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Abstract

In this cutting-edge exploration, we introduce and define the “dy-
namic iso-sphere Inopin holographic ring” (IHR), which is built from
a “dynamic iso-topic lifting” equipped with an iso-unit function that
is characterized by constant change. The resulting developments in-
dicate that the dynamic iso-sphere IHR is simultaneously iso-dual to
an “exterior dynamic iso-sphere IHR” and an “interior dynamic iso-
sphere IHR”. For this, we identify both the continuously-varying and
discretely-varying cases. Ultimately, the conclusions suggest that a
new branch of iso-mathematics may be in order.

Keywords: Geometry and topology; Santilli iso-number; Santilli iso-
sphere; Dynamic iso-sphere; Inopin holographic ring.
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1 Introduction
In a forward attempt to establish order in chaos, A.E. Inopin introduced

the dual space-time IHR topology in a proof of quark confinement [1], which
received a topological upgrade in the triplex generalization of [2]. In Eu-
clidean complex space, Inopin’s dual 3D space-time IHR topology comprises
a 1-sphere IHR “time zone” that delineates two spatial 2-branes, whereas
in Euclidean triplex space, Inopin’s dual 4D space-time IHR topology gen-
eralizes the 1-sphere IHR to a 2-sphere IHR that delineates two spatial
3-branes [1, 2]. In other words, the brane states can be inferred from the
IHR states and vice-versa because the IHR acquires Berry phase transitions
and is simultaneously dual to both branes [1, 2].

Recently, R.M. Santilli’s iso-mathematics [3, 4, 5, 6, 7] was applied to
Inopin’s dual 4D space-time IHR topology (with the 2-sphere IHR) [1, 2,
8] to establish the iso-dual 4D space-time IHR topology (with the iso-2-
sphere IHR) [9]. Subsequently, the new class of dynamic iso-spaces was
constructed [10]; a dynamic iso-space is an iso-space that is characterized
by constant change [10]. More specifically, a dynamic iso-space is built with
a dynamic iso-topic lifting that arises due to a dynamic iso-unit function
that varies over time [10]. Santilli’s discovery of iso-mathematics gave way
to these dynamic constructs because he proved that his iso-unit can be,
among many things, a function [3, 4, 5, 6, 7]. Therefore, in this paper, we
apply the emerging dynamic iso-spaces [10] to the iso-dual 4D space-time
IHR topology [9] to define dynamic iso-sphere IHRs.

We launch our investigation with Section 2, where we augment the iso-
sphere IHR [9] by initiating definitions for the exterior iso-sphere IHR and
the interior iso-sphere IHR—for this, we demonstrate the exterior and in-
terior iso-duality between the three distinct, locally iso-morphic IHR imple-
mentations. Next, in Section 3, we deploy the dynamic iso-topic lifting of
[10] to upgrade the initial results of Section 2, where we mobilize definitions
for the exterior dynamic iso-sphere IHR and the interior dynamic iso-sphere
IHR—here, we consider the general, continuous, and discrete cases. Finally,
we conclude our venture with the recapitulation of results and future out-
look of Section 4.
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2 Iso-sphere IHR exterior and interior iso-duality
Here, we discuss and extend the iso-sphere IHR [9] by specifically iden-

tifying the exterior and exterior iso-duality.
Following [1, 2], let T 1 be a 1-sphere IHR of amplitude-radius r = 1 and

amplitude-curvature κ = 1
r

that is iso-metrically embedded in the complex
space S2, such that eq. (13) of [2] identifies

T 1 = {~s ∈ S2 : |~s| = r}, (1)

where T 1 ⊂ S2 is the multiplicative group of all non-zero complex coordinate-
vectors of amplitude-radius r. Next, let T 2 be a 2-sphere IHR that is iso-
metrically embedded in the triplex space S3, such that eq. (40) of [2] iden-
tifies

T 2 = {~s ∈ S3 : |~s| = r}, (2)

where T 2 ⊂ S3 is the multiplicative group of all non-zero triplex coordinate-
vectors of amplitude-radius r; T 1 is the great circle of T 2 so both non-linear
structures share the same amplitude-radius r and amplitude-curvature κ =
1
r
, where S2 ⊂ S3 and T 1 = T 2 ∩ S2 [2]. In this IHR topology [1, 2], eqs.

