depends on the properties of the body, state of 
its surface, temperature and energy of photons, and for the majority of 
photocathodes ranges from ~0.5 to 10-4 (Physical Encyclopedia, 1983). 
This means that to emit one photoelectron, 104 photons are required.  

The necessity to allow for the quantum yield in the photoeffect equa-
tion (9.2.1) follows from the experiments themselves. Indeed, dividing all 
terms in (9.2.1) by the electron charge е gives (Millikan, 1916): 
 

– Vz = hν/e – We/e .                                         (9.2.2)  
 

Since the energy of a single photon hν is the quotient of the radiant 
flux Jл (J) to the number of absorbed photons Nf and the electric charge е 
– the quotient of the photocurrent Iе to the number of emitted electrons 
Nе, expression (9.2.2) becomes: 
 

         – Vz = JлNе/Nф Iе – We/e = Yе Jл/Iе –We/e.           
 (9.2.3)  

 
where Yе ≡ Nе/Nф – quantum yield. 

Thus the multiplier Yе being absent in (9.2.1) leads to the energy bal-
ance disturbed. Therefore the relation (9.2.1) should be expressed as: 
 

              Ek = hν/Yе – Wе ,                                                      (9.2.4) 
 

or dividing by the electron charge e gives: 
 

– Vz = hν/eYе – Wе/e.                           (9.2.5)   
 

The necessity to allow for the quantum yield in (9.2.1) is demanded 
by other circumstances, too. As experience shows, the photocathode inte-
gral sensitivity, which is the ratio of the photocurrent Iе (А) to the inci-
dent radiant flux Jл (J), depends on matter properties. According to 
(9.2.4) this relation has the form: 
 

                    (∂Ek/∂ν)Wе  = h/Yе ,                    (9.2.6) 
 

i.e. for bodies with the same ionization energy depends on also the sur-
face condition, body temperature, etc in complete agreement with ex-
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periment. At the same time, this relation does not follow from the Ein-
stein’s formula (where Yе ≡ 1). 

Ultimately, to meet the balance equation (9.2.1), it is necessary that 
photon as particle, when “collided” with electron, gave the latter all its 
kinetic energy, which does not comply with the shock theory. All this 
means that the explanation of photoeffect by A. Einstein is not exhaus-
tive.  

Let’s consider now the same phenomena, but from the positions of 
energodynamics. In energodynamics the Planck constant gains the mean-
ing of some function of mean statistical amplitude for the wave a body 
absorbs. This means that the dependence of photocurrent on incident light 
amplitude following from the wave theory does not contradicts experi-
mental data. The interpretation of photon as a flux of ν solitons does not 
contradict experiment either, which makes the dependence of photocur-
rent on radiation intensity quite understandable.  

Replacing photon by a sequence of ν solitons enables somewhat other 
explanation of all the photoeffect mechanisms. In particular, (9.2.6) di-
rectly leads to linear growth of photoelectrons’ kinetic energy with fre-
quency for a photocathode featuring certain ionization energy (the Stole-
tov's first law). The same definitely (9.2.3) leads to direct proportionality 
of the photocurrent Iе to the light flux Jл for a particular photodiode 
(We,Yе = const) 
 

(∂Iе/∂Jл)Wе  = – Yе/Vz ,                             (9.2.7) 
  

which is the Stoletov’s second law.  
It directly follows from (9.2.5) that the stopping potential Vz rises 

linearly with the radiation frequency ν at the same conditions: 
 

(∂Vz/∂ν)Wе  = – h/eYе,                             (9.2.8) 
 

Ultimately, the above suggested idea of radiation as a flux of solitons 
terminates the contradiction between the photoeffect and the wave theory 
since the energy of solitary soliton according to (9.1.17) rises with its 
amplitude. The “zero-lag photoeffect” also finds its explanation – it is 
caused by the fact that the atom ionization occurs only at the moment 
when the number of absorbed solitons exceeds the ionization energy.  

It is significant that with such an explanation you will not need to 
supplement physics with whatever specific “quantum” concepts, includ-
ing assumptions of photon as particle, corpuscular interpretation of light, 
requirements for orbit discreteness, etc.  
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9.3. Alternative Description of Spectral Series 
 

Quantum mechanics is known to aim not to reveal physical back-
ground of phenomena, but rather to exactly “precompute” experimentally 
found values, which are the spectral lines and their frequencies. An im-
portant role in this play belongs to the above-found dependence of the or-
bital constant hо on the orbit parameters and, natural at resonance condi-
tions, the influence of interatomic electromagnetic field oscillation fre-
quency on movement behavior of a certain group of orbital electrons in a 
system under consideration. This allows deriving formulas describing the 
Balmer, Lyman, Pashen series, etc, proceeding just from the character of 
their orbits.  
         As shown in paragraph 9.1, all the electrons radiate energy at the 
same frequency ν if their orbits are similar, i.e. obey the relation 
 

le = L/ze = const,                                              (9.3.1) 
 

where L – orbit length (from apogee to apogee); ze – number of decelera-
tion or acceleration events for an electron per its one turn on the orbit.  

