
Solomon I. Khmelnik

Computer Arithmetic of
Geometrical Figures

Algorithms and Hardware Design

First Edition 2004
Second Edition 2013

 Russia Israel Canada

 2

Copyright © 2004 by Solomon I. Khmelnik
All right reserved. No portion of this book may be reproduced or
transmitted in any form or by any means, electronic or mechanical,
without written permission of the author.

ISBN 978-1-4116-3184-7

Technical Editor, Cover Designer – Inna S. Doubson

Published by “MiC” - Mathematics in Computer Comp.

BOX 15302, Bene-Ayish, Israel, 60860
Fax: ++972-3-9471301

Printed in the United States of America, Lulu Inc., ID 86485

 3

Summary

This book describes various versions of processors, designed for
affine transformations of many-dimensional figures – planar and spatial.
This processors is oriented to affine transformation of unstructured
geometrical figures with arbitrary points distribution. The type of data
presentation used in this book is non-conventional, based on a not well-
known theory of vectors and geometrical figures coding. The problems
of affine transformation are used widely in science and engineering. The
examples of their application are computer tomography and data
compression for telecommunication systems.

The book covers the figures coding theory – the codes structure,
algorithms of coding and decoding for planar and spatial figures,
arithmetical operations with planar and spatial figures. The theory is
supplemented by numerous examples. The arrangement of several
versions of geometrical processor is considered – data representation,
operating blocks, hardwares realization of coding, decoding and
arithmetic operations algorithms. The processor’s internal performance is
appraised.

The book is designed for students, engineers and developers, who
intend to use the computer arithmetic of geometrical figures in their own
research and development in the field of specialized processors. With
that in view the book includes

• Theory of coding,
• Operations algorithms,
• Examples of coding, decoding and computations,
• Description of several versions of processors,
• A system of commands for them,
• Schemes of operational units,
• Comparative analysis.

Algorithms and units described in this book are developed into
models in VHDL and FPGA. We shall welcome any kind of
cooperation proposals sent to the address:

solik@netvision.net.il

mailto:solik@netvision.net.il

Contents

 4

Contents

1. Introduction \ 8
2. Prototypes \ 13

2.1. Data Representation \ 13
2.2. The Simplest Arithmetic Unit \ 14
2.3. Arithmetic Unit with Rectangular Codes \ 17

3. Foundations of Computer Arithmetic for
Complex Numbers and Vectors \ 19
3.1. Coding Method for Complex Numbers \ 19
3.2. Special Algebra in Vector Space \ 21

3.2.1. Algebra in 3-dimensional vector space \ 21
3.2.2. Component-wise multiplication \ 22
3.2.3. Vector product \ 22
3.2.4. Scalar product \ 22
3.2.5. The turning of a vector \ 22
3.2.6. Centroaffine transformation \ 23
3.2.7. Many-dimensional space \ 24

3.3. Two Methods of Multidimensional Vectors Coding \
25
3.3.1. Method 1 \ 29
3.3.2. Method 2 \ 26

3.4. Algebraic addition of M-codes \ 28
3.4.1. Multidigit circuits for M-codes \ 28
3.4.2. M-code Inverter \ 29
3.4.3. M-codes Inverse Adder \ 29
3.4.4. M-code Adder \ 30
3.4.5. M-code Subtractor \ 31
3.4.6. Sign Determinant M-code \ 31

3.5. Multiplication of Many-dimensional Vectors \ 34
3.5.1. Multiplication Method of Many-dimensional Vectors \ 34
3.5.2. Multiplication by Base Function to the Radix (3.3.10) \ 34
3.5.3. Multiplication by Base Function to the Radix (3.3.7) \ 34

Contents

 5

3.5.4. Multiplication of the Whole Codes of Vectors to the Radix
(3.3.10) \ 35

3.5.5. Multiplication of the Whole Codes of Vectors to the Radix
(3.3.7) \ 36

3.5.6. Componentwise Multiplication of Many-dimensional
Vectors \ 37

3.6. Scalar and Vector Multiplication \ 38
3.6.1. Scalar Product \ 38
3.6.2. Vector Product \ 39
3.6.3. Carries in Scalar Multiplication \ 40
3.6.4. Carries in Vector Multiplication \ 42

3.7. Algoritms and Devices for Coding and Decoding of
Complex Numbers and Vectors \ 44
3.7.1. Coding of Complex Number in System 1 \ 44
3.7.2. Decoding of Complex Number in System 1 \ 45
3.7.3. Coding of Complex Number in System 2 \ 45
3.7.4. Decoding of Complex Number in System 2 \ 45
3.7.5. Coder of Positive M-code into P-code \ 46
3.7.6. Decoder of M-code into P-code \ 47
3.7.7. Full Decoder of M-code into P-code \ 50
3.7.8. Precoder of P-code into M-code \ 50
3.7.9. Partitioning Unit for Parts of the Code \ 51

4. Vector Processor \ 53
4.1. Data Representation and Vector Arithmetic Unit \ 53
4.2. Comparisons \ 57

5. Figure Coding theory \ 60
5.1. Primary Geometrical Codes \ 60

5.1.1. Data Representation \ 60
5.1.2. Arithmetic operations with geometrical codes in a real radix

\ 63
5.1.2.1. Introduction \ 63
5.1.2.2. Writing of Base Code \ 64
5.1.2.3. Transpositions \ 64
5.1.2.4. Addition of Geometrical and Basic Codes when ρ=2\ 65
5.1.2.5. Algebraic Addition of Geometrical and Basic Codes when

ρ=2 \ 68
5.1.2.6. Algebraic Addition of Geometrical and Basic Codes when

ρ=-2 \ 68
5.1.2.7. Multiplication of Geometrical and Basic Codes \ 71

Contents

 6

5.1.2.8. Division of Geometrical Code by Basic Code \ 76
5.1.2.9. Rounding-off of Geometrical Code \ 76

5.1.3. Geometrical codes in a complex radix \ 77
5.1.3.1. Algebraic Addition of Geometrical and Basic Codes \ 77
5.1.3.2. Multiplication of Geometrical and Basic Codes \ 79

5.1.4. Coding and transformation of planar figures \ 82
5.1.4.1. Method of coding \ 82
5.1.4.2. Carry \ 86
5.1.4.3. Centroaffine transformation \ 86
5.1.4.4. Affine transformation \ 87

5.1.5. Coding and Transformation of Spatial Figure \ 89
5.2. Attribute Geometrical Codes \ 91

5.2.1. Data Representation \ 91
5.2.2. AGC in a real radix\ 94

5.2.2.1. Writing of a given Number \ 94
5.2.2.2. Writing of a given Value \ 94
5.2.2.3. Reading the value of the path with the given number \ 95
5.2.2.4. Addition of AGC to the basic code when ρ=2 \ 95
5.2.2.5. Inverse addition of AGC to the basic code when ρ= -2 \ 97
5.2.2.6. Inversion of AGC when ρ=-2 \ 99
5.2.2.7. Algebraic addition of AGC \ 99
5.2.2.8. Search for the Next Open Path, its Number and it's Value \

100
5.2.2.9. Multiplication of AGC by the basic code \ 100

5.2.3. Attribute geometrical codes in a complex radix \ 101
5.2.3.1. Inverse addition with the basic code \ 101
5.2.3.2. Invertion \ 102
5.2.3.3. Deformation \ 102

5.2.4. Attribute Geometrical Codes of Spatial Figures \ 106
5.2.5. Contracted attribute geometrical codes \ 108

6. Geometrical Processor \ 110
6.0. Data Presentation \ 110
6.1. Full Specific Random-access Memory \ 113
6.2. Fragmentary Specific Random-access Memory \ 114
6.3. Maximal Arithmetic Unit of Geometrical Figures \ 118
6.4. Fragmentary Arithmetic Unit of Geometrical Figures \

119
6.5. Processor with a Maximal Arithmetical unit \ 121
6.6. Processor with Fragmentary Arithmetic Unit \ 124
6.7. The Main Procedures \ 127

Contents

 7

6.7.1. Affine Transformation \ 127
6.7.2. Rounding \ 127
6.7.3. Rough rounding \ 128
6.7.4. Attributes Correction \ 129
6.7.5. Attributes Calculation \ 129
6.7.6. Coding a Figure \ 130
6.7.7. Decoding a Figure \ 130

6.8. Operational units \ 131
6.8.1. Writing unit for the number with the given code \ 131
6.8.2. Writing unit for the value with the given code \ 132
6.8.3. Reading unit for path value with the given number \ 132
6.8.4. Inverse adder \ 133
6.8.5. Search unit for the first open path, its numbers and its

values \ 134
6.8.6. Reading unit for the number and value of the path with the

given terminal vertex \ 135
6.8.7. Next terminal vertex search unit \ 136

7. Comparative Analysis \ 137
References \ 142
Designation \ 143
List of Examples \ 145
List of Tables \ 146
List of Figures \ 149

1. Introduction

 8

1. Introduction

This book is concerned with a full theory, not well known, and with
patented engineering solutions for computer arithmetic of geometrical
figures – planar and spatial. This theory is directed to the affine
transformation of unstructured geometrical figures with arbitrary way of
pints distribution. The transformation is aimed at this structure’s
identification. That’s why the observed object may be defined only as a
space in which a point has certain characteristics. The problems
concerned with affine transformation of space are widely used in science
and engineering – in medicine, in data processing and visualization, in
astronomy, in seismology etc. Most striking and well-known examples of
affine transformation applications are сomputer пraphics [1, 2], computer
tomography [3] and information compression for telecommunication
systems [4].

