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Abstract. Conformal geometric algebra is preferred in many applications. Clifford Fourier transforms (CFT) allow holistic
signal processing of (multi) vector fields, different from marginal (channel wise) processing: Flow fields, color fields, electro-
magnetic fields, . . . The Clifford algebra sets (manifolds) of

√
−1 lead to continuous manifolds of CFTs. A frequently asked

question is: What does a Clifford Fourier transform of conformal geometric algebra look like? We try to give a first answer.
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INTRODUCTION

Note: Please respect the Creative Peace License [13] when applying this work. Conformal geometric algebra is widely
used in applications [8, 21]. Reasons are the elegant representation of geometric objects by products of points. The
products of these objects form in turn new objects (via intersection, union, projection, . . . ). Conformal transformations
are products of reflections at hyperplanes (versors). This even leads to the linearization of translations. Moreover, it is
very interesting for the approximation abilities of conformal geometric algebra neural networks.

Clifford’s geometric algebra Cl(2,0) is a special case of Clifford algebras Cl(p,q) of Rp,q over R. Cl(2,0) =Cl(R2)
has a geometric product of vectors a,b ∈ R2

ab = a ·b+a∧b, (1)

of scalar symmetric inner product and bivector antisymmetric outer product. It is the geometric algebra of the
Euclidean plane and unifies 2D vector algebra, complex numbers and spinors in one algebra. Given an orthonormal
vector basis {e1,e2} of R2, the 4D (22 = 4) Clifford algebra Cl(2,0) has a basis of 1 scalar, 2 vectors, and 1 bivector
{1,e1,e2,e12 = i}, where we define i = e12 = e1e2. The basis bivector i squares to −1. Rotation by a versor (rotor) R
is a product of two reflections

x′ = R̃xR, R = e
1
2 ϕi, R̃ = e−

1
2 ϕi. (2)

CONFORMAL GEOMETRIC ALGEBRA OF THE EUCLIDEAN PLANE

The conformal model (see [8] and its references) of the Euclidean plane in Cl(3,1) extends the basis of R2 by adding a
plane {e+,e−}, e2

+ = 1, e2
− =−1, e+ ·e−1 = 0 and thus generates Cl(2+1,0+1) =Cl(3,1). We choose a null-basis,

assigning origin and infinity vectors (like in projective geometry):

e0 =
1
2
(e−− e+), e∞ = e−+ e+, e2

0 = e2
∞ = 0, e0 · e∞ =−1. (3)

The bivector E of the added origin and infinity plane is

E = e+∧ e− = e∞∧ e0, E2 = 1. (4)

There are the multiplication properties

e0E =−e0, Ee0 = e0, e∞E = e∞, Ee∞ =−e∞. (5)

The full 16D basis of Cl(3,1) is

{1, e1,e2,e0,e∞, e12 = i,e1e0,e2e0,e1e∞,e2e∞,E, ie0, ie∞,e1E,e2E, iE}, (6)
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with scalars (1), vectors (4), bivectors (6), trivectors (4), pseudoscalars (1), and Cl(2,0) ⊂ Cl(3,1). Note, that only
bivectors and trivectors change sign under reversion (reversing the order of all vector factors).

We have a set of geometric objects GO ⊂ Cl(3,1) described in the conformal model [8] as conformal points
P = p+ 1

2 p2e∞ + e0 (homogeneous, projective), point pairs P1 ∧P2, flat point pairs P∧ e∞, circles C = P1 ∧P2 ∧P3
through three points, and lines P1 ∧P2 ∧ e∞ (hyperplane), offset from the origin. A point P is on one of these objects
(with blade Ob j): P ∈ Ob j⇔ P∧Ob j = 0. The products of these objects with their reverse give [8]

PP̃ = 0, PpP̃p =−r2D2, (P∧ e∞) ˜(P∧ e∞) =−1, Line L̃ine =−1, Circle C̃ircle = r2D2 < 0, (7)

where D = p1− p2 = 2rd, d2 = 1 for the point pair Pp, and D is a scalar multiple of e12 with negative square for

the circle Circle. We therefore assume as norm for these objects ||Ob j||=
√
−Ob j Õb j. Note that for two conformal

points P,Q the number
√
−PQ̃ = |p−q|/

√
2 is their distance.