Let’s assume that some electron is primordially moving under the ac-
tion of only central force Fц = – e2/rо2 on any closed orbit (no matter – 
circular, elliptic or parabolic) with a length of Lо and equivalent radius of 
ro = Lо/2π. When some additional noncentral forces Fн are acting on the 
electron, its path changes, while the path conditional radius gains the 
value r corresponding to the new resultalt force F = Fц + Fн. In such a 
case the foreign forces are expressed by their difference Fн = F – Fц 
which is defined as: 
 

Fн =  e2 (1/ro
2 – 1/r2) = (e2/rо2) (1 – rо2/r 2)  .                      (9.3.2) 

 
Since according to (9.3.1) rо/zо = r/z, the relation (9.3.2) may be re-

placed by: 
 

         Fн =  Fц(1 – zо2/z2)  .           (9.3.3) 
 

Hence it follows that at z = zо radiation does not take place, which is 
natural. On the contrary, with noncentral forces acting the number of de-
celeration events for an electron in its orbital motion z = zо + 1,2,…, i.e. 
rises relative to the primordial zо (typical for elliptic, parabolic, etc orbits) 
by the square law. Accordingly, the noncentral force field oscillation fre-
quency ν also rises, which directly leads to the following relation: 
 

                     ν = νo
 (1 – zо2/z2),                               (9.3.4) 
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where νo – some constant value for a particular matter, which can be 
found experimentally.  

Expression (9.3.4) is adequate to the law λ = λo(1 – nо2/n2) stated by 
Balmer in 1885 by experimental data on hydrogen spectrum. According 
to (9.3.4) radiation frequencies are discrete and reducible to their upper 
limit νo with z) increasing. Here zо defines the series name: Layman’s 
(zо=1), Balmer’s (zо=2), Paschen’s (zо=3), Bracket’s (zо=4), Pfund’s 
(zо=5), etc. The two above statements perfectly comply with experiments 
(especially for hydrogen and hydronen-like atoms).  

However, now the existence of spectral series is explained by not the 
instantaneous electron “jump” from some stable orbit to another, but by 
electron deceleration or acceleration lasting for a finite time and forcing 
this electron to change its orbit. This eliminates a number of troubles in 
quantum mechanics. The most critical of them lies in the fact that the ra-
diation frequency ν depends on the energy level of both start and finish 
orbits and, hence, remains uncertain until the electron reaches the latter. 
In such a case it should be acknowledged that the electron by some in-
conceivable way “knows” beforehand about its future work. That was one 
of the reasons which caused the negation of the cause-effect relations in 
the quantum theory.The said trouble does not arise if the radiation fre-
quency is defined by current parameters of electron and orbit.  
 Another trouble which is usually missed relates to the problem of 
maintaining atom stability. If to be based on the known expression 
 

hν = Еi (1 – ni
2/nj

2) ,                                 (9.3.5) 
 

then, at least, with ni = 1 and nj = 5 the electron will lose 96% of its start-
ing energy Еi for one radiation event. This casts doubt on the atom stabil-
ity. Contrary to this fact, the number of acceleration or deceleration 
events for an electon on the orbit changes momentarily just by unit. In 
this case the energy loss is immediately replenished on some other por-
tion of the same orbit. Naturally, this does not threatens the atom stabil-
ity.  

As seen, the formulas for calculation of Layman’s, Balmer’s, 
Paschen’s, etc spectral series, which have always been the “touchstone” 
of the quantun theory, can be explained from the positions of classic 
physics, too. The advantage of the suggested approach to study of spec-
tral series lies in its physical clarity and obviousness. This relates, first of 
all, to the physical meaning of the values z and zо  defining the orbit char-
acter. In the Bohr’s model the relation between quantum numbers and or-
bit geometry is far from being obvious. In quantum mechanics this idea is 
rejected at all.  
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Noteworthy is the attractive simplicity in explanation of a number of 
observed regularities. In particular, it is quite natural that the electrons 
moving along the paths remoter from the nucleus have a longer orbital 
period. Therefore they have enough time to undergo the greater number 
of deceleration and acceleration events for this period and, respectively, 
have a higher radiation frequency. This explains why the electron radia-
tion frequency in any spectral series rises with electron potential energy.  