This book describes affine transformations (displacements, turns,
scaling, shifts) of n-dimensional figures, where n=2,3,4. Usually the
above-mentioned transformations are performed by calculating the
coordinates of the points of the transformed figure according to the
known coordinates of the points of the initial figure. However this
method takes up a great deal of computer time since the calculation of
coordinates is performed sequentially for every point and requires several
operations per point (for instance, in order to calculate the new
coordinates during an affine transformation of a planar figure, 4
operations each of addition and multiplication are required).

The above problems include operations with complex numbers since
a point on a plane can be represented by a complex number. In this case
operations of the same name can be performed simultaneously with a set
of complex numbers. Processors with SIMD (Single Instruction, Multiple
Data) architecture are used to solve problems of this type. However these
processors operate with real numbers, and each operation with complex
numbers requires several operations with real numbers – the real and
imaginary parts of these complex numbers. Similarly, geometrical
transformations in a three-dimensional space operate with three-
dimensional vectors – sets of three real numbers. And each operation
with vectors demands even more operations with real numbers. All this

1. Introduction

 9

increases the calculation time substantially. In addition, set of complex
numbers and vectors describing a figure takes up a great deal of memory.
Thus there is a need for a method and system for effective SIMD
calculations with a set of complex numbers and vectors that describe a
figure. These calculations must be efficient as to calculation time and
memory requirements.

The solution of the above problems can be greatly accelerated with
special coding of sets of complex numbers. Due to that, reviewed further will
be a method of representing a set of complex numbers and vectors by a so-called
geometrical code, and then various operations with them will be described,
as well as the hardware support of these operations. The geometric codes
were first put forward in [5, 6] and were considered also in [7-14]. In the
construction of a geometrical code a method of complex numbers and
vectors representation by a single binary code [11-16] is being used.

By this method the set of binary codes of complex numbers and of
the vectors is represented by a single binary code. Its volume is
considerably smaller that the total volume of the initial binary codes
array. The comparative volume reduction depends on the amount of
numbers being coded and increases as this amount grows. The coded set
of complex numbers is NOT structured. We can say that the set is a
random one. The coded complex numbers and vectors are a coordinate
set (which is significant) that the calculations are to be performed with.
Any additional information about the points (for instance, their color), if
it does not take part in the calculations, is not subject to coding, and
should be saved in a separate array –an attribute array. Geometrical code
saves (in addition to the coordinates) also the information about every
point’s connection with its attributes.

All arithmetic operations may be performed with geometrical code
(complex numbers and vectors algebraic addition, multiplication, affine
transformation). These operations are equivalent to group operations
with the coordinates of all points simultaneously.

It is significant that the performance time of an operation with
geometrical code is equal to the performance time of the same operation
with a pair of numbers, if only the whole geometrical code may be placed
in the operative register of arithmetic unit.

It is assumed that the initial codes were codes with fixed point (for
example, the coordinates of the point on the screen).

A method of geometrical code fragmentation is also proposed,
allowing to operate with separate fragments of the geometrical code, if
the arithmetic units register’s dimension is not sufficient to hold the
whole code.

1. Introduction

 10

It is important that geometrical code permits to operate with a
geometrical figure as a whole, single object. So the data volume
(coordinate codes) is reduced. However (and it should be emphasized to
avoid mistakes), geometrical code does not compress geometrical figures
themselves. It is assumed that the coded geometrical figure is described
by a random set of points and does not have any special structure, which
is typical for raster images.

In general, application of GC reduces data volume n times, where n –
digit capacity of linear codes. The group operations performance speed is
many times higher than the same operations speed for group operation
with complex codes array. General computations time is also reduced
due to data access time reduction.

Next we shall consider three types of arithmetic units -

• Traditional, operating with the proposed vector codes and
containing several calculators, working simultaneously.

• Vectorial, operating with the proposed vector codes and also
containing several calculators, working simultaneously, and

• Geometrical, operating with geometrical codes of figures.
We shall also consider a specialized random-access memory unit based

on the geometrical figures coding method.
A comparison between the performances of these units is given. It

appears reasonable to describe the device’s performance by a ratio between
the unit’s volume and the number of certain procedures performed by
the unit in a time unit. Let us call this ratio relative volume of a unit. A
standard procedure for arithmetic units is affine transformation. For
random-access memory units such standard procedures are either search
for a point with given coordinates in an unordered array, or plain access,
or a mixture of these procedures.

Fig. 1.1 gives a bar graph of the relative volume of the named
arithmetic units in relation to the dimension p of the coded space. The
unit of measurement in this figure is 14*М, where М – number of points
in the coded space. For example, for p=3 the ratio of relative volumes
values is (84:14:1).

To compare the variants of random-access memory realization let us
assume that in a given problem the reading/writing operations are Н
time more frequent than operations of search by given coordinates. It is
shown that the relative volume of specialized RAM is (~M/10H) times
smaller than the relative volume of traditional RAM unit.

1. Introduction

 11

p

Relative Volume
32

16

4

3

3

1

Scalar Processor

Geometrical Processor
Vectorial Processor

0.07 0.14 0.21 0.29
0 1 2 3 4
Fig. 1.1. Bar graph of the relative volume of the named arithmetic.

1. Introduction

 12

The book consists of 7 chapters, including the present introduction.
The second chapter is concerned with known devices for figure

transformation – with one or several calculators.
The third chapter presents foundations of computer arithmetic for

complex numbers and vectors –theory and hardware solutions. This
chapter is essential, since in coding and decoding the geometrical figure
code, we have to make use of the codes of complex numbers and
vectors.

In the fourth chapter a vector arithmetic unit is discussed, which is
based on vector computer arithmetic, stated in the previous chapter.

In the fifth chapter the theory of figures coding is described – the
structure of codes, coding and decoding algorithms for planar and spatial
figures, arithmetic operations with planar and spatial figures. The theory
is supplemented by numerous examples.

The sixth chapter deals with the arrangement of raster geometric
processor – data representation, operational units, technical realization of
coding, decoding and arithmetic operations algorithms; the operating
speed of this processor is also appraised.

The seventh chapter is dedicated to the characteristics comparison
between arithmetic units and random-access memory units designed for
operations with figures. The traditional units, described in the previous
chapters, are being compared with the vector arithmetic units and
geometrical figures arithmetic units.

2. Prototypes

 13

2. Prototypes

2.1. Data Representation

The processors presented below are intended for solving the

following problem. A set of points in a p-dimensional space is given. The
points comprise a domain of definition, which is a p-dimensional cube,
and they are distributed in this domain at the nodes of a uniform
network. Each coordinate is represented by an n-digit code with fixed
point. The network step is equal to the lowest digit of this code. Each
point is characterized by its coordinates and attributes (certain values,
associated with each point). We shall say that in such way a figure in p-
dimensional space, or, simply, a p-dimensional figure F, is defined. We

must find another figure Fa, obtained from the figure F by means of an
affine transformation. The affine transformation is described by a p-
dimensional transformation matrix and by an r-digit carry vector (for
carry of this figure in some direction). Each element of the
transformation matrix is represented by an n-dimensional code with a
fixed point. The total digit capacity of the affine transformation
parameters is equal to

a=p n+ p2 r. (2.1.1)
For each point a pair “coordinates-attribute” is stored in the processor’s
memory. Evidently, the maximal number of coded points is

M=2pn. (2.1.2)
Addresses of these pairs do not change during the problem solution in
order to be able to find the point’s attribute by the coordinates modified
in the process of the coordinates transformation. Moreover, during some
transformations the points’ coordinates may coincide. Hence every point
is determined by a triad “address-coordinates-attribute”.