(14) and (40) in [2] demonstrate that the micro 2-brane sub-space S2
− ⊂ S2

and the micro 3-brane sub-space S3
− ⊂ S3 correspond to interior dynamical

systems, while the macro 2-brane sub-space S2
+ ⊂ S2 and the micro 3-brane

sub-space S3
+ ⊂ S3 correspond to exterior dynamical systems, where T 1

delineates S2
− and S2

+, and T 2 delineates S3
− and S3

+.
Now, following Santilli’s iso-number methodology [3, 4, 5, 6, 7] and the

iso-sphere IHR definition [9], we select some positive-definite iso-unit r̂+ > r
with the corresponding positive-definite inverse r̂− = 1

r̂+
< r to establish

the array of exterior iso-topic liftings

f(r̂+) : T n → T nr̂+

f−1(r̂+) : T nr̂+ → T n
, n ∈ {1, 2}, (3)

for the

1. exterior iso-1-sphere IHR T 1
r̂+

and

2. exterior iso-2-sphere IHR T 2
r̂+

.
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In this case of eq. (3), a given T nr̂+ is “outside” T n because r̂+ > r. Thus, r̂+
is termed the exterior iso-unit, which serves as the exterior iso-amplitude-
radius for both T 1

r̂+
and T 2

r̂+
, while r̂− serves as the exterior iso-amplitude-

curvature for both T 1
r̂+

and T 2
r̂+

.
So a question comes to mind: how might the iso-amplitude-curvature

r̂− fit into the structure and function of the said iso-sphere IHR topology?
In the iso-sphere IHR topology introduction of [9], we recall that the iso-
amplitude-curvature property was only mentioned in a brief context due to
the limited scope of that analysis. Therefore, in this section, we wish to
further probe the applicability of the iso-amplitude-curvature by deploying
it to define an additional topological iso-structure. Hence, in addition to
being the exterior iso-amplitude-curvature of T 1

r̂+
and T 2

r̂+
, we furthermore

define r̂− as the interior iso-amplitude-radius and interior iso-unit of two
new iso-sphere IHRs, namely the

1. interior iso-1-sphere IHR T 1
r̂−

and

2. interior iso-2-sphere IHR T 2
r̂−

,

with the corresponding array of interior iso-topic liftings

f(r̂−) : T n → T nr̂−

f−1(r̂−) : T nr̂− → T n
, n ∈ {1, 2}. (4)

In this case of eq. (4), a given T nr̂− is “inside” T n because r̂− < r. Hence,

upon recalling the relation r̂− = 1
r̂+

, we realize that r̂+ is also the inte-

rior iso-amplitude-curvature of both T 1
r̂−

and T 2
r̂−

! Thus, in terms of iso-
amplitude-radius and iso-amplitude-curvature, we’ve identified a fundamen-
tal iso-duality between T nr̂+ and T nr̂− . Therefore, in addition to the lemmas
of [9], the results of eqs. (3–4) indicate the following:

Lemma 1. An n-sphere IHR T n of amplitude-radius (and unit) r = 1 that
is iso-topically lifted via T n → T nr̂+ to the exterior iso-n-sphere IHR T nr̂+ of
exterior iso-amplitude-radius (and exterior iso-unit) r̂+ > r can be simulta-
neously lifted via T n → T nr̂− to the interior iso-n-sphere IHR T nr̂− of interior

iso-amplitude-radius (and interior iso-unit) r̂− < r if r̂− = 1
r̂+
, where r̂+
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is the interior iso-amplitude-curvature of T nr̂− and r̂− is the exterior iso-
amplitude-curvature of T nr̂+, such that T nr̂+ and T nr̂− are iso-dual and locally
iso-morphic to T n.

At this point, we’ve discussed and extended the iso-sphere IHR of [9] to
include the exterior and interior iso-sphere IHRs of eqs. (3–4) and Lemma
1. See Figure 1 for a depiction of this scenario.

3 Dynamic iso-sphere IHR
Here, we apply the dynamic iso-topic lifting of [10] to the iso-sphere IHR

results of Section 2, where we will introduce the general definitions for the
exterior and interior dynamic iso-sphere IHRs in Section 3.1. Subsequently,
in Section 3.2, we push beyond the general form to construct the continuous
and discrete cases.

3.1 General
Thus, following the dynamic methodology of [10], we define the positive-

definite dynamic iso-unit function as

r̂+ ≡ δ̂x+(t) > r (5)

with its corresponding positive-definite inverse

r̂− ≡
1

δ̂x+(t)
≡ δ̂x−(t) < r, (6)

where δ̂x+(t) increases and δ̂x−(t) decreases simultaneously as the parameter
t varies as t→∞, such that the “x” label denotes general form. Hence, eq.
(3) can be rewritten to establish the exterior dynamic iso-topic lifting form

f(δ̂x+(t)) : T n → T n
δ̂x+(t)

f−1(δ̂x+(t)) : T n
δ̂x+(t)

→ T n
, n ∈ {1, 2}, (7)

to define the

1. exterior dynamic iso-1-sphere IHR T 1
δ̂x+(t)

and
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Fig. 1: The iso-1-sphere IHR T 1 is iso-topically lifted to both the exterior iso-1-sphere

IHR T 1
r̂+

and the interior iso-1-sphere IHR T 1
r̂−

simultaneously, where T 1
r̂+

and T 1
r̂−

are

iso-dual.
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2. exterior dynamic iso-2-sphere IHR T 2
δ̂x+(t)

.