Furthermore, the number of electron acceleration (deceleration) 
events can not be fractional – from here comes the law of whole numbers 
(see (9.4.4)). In this order of ideas the fact that atoms of the same matter 
(including one-electron atoms) can have several series is explained by 
different character of the “central” orbits in different atoms of this matter 
(i.e. the paths appearing under the action of central forces). Note, such an 
explanation would be groundless if considering isolated one-electron 
atom in the Bohr’s conception. Somewhat worse results for alkali metals 
(principle, sharp, diffusional and bergman series available therein) may 
be explained in this order of ideas by approximate character of relation 
(9.3.2) for complex orbits.  

The approach undertaken allows bringing the positions of classic and 
quantum mechanics together.  

 
 

9.4. Energodynamic Analog of Schrödinger’s Equation 
 

Many investigators are sharply dissatisfied with the tendency exist-
ing in modern physics and constituting a desire to “guess equations disre-
garding physical models or physical explanation” (R. Feynman, 1976). 
This relates in full measure to also the fundamental equation of quantum 
mechanics, which has appeared to be a product of its author’s intuition 
(E. Schrödinger, 1926). Therefore it is even more interesting to be able to 
derive the equation of such a type from the first laws of energodynamics.  

As shown in Chapter 2, when some ith process is running in a sys-
tem, its generalized rate (flow Ji) is defined by all thermodynamic forces 
Xj (i, j = 1,2,...n) acting in the system. As applied to an “electron–
nucleus” system, this means that at deceleration of the electron in its or-
bital movement along an arbitrary pathway its kinetic energy Ek is not 
only transforming into the potential energy of atom as a whole, but is also 
being consumed partly to overcome non-central forces from the electro-
magnetic fields external relative to this atom. As a result, each of the de-
celeration events leads to a solitary disturbance of this field arising and 
spreading in the field in the form of a solitary electromagnetic wave (soli-
ton). As a result of joint action from the multitude of atoms, the total 
electromagnetic field of any substance will oscillate in phase with the 
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movement of the corresponding group of electrons predetermining, in its 
turn, the oscillation of their pathways. This is the way the various orbits 
of electrons of a particular group are synchronized with the oscillation 
frequency spectrum of the field itself. This oscillating process is de-
scribed by a known spatial monochromatic wave equation (L. Landau, E. 
Livshits, 1973): 
 

                       ∇2Ψν + (4π²/λ²) Ψν = 0,                (9.4.1) 
 

where λ – wave length; ψ – “wave function”, i.e. some system parameter 
that is a function of spatial coordinates and deviates from its equilibrium 
value in oscillating process. In the classic sense Ψν may be construed as 
electromagnetic wave amplitude.  

Using the above suggested mechnism of the oscillatory process ap-
pearing in the field of interatomic forces the relation between electron or-
bit parameters and the radiation wave length λ according to (9.1.7) gives: 
 

λ = с/ν = hор/pe ,                                            (9.4.2) 
  

where hор = meleс – experimental value that we call the orbital constant.  
With λ2 = hор2/pe² and pe² = 2mеEk, where Ek = Е – Еп – kinetic energy 

of electron defined as the difference between the external (ordered) en-
ergy E of atom (in our case, its hamiltonian Ĥ) and its potential energy 
Еп. Then substitution in (9.4.1) and elementary transformations directly 
give the classic analog of the quantum mechanics stationary equation: 
 

         ∇2Ψν + (8π²mе/hор²)(Е – Еп)Ψν = 0.                   (9.4.3)  
 

 
From the formally mathematical positions this equation differs from 

the Schrödinger equation just because the Planck constant is therein re-
placed by the constant hор. However, this equation can not be considered 
as the Schrödinger stationary equation derivation since the latter proceeds 
from the absolutely other considerations. Especially this applies to the 
physial sense of the function Ψν which is essentially unobservable value 
in quantum mechanics. In its interpretation the most eminent theoretical 
physicists have never been unanimous till now. The followers of the Ko-
penhagen’s quantum mechanics interpretation in their majority interpret 
the Ψν function as a value, which square being multiplied by the bulk 
element dV describes the probability Ψν²d that the particle occupies the 
predetermined spatial domain. This concept assumes indeterminism even 
at the level of elementary processes, i.e. the lost capability for quantum 
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mechanics to predict events (to define subsequent parameter values from 
the previous ones).  