In future a processor for solving the described problem will be called a
raster geometrical processor – RGP. Further we shall consider different
variants of arithmetic units for such processor.

2.2. The Simplest Arithmetic Unit

14

2.2. The Simplest Arithmetic Unit

As a preliminary we shall view a simplest construction of a scalar

arithmetic unit SAU (see Fig. 2.2.1); it will be used further for analogies
and comparison with the more complex constructions. In this unit a
simplest multiplier of sequential type is used, containing only a shifter
and an adder.

 Register of Parameter - r bytes

Multiplexer

Registers of all Parameters of
Transformation - a bytes

Input

Register of Coordinate - (n+r) bytes

Adder - (n+r) bytes

Shifter - (n+r) bytes

Input Output

Coordinate Block

Control
Unit

Fig. 2.2.1. The simplest arithmetic unit.

In this SAU we need only an (n+r)–digit adder, (n+r)–digit

multiplier, (n+r)–digit coordinate register, (r)–digit register of the chosen
parameter and a–digit register of all the transformation parameters – the

2. Prototypes

 15

components of transformation matrix and carry vector – see (2.1.1).
Besides, this SAU contains a multiplexer for parameter choice and a
control unit. Affine transformation of any point contains p2
multiplications and

() ,...4,3,2,...12,6,21 ==−= pifppD (2.2.1)

additions.
In this arithmetic unit the adder serves for adding the coordinate to

one of the components of the carry vector, and for adding the partial
product to the multiplicand when performing multiplication. The sum
register in this AU contain triggers with complementing input, and
therefore it may be combined with the register of one of the addends –
the register of the initial coordinate value.

The multiplier in this AU realizes the following algorithm
0. Given: r-digit factor А, representing one component of the

transformation matrix, and an n-digit multiplicand B,
representing one coordinate of the point.

1. At the beginning the partial product is equal to 0, and the
multiplicand B is located so, that its lowest 0-digit is combined
with the highest (n-1)-digit 1−nα of the multiplicand A. The
number of the current multiplicand’s digit is t=n-1, i. e.

1−= nt αα .
2. Adding the partial product to the multiplicand B, if 1=tα .
3. Shifting the multiplicand B to the right by1 digit and decreasing

the current number 1: −= tt .
4. Stopping the calculation if 0<t , or going to 2. As a result an

(n+r)–digit product С is formed.
Thus, the multiplier consists only of the shifter to the left by 1 digit,

and of the adder.
The digit capacity of the affine transformation results may reach

(n+r). This may lead to some points exceeding the bounds of the initial
p-cube. At that we may:

1. or exclude these points from the given set (by putting an
appropriate sign in the point’s attribute),

2. or round off all the coordinates codes (by discarding the lower
digits) and change the network step (that is a parameter of the
whole figure).

2.2. The Simplest Arithmetic Unit

16

In either case it may occur that
1. There are several points present in a certain node of the

network. The attribute of the node is defined as a function of
the attributes of all points present in this node. If for instance
the attribute is intensity of monochrome color, then this
function is a simple average of the intensities of joined
vectors.

2. A point is lacking in a certain node. The node’s attribute is
defined as a function of the attributes of all adjacent nodes.

Let us review now the list of processor’s commands realized in the SAU:
• Receiving the transformation parameters
• Receiving coordinate
• Adding to the carry vector component (D modifications – see

(2.2.1))
• Multiplying by a transformation matrix component (p2

modifications)
• Yielding a coordinate
• Rounding off

2. Prototypes

 17

2.3. Arithmetic Unit with Rectangular
Codes

If we are not keen on hardware economy, then we may construct a

MSAU, containing a set (М) of simultaneously working elementary
arithmetic units SAU. In such unit the codes of one coordinates for all
the figure’s points comprise an array called a rectangular number code RCS.
RCS contains М registers of digit capacity (n+r). MSAU contains total М
adders of digit capacity (n+r), М multipliers of digit capacity (n+r), RCS
and one a–digit register of parameters. This MSAU performs group
operations - adding RCS to carry code and multiplying RCS by the code
of centroaffine transformation matrix element. Affine transformation of
a figure contains p2 group multiplications and D group additions.

Such a version of MSAU must have a very large size and its realization
is beyond the bounds of today technology. So let us consider another
version, intermediate between arithmetic units with individual and group

operations. For that let us divide RCS in several fragments RCSq, each
containing Q registers of digit capacity (n+r). Arithmetic unit FSAU
totally contains Q adders of digit capacity (n+r), Q multipliers of digit

capacity (n+r), RCSq and one a–digit register of parameters. The
diagram of FSAU is presented in the Fig. 2.2.2. This diagram is similar to
the diagram of Fig. 2.2.1, apart from the fact that Q coordinate units are
used in it, as is shown in the Fig. 2.2.1.

2.3. Arithmetic Unit with Rectangular Codes

18

 Register of Parameter - r bytes

Multiplexer

Registers of all Parameters of
Transformation - a bytes

Input

Q Coordinate Blocks

Input Output

Control
Unit

Shifter - (n+r) bytes

Fig. 2.2.2. Arithmetic unit with fragmentary rectangular codes.

FSAU performs group operations with the point’s coordinates of a

figure’s fragment. There the affine transformation of a figure contains
Qp2 group multiplications and QD group additions.

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 19

3. Foundations of Computer

Arithmetic for Complex
Numbers and Vectors

3.1. Coding method for complex
numbers

Complex numbers can be used as the radix for coding linear codes.
Such code corresponds to the complex number Z being represented by
decomposition of this type:
 ()∑=

m
m mfZ ,ρα ,

where m – is the number of the decomposition digit,
 { }1,0=mα – is the value of the decomposition digit,
 ρ – is the radix of decomposition,
 ()mf ,ρ – is the basic function of the number and radix.

The binary positional code of the complex number Z that corresponds
to this decomposition looks as follows:
 () mZK α=
In Table 3.1.1. all the possible basic functions are enumerated [14]. For
illustration we shall now show the binary codes of numbers in all the
enumerated coding systems, including coding system with a real (positive
and negative) and complex radixes - see. Table 3.1.2.

3.1. Coding method for complex numbers

20

Table 3.1.1. Systems of complex numbers coding
№ Basic Function Radix

1

()
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅

−
=

−
oddif

evenif
,

2
1

2

mj

m
mf

m

m

ρ

ρ
ρ

2−=ρ

2 ()f m mρ ρ, = ρ = j 2

3 ()f m mρ ρ, = ρ = − j 2

4 ()f m mρ ρ, = ()ρ = − +1 j

5 ()f m mρ ρ, = ()ρ = − −1 j

6 ()f m mρ ρ, = ()ρ = − +
1
2

1 7j

Table 3.1.2. Binary coding systems.
 ρ

 2 ρ ρ - 2 - 1

1 ()

() ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−

−−
−

oddif2

evenif2

2
1

2

mj

m
m

m 10100 10 1010 100 101

2 2j
10100 10 1010 100 101

3 2j−
10100 10 1010 100 101

4 j+−1 1100 10 110 11100 11101

5 j−−1 1100 10 110 11100 11101

6 ()1
2

1 7− + j

1010 10 101 110 111

7 -2 110 10 10 11

8 2 10 10

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 21

3.2. Special Algebra in Vector Space

3.2.1. Algebra in 3-dimensional vector space
Let us consider a certain algebra in a three-dimensional vector space.

Let i, j, k be the base of a 3-dimensional vector space. Let us determine
the ort mutiplication Table 3.2.1 for this base. According to this table,
multiplication of vectors is described as follows: if U U U= 1 2* , where

U x i y j z km m m m= + +
for any m indexes, then

x x x y z z y= − −1 2 1 2 1 2 ,

y x y y x z z= + −1 2 1 2 1 2 ,

z x z y y z x= + +1 2 1 2 1 2 .

Table 3.2.1. 3-dimensional vectors multiplication

* i j k
i i j k
j j k -i
k k -i -j

This multiplication does not have anything in common with vector or

scalar multiplication and, unlike those, is designated further by the
symbol ‘*’. It is not hard to ascertain that multiplication determined by
Table 3.2.1 for orts i, j, k will be associative and commutative.
Consequently, multiplication determined for any vectors or the vector
space under consideration, will also be commutative and distributive with
respect to addition. Aside from that, the following condition is fulfilled:

()* *() (*)bU U U bU b U U1 2 1 2 1 2= = ,
where b is a real number. Consequently, Table 3.2.1 determines, within a
3-dimensional vectorial space, an algebra without division over a real
numbers field.