Conformal transformations of R2 become versors (products of vectors) in Cl(3,1): rotation around origin: R = e
1
2 ϕi

(see (2)), translation by t ∈ R2: T = e
1
2 te∞ , transversion by t ∈ R2: T v = e

1
2 te0 (a transversion composes inversion at

the unit sphere around the origin, translation, and a second inversion at the unit sphere around the origin), and scaling
by eγ ,γ ∈ R: S = e

1
2 γE . These transformation versors V are applied to conformal objects A as

A→ A′ = Ṽ AV. (8)

The inner product of f ,g : Rp,q→ GO, respectively its symmetric scalar part, are

( f ,g) =−
∫
Rp,q

f (x)g̃(x) dnx, 〈 f ,g〉=−
∫
Rp,q

f (x)∗ g̃(x) dnx. (9)

The L2(Rp,q;GO)-quasi-norm (indicating distance in the case of conformal points) is

‖ f‖2 = 〈( f , f )〉 , L2(Rp,q;GO) = { f : Rp,q→ GO | ‖ f‖< ∞}. (10)

Note, that for ensuring finite basis coefficient values of geometric objects in GO⊂Cl(3,0) in the basis (6) of Cl(3,1)
the principal reverse operation of Clifford algebra can be used (reverse combined with changing the sign of every basis
vector with negative square).

The Clifford algebra Cl(3,1) is isomorphic to the (square) matrix algebras M (4,R). Sc( f ) = 0 for every f =
√
−1

∈ Cl(3,1) [12, 19]. All
√
−1 ∈ Cl(3,1) are computable with the Maple package CLIFFORD [2, 1, 18]. The square

roots f of −1 constitute a unique conjugacy class of dimension 8, with as many connected components as the group
G(M (4,R)) of invertible elements in M (4,R). For M (4,R), the centralizer (all elements in Cl(3,1) commuting with
f ) and the conjugacy class of a square root f of −1 both have R-dimension 8 with two connected components.

CLIFFORD FOURIER TRANSFORMATIONS

We now consider a generalization of quaternion and Clifford Fourier transforms CFTs [3, 4, 10, 5, 6, 7, 9, 11, 14, 15,
16, 17, 20, 22] to conformal geometric algebra Cl(3,1).

Definition 1 (CFT with respect to two square roots of−1). Let f ,g ∈Cl(3,1), f 2 = g2 =−1, be any two square roots
of −1. The general Clifford Fourier transform (CFT) of h ∈ L1(Rp,q;GO), with respect to f ,g is

F f ,g{h}(ω) =
∫
Rp,q

e− f u(x,ω)h(x)e−gv(x,ω)dnx, (11)

where n = p+q, dnx = dx1 . . .dxn, x,ω ∈ Rp,q, and u,v : Rp,q×Rp,q→ R.

The square roots f ,g ∈ Cl(3,1) of −1 may be from any component of any conjugacy class. The above CFT is
steerable in the continuous submanifolds of

√
−1 in Cl(3,1). We have the following properties of the general two-

sided CFT: a Plancherel identity, respectively a Parseval identity, for functions h1,h2,h ∈ L2(Rp,q;GO)

〈h1,h2〉=
1

(2π)n 〈F
f ,g{h1},F f ,g{h2}〉, ‖h‖= 1

(2π)n/2

∥∥F f ,g{h}
∥∥ . (12)



For these identities to hold we need for
√
−1 that f̃ =− f , g̃ =−g.