We are interested basically in some mathematical properties of 
equation (9.4.3). It is proved in the theory of differential equations that 
the equations of such a kind have solutions fulfiling requirements of 
uniqueness, finiteness and continuity1) for only some “selected” negative 
values of the energy C called eigenvalues. In this case the solutions giv-
ing discrete levels of energy begin with some finite negative value of the 
difference Е – Еп. The existing negative potential energy in principle con-
tradicts energodynamics and, as shown in p. 3.6, results from the failure 
to allow in the Newtons laws for the minimal distance rо to which two 
mutually attracting bodies or two particles like nucleus and electron can 
approach each other. Therefore the electron energy Еп is defined as Еп = 
e2(1/rо–1/r), i.e. is a value purely positive and becoming zero at r = rо. In 
such a case U > 0 and the decisions of the equation (9.3.3) form a con-
tinuous spectrum. Hence, according to energodynamics not the total en-
ergy of some system is quantized, but only the part relating to the energy 
level of the electron orbit in the central force field and varying discretely 
because of the process specificity as itself. This statement is reasonable to 
be called for easy reference as the quantization principle: the part of en-
ergy, which changes in the discrete process of energy exchange, is sub-
ject to the quantization. This eliminates the apparent contradiction be-
tween quantum and classic mechanics. The exapmle is once again appro-
priate here regarding the ocean that could hardly be considered as consist-
ing of drops despite the rain falls in the form of drops onto the ocean sur-
face.  

Anyway, the classic derivation of equation (9.4.3) allows solving, by 
methods of quantum mechanics, the same problems as by the 
Schrödinger stationary equation which is considered to be the fundamen-
tal equation of quantum mechanics. It remains now to see the relation be-
tween the Planck constant h which meaning has been found earlier by 
(9.1.15) and the constant hор = meleс (9.4.2). Comparing them gives their 
identity providing 
 

ρV‹Aν›   =  mele.                                            (9.4.4) 
  

As mentioned above, the electron braking length is connected with 
the radiated wave length λ which, in its turn, is defined through the wave 
amplitude by the wave form factor. Therefore relation (9.4.4) does not 
contradict the facts known. However, there is no rigorous proof of this re-
lation. It is evidently not needed since the values h, hо and hор are experi-
mental ones.  
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9.5. Orbital Electrons Parameters Definition 

 
The determinism inherent to energodynamics in approach to macro- 

and microworld objects shows in the possibility to define mean statistical 
parameters of orbital electrons and electron orbits themselves, which out-
steps the possibilities of quantum mechanics. These additional possibili-
ties were the consequence of another interpretation of radiation as a proc-
ess which duration is defined by the time of electron orbital deceleration 
caused by noncentral forces from the electromagnetic fields surrounding 
the atom.  

The resulting dependence of the radiation frequency ν and the radi-
ated wave length λ on the electron momentum pe and braking length le 
(9.1.7) allows finding these parameters from the specified radiation fre-
quency ν or, on the contrary, precalculating the whole spectrum of these 
frequencies for the electrons with a known mean momentum.  

In particular, it is possible to find the length L and radius r of the 
conventional circular “orbit” for the electrons radiating at this frequency 
from the known radiation wave length λ (or the wave number с/λ). Let's 
use for this purpose relation (9.1.7) which evidences the unique relation-
ship existing between the radiation frequency ν, electron velocity ve and 
electron braking length le. Since the length L of an arbitrary orbit is con-
nected with the radius re of the length-equivalent circular orbit with the 
number of deceleration portions zе through the simple relation 
 

L  = 2π zеre ,                                                (9.5.1) 
 

the radiation frequency ν becomes a function of the relation (ve/re) ac-
cording to (9.17). Let’s find the form of this function ν = ν(ve/re) for the 
case when undisturbed motion of the electron occurs along a circumfer-
ence with the radius rо, i.e. only under the action of central forces. Then 
the electron attractive force Fе according to the Coulomb law is equal to: 
 

                         Fе = ſ ZА e2/re
 2 ,                                                (9.5.2) 

 
where ſ = 8,98756·109 – electric constant; ZА – atomic number of the ele-
ment corresponding to the number of protons in its nucleus; e =1,602·10-

19C – electron charge.  
At uniform motion of the electron on circular orbit this force is bal-

anced by the centrifugal force 
 

                                  Fц= meve
2/re ,                                                      (9.5.3)  
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so that the electron orbital velocity ve appears to be connected with the 
circular orbit radius re through the relation: 
 

                                   ve = e(ZАſ /mere)½.                                  (9.5.4) 
  