Addition within the algebra under consideration corresponds to
common addition of vectors, and multiplication – to turning the
multiplicand vector while simultaneously changing its length. In a general
case, the turn parameters, i.e. the position of the turn axis, the angle of
the turn, and the scale multiplier, depend upon the coordinates of both
comultipliers. Therefore, the geometrical interpretation of multiplication
in this algebra is fairly complex, however a few operations of

3.2. Special Algebra in Vector Space

22

multiplication and addition will be enough to decribe those vector
transformations that have simple geometrical meaning.

3.2.2. Component-wise multiplication
Let us consider certain operations in this algebra, having first defined

an operation referred to as component-wise multiplication. This term will be
used to name the operation of multiplication of vector U1 by an ordered
threesome of vectors U U U2 3 4, , . Component-wise multiplication
consists in calculating the vector according to the formula

413121 *** UkzUjyUixU ++=
or

x x x y z z y= − −1 2 1 3 1 4 ,
y x y y x z z= − −1 2 1 3 1 4 ,
z x z y y z x= − −1 2 1 3 1 4 .

In order to designate this operation, we shall also use the following
notation:

U U U U U= 1 2 3 4*[, ,] .

In particular, 212221 *],,[* UUUUUU = .

3.2.3. Vector product

U U U jz ky jx kz jy kx1 2 1 2 2 2 2 2 2× = − + − − −*[(),(),()].

3.2.4. Scalar product
i U U U ix ky jz() *[(),(),()]1 2 1 2 2 2• = − −
- here, for calculation convenience, the real number U U1 2• is
considered identical with the vector i U U()1 2• .

3.2.5. The turning of a vector
The turning of a vector, while it moves along the surface of a certain

cone, can also be described by component-wise multiplication according
to the threesome of vectors obtained from the turn parameters. Here, it
is worthwhile to note the analogy with the algebra of complex numbers,
where multiplication is equivalent to turning a planar vector.

Let us consider a straight line with an ort

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 23

γβα kCosjCosiCosro ++= ,
passing through the point of origin. Let a point rotate around this line in
a circle of a certain radius. Its radius vector turns from position 1U to
position U . If furthermore the point rotates counterclockwise (as
observed from the edge of the vector or) and the angle of rotation is

πϕ ≤≤0 , then it may be shown that
() ()()ϕϕϕ CosUrrSinUrCosUU ooo −•−×+= 1111

or
U U U U U= 1 2 3 4*[, ,] .

where

()
()()

()()⎪⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅⋅+⋅−
+−⋅⋅+⋅

++⋅
=

ϕγαϕβ
ϕβαϕγ

ααϕ

CosCosCosSinCosk
CosCosCosSinCosj

CosSinCosi
U

1
1

22

2

()
()()
()() ⎪

⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅⋅−⋅
+−⋅⋅+⋅

++⋅
=

ϕβαϕλ
ϕλβϕα

ββϕ

CosCosCosSinCosk
CosCosCosSinCosj

CosSinCosi
U

1
1

22

3

()
()()

()() ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−⋅⋅−⋅
+−⋅⋅−⋅−

++⋅
=

ϕλβϕα
ϕλαϕβ

γγϕ

CosCosCosCosCosk
CosCosCosSinCosj

CosSinCosi
U

1
1

22

4

3.2.6. Centroaffine transformation
Centroaffine transformation is equivalent to component-wise

multiplication by three vectors, built from the elements of centroaffine
matrix elements.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−
−−

==⋅=
)(

),(
),(

*

3332311

232221

131211

1

333231

232221

131211

12

kajaia
kajaia
kajaia

U
aaa
aaa
aaa

UU T . (3.2.1)

3.2. Special Algebra in Vector Space

24

3.2.7. Many-dimensional space
Let us now generalize the results obtained so they can apply to n-

dimensional space. Let us select a base within it, E E En1 2, ,..., , the
elements of which satisfy the following condition:

E Ea b = - Ec with d>n+1,
E Ea b = Ec with d<n+2,

where d=(a+b-1), c= d nmod . (3.2.2)
It can be demonstrated that multiplication, as determined for the

elements of this base, is associative, commutative and distributive with
respect to addition, and it also satisfies the following condition:

()* *() (*)bU U U bU b U U1 2 1 2 1 2= = ,
where b is a real number. Consequently, the set of n-dimesional vectors
is an algebra. In particular, if n=2 and the base of this space is {1, j}, we
obtain the algebra of complex numbers – see also Table 3.2.2 of complex
numbers multiplication; if n=3 we come up with the algebra in Table
3.2.1 described above; if n=4, the last formula correspond to the Table
3.2.3 of multiplication of four orts, and so on.

Table 3.2.2. Compex numbers multiplication.

* 1 j
1 1 j
j j -1

Table 3.2.3. 4-dimensional vectors multiplication

* i j k m
i i j k m
j j k m -i
k k m -i -j
m m -i -j -k

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 25

3.3. Two Methods of
Multidimensional Vector Codes
Synthesis

As indicated earlier, complex number may be used as radixes of linear

codes coding - see. Table 3.1.1. For the systems 1 and 2 this method is
based on constructing a certain composition of codes of real numbers
with a negative radix. Such method of constructing codes of complex
numbers can be generalized and used for coding multidimensional
vectors. Let us consider n real numbers { }X i

, each of which has been
determined by binary decomposition with a radix ρ = −2 , i.e.

∑=
)(m

mi
miX ρα , (3.3.1)

where (i=1, 2,..., n). Each such decomposition has its corresponding
code

......)(i
miXK α= (3.3.2)

3.3.1. Method 1.
Let us now consider an n-dimensional vector:

Z E X E X E Xn n= + + +1 1 2 2 ... , (3.3.3)
where { }Ei

 is the base of n-dimensional vectorial space. In this case, the
set of codes { }K Xi() can be interpreted as a unique code of the vector

Z with a radix ‘-2’. Every m-digit of this code is represented by a set of

binary digits, { }i
mα . Having assigned the figures σ m to these sets, we

obtain the vector code
......)(mZK σ= , (3.3.4)

which corresponds to the decomposition

∑=
)(m

m
mrZ ρ ,

where the vector
αααα n

mn
i
mimmm EEEEr +++++=2

2
1

1 (3.3.5)

3.3. Two Methods of Multidimensional Vector Codes Synthesis

26

is represented by the figure mσ . In particular, if n=2, codes of complex
numbers with a radix ‘-2’ are formed, which were reviewed above. If
n=3, codes of 3-dimensional vectors are formed, wherein the digits
assume one of the following eight values:

rm ∈ { 0, i, j, k, i+j, i+k, j+k, i+j+k }, (3.3.6)
where i, j, k are orts of rectangular coordinate axes.

Similarly to the coding of complex numbers, for coding 3-
dimensional vectors we can introduce a vector function of a real integer
argument

()

()

()

() ⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=−

+=−

=−

=

−

−

23if2

13if2

3if2

2

1
2

kmk

kmj

kmi

m
m

m

m

ϑ ,

that will be designated hereinafter as m
2ϑ . Note that the code of the 3-

dimensional vector with a radix (-2), which we are reviewing, can be
regarded as the code of a 3-dimensional vector with a radix 2ϑ with
binary digits. Vector decomposition in the form of ()∑=

m

m
mZ 2ϑα

corresponds to this code.
Similarly, for coding n-dimensional vectors we can introduce a

vector function of a real integer argument:

()

()

()

() ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−+=−

+=−

=−

=

+−

−

1if2

...

1if2

if2

1

1

nnkmk

nkmj

nkmi

m

nm

m

m

nϑ
, (3.3.7)

further denoted as m
nϑ .