Similarly, eq. (4) can be rewritten to express the interior dynamic iso-topic
lifting form

f(δ̂x−(t)) : T n → T n
δ̂x−(t)

f−1(δ̂x−(t)) : T n
δ̂x−(t)

→ T n
, n ∈ {1, 2}, (8)

to define the

1. interior dynamic iso-1-sphere IHR T 1
δ̂x−(t)

and

2. interior dynamic iso-2-sphere IHR T 2
δ̂x−(t)

.

Therefore, the implications and results of eqs. (5–8) authorize us to establish
the following:

Lemma 2. An n-sphere IHR T n of amplitude-radius (and unit) r = 1
that is dynamically iso-topically lifted via T n → T n

δ̂x+(t)
to the exterior dy-

namic iso-n-sphere IHR T n
δ̂x+(t)

of exterior dynamic iso-amplitude-radius

(and exterior dynamic iso-unit) δ̂x+(t) > r can be simultaneously lifted via
T n → T n

δ̂x−(t)
to the interior dynamic iso-n-sphere IHR T n

δ̂x−(t)
of interior

dynamic iso-amplitude-radius (and interior dynamic iso-unit) δ̂x−(t) < r if
δ̂x−(t) = 1

δ̂x+(t)
as the parameter t varies, where δ̂x+(t) is the interior dy-

namic iso-amplitude-curvature of T n
δ̂x−(t)

and δ̂x−(t) is the exterior dynamic

iso-amplitude-curvature of T n
δ̂x−(t+

, such that T n
δ̂x+(t)

and T n
δ̂x−(t)

are dynam-

ically iso-dual and locally iso-morphic to T n.

At this point, we’ve successfully applied the general dynamic iso-topic
lifting definitions of [10] to the iso-sphere IHR results of Section 2 by in-
troducing the definitions for the exterior and interior dynamic iso-sphere
IHRs in Section 3.1, where the resulting constructions of eqs. (5–8) are
characterized by Lemma 2. See Figure 2 for a depiction of this scenario.
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Fig. 2: The iso-1-sphere IHR T 1 is dynamically iso-topically lifted to both the exte-

rior dynamic iso-1-sphere IHR T 1
δ̂x+(t)

and the interior dynamic iso-1-sphere IHR T 1
δ̂x−(t)

simultaneously as the parameter t varies as t→∞, where T 1
δ̂x+(t)

and T 1
δ̂x−(t)

are iso-dual.
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3.2 Continuous and discrete
Next, we combine the continuous and discrete dynamic iso-space defini-

tions of [10] with the general dynamic iso-sphere IHR definitions of Section
3.1 to assemble the continuous and discrete dynamic iso-sphere IHR imple-
mentations.

First, we will show that T n
δ̂x−(t)

and T n
δ̂x+(t)

can be defined as continu-

ous dynamic iso-n-sphere IHRs if the dynamic iso-unit functions δ̂c+(t) and
δ̂c−(t) are both continuous as their parameter t varies, where we label x = c
to denote the “continuous” case. Hence, for example, let t be the contin-
uously varying parameter for the continuous exterior and interior dynamic
iso-unit functions

r̂+ ≡ δ̂c+(t) ∈ Rc

r̂− ≡ δ̂c−(t) ≡ 1

δ̂c+(t)
∈ Rc

, 0 < δ̂c−(t) < r < δ̂c+(t) <∞, t→∞,

(9)
such that Rc is a positive-definite continuous set (i.e. the positive real
numbers), to consequently define the

1. continuous exterior dynamic iso-n-sphere IHR T n
δ̂c+(t)

and

2. continuous interior dynamic iso-n-sphere IHR T n
δ̂c−(t)

,

where we rewrite eqs. (7–8) in the continuous exterior and interior dynamic
iso-topic lifting form

f(δ̂c+(t)) : T n → T n
δ̂c+(t)

f−1(δ̂c+(t)) : T n
δ̂c+(t)

→ T n
, n ∈ {1, 2}, (10)

and
f(δ̂c−(t)) : T n → T n

δ̂c−(t)

f−1(δ̂c−(t)) : T n
δ̂c−(t)

→ T n,

, n ∈ {1, 2}, (11)

respectively. In eqs. (10–11), T n remains locally iso-morphic to both T n
δ̂c−(t)

and T n
δ̂c+(t)

as t continuously varies. Thus, the results of eqs. (9–11) permit

us to identify the following:
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Lemma 3. An exterior dynamic iso-n-sphere IHR T n
δ̂c+(t)

is a continuous

exterior dynamic iso-n-sphere IHR if the exterior dynamic iso-unit function
δ̂c+(t) is continuous as its parameter t varies.