Considering (9.5.1) and (9.1.7) jointly gives: 
 

                    re = (ZАſe2zе2/4π2ν2me)⅓ = СА(zе/ν)⅔,               (9.5.5) 
 

where СА = (ZАſe2/4π2me)⅓ – constant value for a particular atom, which 
may be called “orbital constant”. This relation allows finding for each ra-
diation spectrum frequency ν the radii of electron orbits with a known 
number of deceleration portions zе for different atoms, the electron mean 
momentum modulus 
 

                            pe = meve = e(ZАſ me/re) ½  (9.5.6) 
 

and the electron mean kinetic energy 
 

                                 Ek= pe
2/2me .                          (9.5.7) 

  
It is significant that the radii of orbits for different atoms radiating at 

the same frequency ν form, according to (9.5.5) the power series depend-
ing on the number of deceleration portions zе 
 

                    rz /rо = СА zе⅔ ,                                        (9.5.8) 
  

where rz , rо – current radius and the 1st orbit radius with zе =1, respec-
tively. 

Let's consider now, it is how much real the offered dependences for 
atom of hydrogen (ZА=1; me = 9,109534·10-31кг), radiating on frequency 
of the argon laser ν =2,379·1015 Hz (length of a wave λ = 1,261·10-7). In 
this case we have according to (9.5.8) СА = 1,858 so rо = 1,04·10-10 m. 
This size, naturally, more then 1st Bohr’s (not radiating) radius rо = 
0,529·10-10 m, but have with it одн an order. Corresponding average 
speed of orbital movement of electron is equal ve =1,56·106 �m s-1, that 
corresponds to an average impulse электрона pe =1,421·10-24 �kg m/with 
and its average kinetic energy E k =1,108·10-18 J. 

The possibility to find these parameters lies outside the scope of 
problems quantum mechanics solves since quantum mechanics excludes 
the unobservable parameters (position of electron on orbit, electron ve-
locity, type of orbit, etc) from its consideration.  
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Summing up to this chapter, it is possible to notice, that specificity of 
quantum mechanics consists not in its equations, and in that ideology 
which accompanies their conclusion. This makes us hope that other de-
ductions of quantum mechanics will also appear to be deduced from a 
correct generalization of classic physics to the microcosmic objects. 

 
 
 
 
 
 
 

Conclusion to Part 2 
 

As shown in this section, distribution of a thermodynamic method of 
research on other fundamental disciplines «building a bridge» between 
classical and quantum mechanics; classical and nonequilibrium thermo-
dynamics, heat- and mass transfer theories, hydrodynamics and electro-
dynamics. 

It became possible thanks to orientation of energodinamic conceptual 
system  direct on spatially non-uniform systems and to generalisation of a 
mathematical apparatus of the theory on nonstatic processes proceeding 
in such environments. A special role has played thus the expansion of 
space of variables with introduction of spatial heterogeneity parametres 
of investigated systems.  

Created such theory has allowed to argue the fundamental principles 
of these disciplines, to prove their main laws and to deduce their basic 
equations as mathematical and logic consequences of energodinamics, 
not resorting thus to any hypotheses, postulates or modelling represen-
tations about the molecular mechanism of investigated processes.  
It is rather important, that such (deductive) statement of fundamental dis-
ciplines has allowed not only to present an essence of the matter in the 
most compressed and compact form, but also to release these disciplines 
from set of the historical stratifications accompanying their formation. It 
does energodynamics by a real integration tool of sciences and realisa-
tion of the program of interdisciplinary preparation of experts of various 
trades. 

The big number of experimental acknowledgement above men-
tioned principles, laws and the equations of fundamental disciplines tes-
tifies that energodynamics can serve as the reliable base to construction 
of modern natural sciences conceptual base .   
Special value of energodynamics is shown that she has allowed to prove 
the laws which were considered not deduced from first principles. Among 
them a “least action principle” by Maupertuis; Newton’s, Coulomb’s and 
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Maxwell’s laws; Maxwell’s and Schrödinger’s equations. Not less impor-
tant that it changes many developed representations, concerning energy 
and entropy, force and acceleration, mass and inertia, warmth and work, 
quantum of radiation and the reasons of its step-type behaviour, etc.  

At the same time energodynamics has allowed to find out reserves of 
further development in variety disciplines. It was expressed in generalisa-
tion of all three Newton’s laws and principles of the excluded perpetuum 
mobile, in a finding of characteristic functions of the nonequilibrium 
state, expanding possibilities of a classical thermodynamic method of po-
tentials, in generalisation of reciprocity relations of the irreversible proc-
esses theory on nonlinear systems, in elimination of historically devel-
oped strange division of the heat exchange theory with thermodynamics 
etc. 

All of this does the energodynamics as the interdisciplinary theory 
keeping the basic advantage of a classical thermodynamic method - 
immutable justice of its consequences.  
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