3.3.2. Method 2.
Let us now build, same as for complex numbers, a series of

alternating binary digits α i
m :

......... 1
11

1211
1

2
1 αααααααα −

−−
−

++
n
m

n
mmm

n
m

n
mmm (3.3.8)

In other designations, this series is the binary code
......)(kZK α= , (3.3.9)

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 27

of a certain vector Z. In this case the coding radix is also a vector
nE 22=ρ , (3.3.10)

where 2E is the second ort of the base { }Ei
 of n-dimensional vectorial

space. The coded vector Z is determined in this situation according to
the formula

n
n

i
i XXXXZ 11

21 −− +++++= ρρρ . (3.3.11)
Positional codes of vectors lend themselves to operations of algebraic

addition, vectorial and scalar multiplication, and component-wise
multiplication. Algorithms of these operations contain cycles of algebraic
addition of number codes and vector shifts, i.e. they are easy to
implement technically. This may be utilized when building processors
that operate with vectors as a whole. Such a processor requires a simpler
algorithm to solve problems with vectors, and when using the given
algorithm it works according to a shorter program and has increased
performance speed. In order to assess these values, it can be stated, for
instance, that a program of vector multiplication for vectors determined
by three numbers contains 6 operations of multiplication and 3
operations of subtraction.

The best coding systems for creating geometrical codes formation are
coding systems of complex numbers 1, 2, 3. The last two systems are
similar in many respects. Therefore in further narrative we shall consider
algorithms and units for operations only in the systems 1 and 2. In these
systems the complex code is presented as a composition of real number
codes to the radix (-2). Such codes are formed from traditional codes to
the radix (2). Therefore as a preliminary we shall consider the algorithms
and units for arithmetic operations, coding and decoding of real numbers
to various radixes. Thus, let us consider now several types of binary
codes:

• Traditional code in the radix “2” – the so-called P-code,
• Real numbers code in the radix “-2” – the so-called M-code,
• Complex code in complex radix – the so-called С-code.

The range of variation of a positive real integer number, represented by
an n-digit P-code, are as follows:

() ()120 1 −÷ +n .
The range of variation of a positive real integer number, represented by
an n-digit M-code, are as follows:

evenif
3

12
3

22odd;if
3

12
3

22 11
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
÷⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
÷⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +− ++
nn

nnnn .

3.3. Two Methods of Multidimensional Vector Codes Synthesis

28

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

29

3.4. Algebraic addition of M-codes

The best systems for building geometrical codes are coding systems

1, 2. In these systems the complex code is presented as a composition of
real number codes to the radix (-2). Therefore we shall first consider
below the algorithms and units for arithmetic operations with M-codes.

3.4.1. Multidigit Circuits for M-codes
We shall consider next the devices for coding and decoding. The

main units of these devices are linear multidigit circuits for algebraic
addition. They consist of series-connected one-digit circuits – see Fig.
3.4.1, where

N – digit capacity of the codes,
k={0,1,2,…,n-2,n-1} – numbers of digits and one-digit circuits,
cop – operation code, common for all one-digit circuits,
V1, V2 – the input carry digits, representing the number V,
W1, W2 – the output carry digits, representing the number W,
A, B – the operands,
C – the result.

v1(k+1)=w1(k)

N-1
W1=w1(n-1)

k
a(k)

c(k)

v2(k+1)=w2(k)
0

cop

C

v1(0)=V1

W2=w2(n-1) v2(0)=V2
b(k)

A
B

Fig. 3.4.1. Multidigit algebraic addition circuit

In special linear circuits cases the operation code and/or the second
operand may be lacking. The input carry V, as a rule, is equal to zero.
The input carry V, as a rule, is equal to zero. Non-zero output carry W is
indicative of an overflow.

Further when considering specific schemes of algebraic addition, we
shall describe (as a rule) only one-digit schemes.

3.4. Algebraic addition of M-codes

 30

3.4.2. M-code Inverter
Fig. 3.4.2 presents a one-digit inverting circuit Inv. Its functioning is

described by a verity table Table 3.4.2. This table computes the value
с-2*w=-a+v.

Table 3.4.2. One-digit inverting circuit

a v w c

0 0 0 0
1 0 1 1
0 1 0 1
1 1 0 0

Inv

a

c

w v

Fig. 3.4.2. One-digit inverting circuit.

3.4.3. M-codes Inverse Adder
Fig. 3.4.3 presents an one-digit inverse adder’s circuit InvAdd. Its

functioning is described by a verity table Table 3.4.3. This table
computes the value с-2*w=(-a-b+v).

Table 3.4.3. One-digit inverse adder circuit

a b v w c
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 0 1 0

0 0 1 0 1
0 1 1 0 0
1 0 1 0 0
1 1 1 1 1

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

31

InvAdd

a

c

w v

b
Fig. 3.4.3. One-digit inverse adder circuit.

3.4.4. M-code Adder
Figure 3.4.4 presents a one-digit adder scheme Add. Its functioning is

described by truth table 3.4.4. This table calculates the sum
с-2* w = (a + b + v)

Table 3.4.4. One-digit adder circuit

a b v1 v2 w1 w2 c

0 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 0 1
1 1 0 0 1 1 0
0 0 1 1 0 1 1
0 1 1 1 0 0 0
1 0 1 1 0 0 0
1 1 1 1 0 0 1
0 0 0 1 0 0 1
0 1 0 1 1 1 0
1 0 0 1 1 1 0
1 1 0 1 1 1 1

Add

a

c

w2

w1 v1

v2

b
Fig. 3.4.4. One-digit adder circuit

3.4. Algebraic addition of M-codes

 32

3.4.5. M-code Subtractor
Figure 3.4.5 presents a one-digit subtractor scheme Sub. Its

functioning is described by truth table 3.4.5. This table calculates the
sum с-2* w = (a - b + v).

Table 3.4.5. One-digit subtractor circuit

a b v1 v2 w1 w2 c
0 0 0 0 0 0 0
0 1 0 0 0 1 1
1 0 0 0 0 0 1
1 1 0 0 0 0 0
0 0 1 1 0 1 1
0 1 1 1 0 1 0
1 0 1 1 0 0 0
1 1 1 1 0 1 1
0 0 0 1 0 0 1
0 1 0 1 0 0 0
1 0 0 1 1 1 0
1 1 0 1 0 0 1

Sub

a

c

w2

w1 v1

v2

b
Fig. 3.4.5. One-digit subtractor circuit

3.4.6. Sign Determinant M-code
The sign determinant determines the sign of the number represented

by M-code. It exploits one-digit sign determinants shown in the Fig.
3.4.6.1 of two modifications:

Seven – one-digit circuit of sign determinant for even-numbered
digit,

Sodd - one-digit circuit of sign determinant for odd-numbered
digit,

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

33

Seven
or

Sodd

a

w2

w1v1

v2

Fig. 3.4.6.1. One-digit sign determinant circuit.

The carries codes in these circuits are interpreted as follows:

00 – the code has a zero value,
01 – the code has a positive value,
10 – the code has a negative value.

The functioning of one-digit sign determinants Seven and Sodd is
described in the tables 3.4.6.1 and 3.4.6.2 accordingly.

Table 3.4.6.1. One-digit sign determinant circuit for even-numbered digits

a v2 v1 w2 w1
0 0 0 0 0
0 0 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 1 0 1
1 1 1 0 1

Table 3.4.6.1 realizes the rule

 ‘w2, w1’ = ‘v2 v1’, if a = ‘0’,
‘w2, w1’ = ‘01’, if a = ‘1’.

Table 3.4.6.2 realizes the rule
 ‘w2, w1’ = ‘v2 v1’, if a = ‘0’,
‘w2, w1’ = ‘11’, if a = ‘1’.

3.4. Algebraic addition of M-codes

 34

Table 3.4.6.2. One-digit sign determinant circuit for odd-numbered digits
a v2 v1 w2 w1
0 0 0 0 0
0 0 1 0 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 1 1 1

Sign determinant as a whole - nSign is presented by Fig. 3.4.6.2, showing
circuit diagram between the circuits Seven and Sodd and between them
and the M-code circuit. The following notations are used

N - digit capacity of sign determinant,
A – input code,

W1, W2 – output carries.
The output carries code (W2, W1) is interpreted as follows:

00 – the code has a zero value,
01 – the code has a positive value,
10 – the code has a negative value.

Hence, if W2=1 then A<0, and if W2=0 then A>=0.

Seven
2

Sodd
1

Seven
0

Seven or Sodd
(N-1)

w1

w2

Fig. 3.4.6.2. Sign determinant

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 35

3.5. Multiplication of Many-
dimensional Vectors

3.5.1. Multiplication Method of Many-dimensional Vectors
We have to find the product of vectors C=A*B, where the

expansions of multiplier and multiplicand are accordingly:
()∑=

h
h hfA ,ρα , ()∑=

k
k kfB ,ρβ .

Code of the product is defined as ()[]∑=
h

h hfBC ,ρα .