Lemma 4. An interior dynamic iso-n-sphere IHR T n
δ̂c−(t)

is a continuous

interior dynamic iso-n-sphere IHR if the interior dynamic iso-unit function
δ̂c−(t) is continuous as its parameter t varies.

Second, we will show that T n
δ̂x−(t)

and T n
δ̂x+(t)

can also be defined as dis-

crete dynamic iso-n-sphere IHRs if the dynamic iso-unit functions δ̂d+(t)
and δ̂d−(t) are both discrete as their parameter t varies, where we label
x = c to denote the “discrete” case. Hence, for example, let t be the dis-
cretely varying parameter for the discrete exterior and interior dynamic
iso-unit functions

r̂+ ≡ δ̂d+(t) ∈ Rd

r̂− ≡ δ̂d−(t) ≡ 1

δ̂d+(t)
∈ Rd

, 0 < δ̂d−(t) < r < δ̂d+(t) <∞, t→∞,

(12)
such that Rd is a positive-definite discrete set (i.e. positive Fibonacci num-
bers), to consequently define the

1. discrete exterior dynamic iso-n-sphere IHR T n
δ̂c+(t)

and

2. discrete interior dynamic iso-n-sphere IHR T n
δ̂c−(t)

,

where we rewrite eqs. (7–8) in the discrete exterior and interior dynamic
iso-topic lifting form

f(δ̂d+(t)) : T n → T n
δ̂d+(t)

f−1(δ̂d+(t)) : T n
δ̂d+(t)

→ T n
, n ∈ {1, 2}, (13)

and
f(δ̂d−(t)) : T n → T n

δ̂d−(t)

f−1(δ̂d−(t)) : T n
δ̂d−(t)

→ T n,
, n ∈ {1, 2}, (14)
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respectively. In eqs. (13–14), T n remains locally iso-morphic to both T n
δ̂d−(t)

and T n
δ̂d+(t)

as t discretely varies. Thus, the results of eqs. (12–14) enable us

to identify the following:

Lemma 5. An exterior dynamic iso-n-sphere IHR T n
δ̂d+(t)

is a discrete ex-

terior dynamic iso-n-sphere IHR if the exterior dynamic iso-unit function
δ̂d+(t) is discrete as its parameter t varies.

Lemma 6. An interior dynamic iso-n-sphere IHR T n
δ̂d−(t)

is a discrete in-

terior dynamic iso-n-sphere IHR if the interior dynamic iso-unit function
δ̂d−(t) is discrete as its parameter t varies.

At this point, we’ve successfully combined the continuous and discrete
dynamic iso-space definitions of [10] with the general dynamic iso-sphere
IHR definitions of Section 3.1 to assemble the continuous and discrete dy-
namic iso-sphere IHR implementations, where the resulting constructions
of eqs. (9–14) are characterized by Lemmas 3–6.

4 Conclusion
The results of this work include original definitions and lemmas for con-

tinuous and discrete dynamic iso-sphere IHRs. Through this process, we
identified the iso-duality that fundamentally relates the dynamic iso-sphere
IHR to the exterior and interior dynamic iso-sphere IHRs, which are locally
iso-morphic. This emerging array of dynamic iso-spheres is significant be-
cause it extends the Santilli’s pioneering work [3, 4, 5, 6, 7] to new realms
of exploration with potential (near future) application to the disciplines of
science, technology, and engineering.

Thus, there is still much work to do, as we must continue to relentlessly
scrutinize, challenge, and upgrade this emerging framework via the scientific
method. In particular, we suggest that in order to test the validity of our
results and advance the general capability and applicability of these dynamic
systems to subsequent levels, a thorough and rigorous iso-mathematical
investigation should be conducted along this research trajectory. For this,
we must prove the said lemmas and expand the framework by instantiating
additional pertinent IHR families of dynamic iso-spheres, and furthermore
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the dynamic geno-spheres, dynamic hyper-spheres, and dynamic iso-dual-
spheres.
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