We now seek to find the most suitable
√
−1 ∈Cl(3,1). We can write every real f =

√
−1, f ∈Cl(3,1) as

f = α +b+β i+(α∞ +b∞ +β∞i)e∞ +(α0 +b0 +β0i)e0 +(αE +bE +βE i)E,

where α = 0,α∞,α0,αE ,β ,β∞,β0,βE ∈ R, b,b∞,b0,bE ∈ R2.
From f 2 =−1 we obtain the root equation (main condition for f )

f 2 = b2−β
2−2α0α∞ +2b0 ·b∞ +2β0β∞ +α

2
E +b2

E −β
2
E =−1,

plus side conditions for zero non-scalar parts of f 2. By imposing that f̃ =− f (necessary for Plancherel and Parseval
identities), we abandon scalar, vector and pseudoscalar parts of f :

f = β i+b∞e∞ +β∞ie∞ +b0e0 +β0ie0 +αEE +bEE. (13)

and retain only bivector and trivector parts.
Regarding the trivector

√
−1 in Cl(3,1) we can calculate the following. For f = bEE, t, t′ ∈ R2, t′ = −bE tbE , we

obtain

e−bE Ee0ebE E = e0, e−bE E tebE E = ch2(|bE |)t+ sh2(|bE |)t′+2ch(|bE |)sh(|bE |)(t∧
bE

|bE |
)E. (14)

For f = β∞ie∞ we obtain
e−β∞ie∞e0eβ∞ie∞ = e0−2β

2
∞e∞−2β∞iE. (15)

Like for quaternion Fourier transformations this may help to separate signal symmetry components, but for now we
set the trivector parts of

√
−1 in Cl(3,1) aside. We keep only the four bivector parts.

If we only keep the bivector parts of f =
√
−1 in Cl(3,1) we have

f = β i+b∞e∞ +b0e0 +αEE. (16)

We recognize that e−ϕβ ih(x)eϕβ i means a local rotation by 2ϕβ ∈ R of the signal function h : Rp,q → GO.
e−bb∞e∞ h(x)ebb∞e∞ , b ∈R, means a translation by 2bb∞ ∈R2 of the signal function h : Rp,q→GO. e−cb0e0h(x)ecb0e0 ,
c ∈ R, means a transversion over 2cb0 ∈ R2 of the signal function h : Rp,q → GO. e−aαE Eh(x)eaαE E , a ∈ R, means
a scaling by the factor e2aαE of the signal function h : Rp,q → GO. Thus every term in a bivector

√
−1 in Cl(3,1)

has a clear geometric transformation interpretation. This could be of great advantage for the choice and application of
conformal CFTs in image and signal processing.

Considering the side conditions for the zero non-scalar components in f 2 = −1 let the angle Θ = ∠(b0,bE). For
Θ 6= 0,π we find that

β =
1

sinΘ
[αE cosΘ±

√
α2

E + sin2
Θ]. (17)

Especially for Θ = π/2,3π/2 we obtain

β =±
√

1+α2
E . (18)

For the special case Θ = 0, αE = 0, we have

β =±
√

1+2|b0||bE |. (19)

For Θ = π , αE = 0, we have
β =±

√
1−2|b0||bE |, (20)

whereas for Θ = π , β = 0, we have
αE =±

√
2|b0||bE |−1. (21)



CONCLUSION

We have briefly introduced the conformal geometric algebra Cl(3,1) model of the Euclidean plane. Then we defined
Clifford Fourier transforms based on real f =

√
−1 in Cl(3,1), and tried to select a Clifford Fourier transform by

studying the manifold of
√
−1 in Cl(3,1). A selection with clear geometric interpretation proved to be the bivector

parts of
√
−1 in Cl(3,1) for the construction of a CFT in conformal geometric algebra model of Euclidean plane.

Then every term in a bivector
√
−1 in Cl(3,1) has a geometric transformation interpretation. Setting g =− f leads to

conformal rotor transformation CFTs. We completed this by a detailed characterization of bivector
√
−1 in Cl(3,1),

taking all side conditions from non-scalar parts of f f , to be zero, into account. We therefore hope that this new
conformal CFT with real bivector

√
−1 in Cl(3,1) will be tried in applications. It still shares many properties of

conventional FT (such as linearity, shift, modulation, partial differential, Plancherel, Parseval, convolution, ...).
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