Since { }1,0=hα , the multiplication consists only of multiplication by
the base function ()hf ,ρ and summation. Let us review the
multiplication by the base function for two cases important for our
application.

3.5.2. Multiplication by Base Function to the Radix (3.3.10).
In this case multiplication of the multiplicand by the base function is

equivalent to a shift by h digits. Consequently, multiplication of codes in
this system amounts to successive operations of shift and addition.

3.5.3. Multiplication by Base Function to the Radix (3.3.7).
Dimension of multiplier is mnN ⋅= , where n – dimension of the

vector. Code of the multiplier may be divided into m groups, and in each
t-group there is the first (lowest) digit, second digit,… i-digit, … n-digit.
We shall number the groups in the same way as the code’s digits, from
right to left from 0 to (m -1). The multiplication of multiplicand by the
base function (if the corresponding digit of the multiplier is equal to 1)
consists of two operations (which are simultaneous):

1. Shifting the multiplicand by tnh ⋅= digits, if we are in
the t-group of multiplier’s digits

2. Multiplying the multiplicand В by the ort according to
number i of the digit in the group.

niBEB ii ,1, == (3.5.1)

- see also (3.3.3). For example, if n=2, then:
jBBBB == 21 , ;

if n=3, then:

3.5. Multiplication of Many-dimensional Vectors

36

kBBjBBiBB === 321 ,, ;

if n=4, then:
mBBkBBjBBiBB ==== 4321 ,,,

and so on. Notice, that the reformed multipliers iB may be prepared
before the multiplication.

Calculations by the formula (3.5.1) are performed according to the
multiplication table of vector, or by formula (3.2.2). Let us in accordance
with (3.3.3) assume that

nnbEbEbEB +++= ...2211 , (3.5.2)
Specifically, for complex numbers Table 3.2.2 is used. We have:

122121)(, jbbjbbjBBB +−=+== .
For three-dimensional vectors Table 3.2.1 is used. We have:

.)(
,)(

,

13232132

2133212

1

kbjbbkbjbbkB
kbjbbkbjbbjB

BB

+−−=++=
++−=++=

=

For four-dimensional vectors Table 3.2.3 is used. We have:

.)(
,)(
,)(

,

143243214

214343213

321443212

1

mbkbjbbmbkbjbbmB
mbkbjbbmbkbjbbkB
mbkbjbbmbkbjbbjB

BB

+−−−=+++=
++−−=+++=
+++−=+++=

=

Hence it follows that multiplication of a code by a vector consists of
inverting some of the components and permuting the vector code’s
components.

3.5.4. Multiplication of the Whole Codes of Vectors to the Radix
(3.3.10).
Let us consider a system of coding n-dimensional vectors to the radix

(3.3.10). For our application the digits of multiplier should be analyzed
beginning from the highest, and the multiplicand should be shifted to the
right. According to this, the multiplication algorithm is as follows:

1. At first the partial product is equal to 0, and the multiplicand B is
located so, that its lowest 0-digit coincide with the highest (N-1)-

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 37

digit 1−Nα of the multiplier A. The number of the multiplier’s
current digit is t=N-1, i.e. 1−= Nt αα .

2. Add the partial product to multiplicand B, if 1=tα .
3. Shift multiplicand B by 1 digit to the right and decrease the current

number 1: −= tt .
4. Stop calculation if 0<t or go to p. 2.

3.5.5. Multiplication of the Whole Codes of Vectors to the Radix
(3.3.7).
Let us consider a coding system for n-dimensional vectors to the radix

(3.3.7). The digit capacity of the multiplier’s code is mnN ⋅= . In this
case multiplication algorithm is as follows:

1. Prepare n variants of multiplicand B by formula (3.5.1).
2. Take groups of n digits of multiplier. Begin with the partial product

equal to 0, and multiplicands iB located in such way, that their
lowest 0-digits coincide with the digit of multiplier А of the
number ()1−⋅=− mnnN . The number of the current digit
group of the multiplier is t=m.

3. Take the t-group of digits of the multiplier А. In it:
3.1. Take the first (lowest) digit)1(−tnα . Perform addition of

partial product to multiplicand 1B if 1)1(=−tnα .

3.2. Take the second digit 1)1(+−tnα . Perform addition of partial

product to multiplicand 2B , if 11)1(=−−tnα .
…
3.i. Take the i-digit itn +−)1(α . Perform addition of partial product

to multiplicand iB , if 1)1(=+− itnα .
...
3.n. Take the n-digit ntα . Perform addition of partial product to

multiplicand nB , if 1=ntα .
4. Shift the multiplicand by n digits to the right (recall that here n – is

dimension of the vector) and decrease the current number
1: −= tt .

5. Stop calculation if 0<t , or go to p. 3.

3.5. Multiplication of Many-dimensional Vectors

38

3.5.6. Componentwise Multiplication of Many-dimensional
Vectors.
Unlike simple multiplication, in componentwise multiplication for

each cycle the value of multiplicand which is being added, depends on
the number m of multiplier’s digit (that is, to which component of
multiplier vector this digit belongs). Let us assume that

m – number of digit of multiplier А,
k – integer number.
If componentwise multiplication of a complex number is being

performed,
C = A * (X, Y),

then multiplicand B is defined as follows:
B = X, if m = 3k,
B = Y, if m = 3k+1.

If componentwise multiplication of a three-dimensional vector is being
performed,

C = A * (X, Y, V),
then multiplicand B is defined as follows:

B = X, if m = 3k,
B = Y, if m = 3k+1,
B = V, if m = 3k+2.

If componentwise multiplication of a four-dimensional vector is being
performed,

C = A * (X, Y, V, W),
then multiplicand B is defined as follows:

B = X, if m = 3k,
B = Y, if m = 3k+1,
B = V, if m = 3k+2,
B = W, if m = 3k+3.

As indicated earlier, componentwise multiplication by threesomes of
vectors prepared beforehand, is equivalent to scalar and vector
multiplication, multiplication by a number, centroaffine transformation,
etc.

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 39

3.6. Scalar and Vector Multiplication

When performing the operations of scalar and vector multiplication not

subject to any rules requisite for a ring, the multiplication becomes more
complicated. It has been shown above that these operations may be
substituted by componentwise multiplication. But to do this, the co-
multipliers should be prepared beforehand. Hence we shall further
consider some other methods of scalar and vector multiplication in a
coding system of three-dimensional vectors to the radix (3.3.7), suggested
in [16].

In this system the vector code takes the form (3.3.4), and its digits
assume the values (3.3.6). We shall use the following 8 “numbers” for
their designation:

hgfedcbam ,,,,,,,=σ .
The digits of vectors-co-multipliers V and W are further presented as

vectors mv and mw with three components – real numbers taking value
0 or 1:

{ }γβα ′′′= ,,mv , { }γβα ′′′′′′= ,,mw .

3.6.1. Scalar Product
By the formula of scalar product

 γγββαα ′′′+′′′+′′′=• wv (3.6.1)
Table 3.6.1 is built, where for products – number the codes to the radix
ρ = -2 are indicated.

Table 3.6.1. One-digit scalar multiplication.

• a b c d e f g h
a 0
b 0 1
c 0 0 1
d 0 1 1 110
e 0 0 0 0 1
f 0 1 0 1 1 110
g 0 0 1 1 1 1 110
h 0 1 1 110 1 110 110 111

3.6. Scalar and Vector Multiplication

40

Scalar product Z = V • W may be calculated by the formula:

Z V w
k k

k
= ∑ •()ρ .

Consequently, scalar multiplication of multidigit vectors codes consists
of cycles ‘shift – scalar multiplication by k-digit of multiplier – addition’ .
This process results in forming the code of the number Z to the radix
ρ = -2.

3.6.2. Vector Product
Formula of vector product is as follows: WVZ ×= , where

{ }γβα ,,=mz , and

.
,
,

αββαγ
γααγβ
βγγβα

′′′−′′′=

′′′−′′′=

′′′−′′′=
 (3.6.2)

Coordinates of vector Z computed according to the formula (3.6.2) may
assume values –1, 0, 1. Therefore, vector Z may be always presented as a
difference of two vectors, each of them with a code to the radix (3.3.7).
Using further the rules of algebraic addition of these vectors, we shall be
able to build Table 3.6.2, describing vector multiplication. In contrast to
the previous table, this table must be fully filled, as it is asymmetrical
about the diagonal (vector product is non-commutative).

Table 3.6.2. One-digit vector multiplication

× a b c d e f g h
a 0 0 0 0 0 0 0 0
b 0 0 e e cc cc cg cg
c 0 ee 0 ee b ef b ef
d 0 ee e 0 cd gh ch cd
e 0 cc bb bd 0 c bb bd
f 0 cc bf bh cc 0 dh bf
g 0 eg bb fh b eh 0 eg
h 0 eg bf bd cd ef cg 0

Vector product Z=V × W may be computed from the formula

Z V w
k k

k
= ∑ ×()ρ . Consequently, the vector multiplication of

multidigit vectors codes consists of cycles ‘shift – vector multiplication

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 41

by k-digit of the multiplier - addition’. The result is the forming the code
of vector Z to the radix (3.3.7).

3.6.3. Carries in Scalar Multiplication.
When performing operations of shift and algebraic addition the

vector’s code may be conveniently considered consisting of three
independent parts – codes of the numbers – projections of the vector,
and the named operations are to be performed independently for each
part. However during vector and scalar multiplication of one vector code
by a digit of another vector code, there appears an added complication -
a cross influence of the digits of dissimilar parts one onto another. Let us
look into this question first for scalar multiplication.

Scalar multiplication is described by the formula (3.6.1), but in the
case of multidigit code we must also take into account the carry p from
the lower digit. Then the result for each digit should be calculated by the
formula
 pS +′′′+′′′+′′′= γγββαα . (3.6.3)
The value S must be presented in the form
 S= σ + P ρ , (3.6.4)
where σ =(0, 1) - the value of the considered digit of the result,
 P - the value of carry into the higher digit.
It is easy to show that the carry P from the considered digit (and,
therefore, also the carry p into this digit) may assume one of the values:
P=(-1, 0, 1, 2). So S=(-1, 0, 1, 2, 3, 4, 5), and the scalar multiplication is
described by the Table 3.6.3.

Table 3.6.3. Carries in scalar multiplication

S -1 0 1 2 3 4 5
σ 1 0 1 0 1 0 1
P 1 0 0 -1 -1 2 2

The carries propagation may be organized another way, namely, so

that the carry into a given digit would arrive from two previous digits (p
and q) pass from the given digit to the two consequent digits (P and Q).
In this case the digit-to digit result should be computed by the formula
 qpS ++′′′+′′′+′′′= γγββαα . (3.6.5)
and be presented in the form
 2ρρσ QPS ++= (3.6.6)

3.6. Scalar and Vector Multiplication

42

In this case the carries will be able to take on only two values (0,1) and
S=(0, 1, 2, 3, 4, 5). The scalar multiplication is described in Table 3.6.4.

Table 3.6.4 Carries in scalar multiplication.

S 0 1 2 3 4 5
σ 0 1 0 1 0 1
P 0 0 1 1 0 0
Q 0 0 1 1 1 1

Fig. 3.6.1. gives the scheme of adder in the unit of scalar multiplication.
In this scheme the following notations are used:

a, b, c – digits of multiplicand’s code,
d, e, f – digits of multiplier’s code,
p – input carry,
P – output carry,
Sum – one-digit adder.

Fig. 3.6.1. Adder in the scalar multiplication unit.

Sum
P={-1,0,1,2} p={-1,0,1,2}

S={0,1}

a&f c&db&e

d
e
f

a b c

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 43

3.6.4. Carries in Vector Multiplication
Vector multiplication is described by the formula (3.6.2). If we take

into consideration the carries, the formula becomes as follows:

.

,
,

αββαγρ

γααγβρ
βγγβαρ

γγ

ββ

αα

′′′−′′′+=+

′′′−′′′+=+

′′′−′′′+=+

pP

pP
pP

 (3.6.7)

where p, P – the values of carries into the given and the highest digits. In
the formula (3.6.7) the carries can assume only two values (0,1). Consider
now the first of these formulas. For it the operation is described by the
Table 3.6.5.

Table 3.6.5. Carries in vector multiplication.

γβ ′′′ βγ ′′′ αp α αP
0 0 0 0 0
0 1 0 1 1
1 0 0 1 0
1 1 0 0 0
0 0 1 1 0
0 1 1 0 0
1 0 1 0 -1
1 1 1 1 0
0 0 -1 1 1
0 1 -1 0 1
1 0 -1 0 0
1 1 -1 1 1

Fig. 3.6.2. gives the scheme of adder in the vector multiplication unit.
The notations in this scheme are as following:

a, b, c – digits of multiplicand’s code,
d, e, f – digits of multiplier’s code,
pG, pH, pM – input carries,
PG, PH, PM –output carries,
SumG, SumH, SumM – one-digit adders.

3.6. Scalar and Vector Multiplication

44

SumGPG pG

Sg

b&f

c&e

d
e
f

a b c

SumHPH pH

Sh

c&d

a&f

SumMPM pM

Sm

a&e

b&d

Fig. 3.6.2. Adder in vector multiplication unit.

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 45

3.7. Algorithms and Devices for
Coding and Decoding of Complex
Numbers and Vectors

The best coding systems for geometrical codes construction are the

systems 1, 2, 3. The last two systems are similar in most ways. Therefore
the further discussion will be confined to algorithms and coding devices
only in system 1 and system 2. In these systems the complex code is
represented by a composition of real number’s codes in the radix “-2”.
Such codes are formed from the traditional codes in the radix “2”.
Hence we shall first discuss coding/decoding algorithms and devices for
real numbers in different codes.

No consideration will be given to algorithms and devices for coding
and decoding of vectors, as they are completely similar to the algorithms
and devices for coding and decoding of complex numbers.

The complex number to be coded is presented as βα jXXZ += ,

where βα XX , - the real and imaginary part of the complex number,
and are real (positive or negative) numbers

3.7.1. Coding of Complex Number in System 1

1. The coding of real (positive or negative) numbers βα XX , from P-

code to M-code. It is advisable at first to perform the coding of only
real positive numbers and to keep the signs () ()βα XsignXsign ,

and M-codes of the numbers βα XX , . For real positive numbers
coding a coder of positive P-code to M-code is applied. Then with the aid of
the M-code inverter we must compute the numbers

 () ()ββαα XsignXXsignX ⋅⋅ , .
2. The generation of C-code

() ...,...... 22110011 −−−−= αβαβαβαβαβ mmZK of the complex
number βα jXXZ += , which in future will be represented by

3.7. Algorithms and Devices for Coding and Decoding of Vectors

46

() mZK γ= , where
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

+ oddif

evenif

12

2

m

m

mm

mm

βγ

αγ
. To do this a

dispenser should be used.

3.7.2. Decoding of Complex Number in System 1.

1. The extraction from complex number’s C-code βα jXXZ +=

of even and odd-numbered digits according to the rule

() ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

− oddif

evenif

2/1

2/

m

m

mm

mm

γβ

γα
 and forming from them the digits

α m and β m of the M-codes of real numbers βα XX ,
accordingly. To do this a precoder should be used.

2. The decoding of real numbers (positive or negative) βα XX ,
from M-code to P-code. To do this a full decoder of M-code into P-
code should be used.

3.7.3. Coding of Complex Number in System 2.

1. Computation of ββ μ XX ⋅= with

2
1=μ . This computation is

performed in traditional binary coding system.
2. Coding of real (positive or negative) numbers βα XX , from P-code

into M-code similarly to p.1 of the algorithm 3.6.1.
3. The C-code generation for a complex number βα XjXZ +=

similarly to p.2 of the algorithm 3.6.1.

3.7.4. Decoding of Complex Number in System 2.

1. The extraction from complex number’s C-code βα jXXZ += of

even and odd-numbered digits according to the rule:

() ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=

−=

− oddif

evenif

2/1

2/

m

m

mm

mm

γβ

γα
 and forming from them the digits α m

and β m of the M-codes of real numbers βα XX , accordingly,

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 47

where. ββ μ XX ⋅= with
2

1=μ . To do this a precoder should be

used.
2. Decoding real (positive or negative) numbers βα XX , from M-code

into P-code similarly to p. 2 of the algorithm 3.6.2.
3. Computation of 2ββ XX = . This computation is performed in

traditional binary coding system.

3.7.5. Coder of positive P-code into М-code - CoderPM.
This code converts the Р-code of a positive number into М-code of

this number. Its circuit is shown in the Fig. 3.7.5.1, where
N – digit capacity of the coder,
Meven – one-digit coding circuit for an even-numbered digit,
Modd - one-digit coding circuit for an odd-numbered digit,
A – input P-code,
C – output M-code.

Fig. 3.7.5.1. Coder of positive P-code into М-code

Essentially the transformation consist in the following: the code
including only odd-numbered Р-code digits is subtracted from the code
including only even-numbered Р-code digits, and the subtraction is
performed by the rules of M-codes subtraction. One-digit circuits Meven
and Modd are shown in the Fig. 3.7.5.2. Their functioning is described
by the verity tables 3.7.5.1 and 3.7.5.2 accordingly.

. . .
Mevena

v1
c
w1

v2w2

a
v1

c
w1

v2w2

a
v1

c
w1

v2w2

a
v1

c
w1

v2w2

C
A

A(1) A(0)

N
N

ModdMevenModd

V1
V2

. . .

. . .

. . .

A(2)
A(N-1)

C(1) C(0)C(2)
C(N-1)

W1
W2

3.7. Algorithms and Devices for Coding and Decoding of Vectors

48

Meven
or

Modd

a

c

w2

w1 v1

v2

b
Fig. 3.7.5.2. One-digit coder circuit.

Table 3.7.5.1. One-digit coder circuit for even-numbered digit

a v1 v2 w1 w2 c

0 0 0 0 0 0
1 0 0 0 0 1
0 0 1 0 0 1
1 0 1 1 1 0
0 1 1 0 1 1
1 1 1 0 0 0

Table 3.7.5.2. One-digit coder circuit for odd-numbered digit

a v1 v2 w1 w2 c

0 0 0 0 0 0
1 0 0 0 1 1
0 0 1 0 0 1
1 0 1 0 0 0
0 1 1 0 1 1
1 1 1 0 1 0

3.7.6. Decoder of M-code into P-code – DecoderMР.
This decoder transforms the М-code of a number into Р-code of this

number. Its circuit is shown in Fig. 3.7.6.1, where
N - digit capacity of the decoder,
Deven – one-digit decoding circuit for an even-numbered digit,
Dodd – one-digit decoding circuit for an odd-numbered digit,
A – input M-code,
C – output P-code,

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 49

cop – operation code,
W – output carry.

Fig. 3.7.6.1. Decoder of M-code into P-code

Essentially the transformation consist in the following:

• if the M-code is a positive number, then the code including only
odd-numbered digits of M-code is subtracted from a code including
only even-numbered digits of M-code (in this case сор=0),

• if the M-code is a negative number, then the code including only
even-numbered digits of M-code is subtracted from a code including
only odd-numbered digits of M-code (in this case сор=1), and the
subtraction is performed according to the rule of P-codes
subtraction.

One-digit circuits Deven and Dodd are shown in the Fig. 3.7.6.2. Their
functioning is described by the verity tables 3.7.6.1 and 3.7.6.2
accordingly.

(a – v), if cop = 0
Table 3.7.6.1 computes (-2w+c) = { (-a – v), if cop = 1

(-a – v), if cop = 0

Table 3.7.6.2 computes (-2w+c) = { (a – v), if cop = 1

Dodd
or

Devena

v

c

w

Devenc

w

Doddc

w

Devena

v

c

w

A

. . .

. . .

. . .

A(1)A(2)A(N-1)

N
N

v

a

v

A(0)

C

C(N-1) C(2) C(1) C(0)

copcop copcop

a

COP. . .

W
V

3.7. Algorithms and Devices for Coding and Decoding of Vectors

50

Deven
or

Dodd

a

c

w
v

cop

Fig. 3.7.6.2. One-digit decoder circuit.

Table 3.7.6.1. One-digit decoder circuit for even-numbered digit

 cop a v w c
0 0 0 0 0
0 1 0 0 1
0 0 1 1 1

Even - Odd

0 1 1 0 0
1 0 0 0 0
1 1 0 1 1
1 0 1 1 1

Odd - Even

1 1 1 1 0

Table 3.7.6.1. One-digit decoder circuit for odd-numbered digit
 cop a v w c

0 0 0 0 0
0 1 0 1 1
0 0 1 1 1

Even - Odd

0 1 1 1 0
1 0 0 0 0
1 1 0 0 1
1 0 1 1 1

Odd - Even

1 1 1 0 0

3. Foundations of Computer Arithmetic for Complex Numbers and Vectors

 51

3.7.7. Full Decoder of M-code into P-code – mDecoderMР

The decoder DecoderMР is controlled by operation code cop. As a
result full Decoder mDecoder must (beside DecoderMР) contain also
the sign determinant of М-code – nSign. The unit’s circuit will take the form
presented in the Fig. 3.7.7.

nSign

P-code register

DecoderMP Sign

Sign Mantissa

M-code register

Cop

Fig. 3.7.7. Full decoder.

3.7.8. Precoder of Р-code into М-code – PreCoder.
Precoder of P-code into M-code arranges the digits of P-code A in

two groups – group evenA - of even-numbered digits (0, 2, 4, …) and
group oddA - of odd-numbered digits (1, 3, 5, …). In that way the coder
кодер created from a code А two codes - evenA and oddA . Notice that
these codes later on will arrive on two inputs of M-codes algebraic adder.
This adder computes or ()oddeven AA − , or ()evenodd AA − depending
on the value of control signal { }1,0=s accordingly. The precoder is
presented in Table 3.7.8, where for the code A the numbers of digits are
indicated, and for codes evenA and oddA the digits whose values are the
same as of the corresponding digit of code A are indicated by “=”. «0» is
indicating a certain value of this code’s digit’s value.

3.7. Algorithms and Devices for Coding and Decoding of Vectors

52

Table 3.7.8. Precoder of P-code into M-code
A … 7 6 5 4 3 2 1 0

Aeven … 0 = 0 = 0 = 0 =

Aodd … = 0 = 0 = 0 = 0

3.7.9. Partitioning Unit for Code’s Parts – Partitioning.

The partitioning unit for code’s parts transforms the real and imaginary
parts of the code A into two M-codes of real numbers ReА and ImА.
The imaginary part is transmitted with 1-digit shift to the left. The code
partitioning unit is presented in Table 3.7.9, where for the code A the
number of digits are indicated, and for the codes ReА and ImА the
indicated numbers are the А code digit’s numbers, which were moved to
this digit in the course of partitioning

Table 3.7.9. Partitioning Unit for Code’s Parts
А … 7 6 5 4 3 2 1 0
Re А … 14 12 10 8 6 4 2 0
Im А … 15 13 11 9 7 5 3 1

4. Vector Processor

 53

4. Vector Processor

4.1. Data Representation and Vector
Arithmetic Unit

Contrary to the ordinary data representation described in section 2.1

the coordinates of a point are presented as a code of point-vector. A
simple vector arithmetic unit VAU operates with p–dimensional vectors.
Such unit has to contain p(n+r)–digit multiplier, p(n+r)–digit adder,
p(n+r)–digit coordinate register and a–digit parameters register. In this
unit an affine transformation includes only one operation. VAU is
shown in the Fig. 4.1.1. It is similar to the SAU unit, but, unlike the latter,
contains a vector adder. All the transformation parameters are delivered
simultaneously into the coordinate unit, in the transformation vector’s
code – see the description of operations with vector codes. In addition,
coding and decoding units are provided in it.

Let us view the list of processor’s commands realized in VAU:
• Receiving and coding the transformation parameters
• Receiving and coding all point’s coordinates
• Adding to the carry vector
• Multiplying by the transformation matrix.
• Decoding and generating all coordinates
• Rounding off

4.1. Data Representation and Vector Arithmetic Unit

54

Registers of all Parameters of
Transformation - a bytes

Input

Register of Coordinates - p(n+r) bytes

Adder of Vectors- p(n+r) bytes

Shifter - p(n+r) bytes

Input Output

Coordinate Block

Control
Unit

Coder of
Coordinates -
p(n+r) bytes

Decoder of
Coordinates -
p(n+r) bytes

Coder of Parametrs - a bytes

 Register of Parameter - pr bytes

Multiplexer

Fig. 4.1.1. Vector arithmetic unit

4. Vector Processor

 55

There is a way of constructing (by analogy with MSAU) an arithmetic
unit MVAU, by using a set (M) of elementary units VAU operating
simultaneously. In this unit the codes of all points-vectors of the figure
comprise an array that will be called rectangular code of the vector -
RCV. RCV contains M registers of digit capacity p(n+r). MVAU as a
whole contains М adders of digit capacity p(n+r), М multipliers of digit
capacity p(n+r), RCV and one a–digit parameters register. This MVAU
performs group operations - adding RCV to the carry vector and
multiplying RCV by the transformation matrix.

Further, by analogy with FSAU, we may construct another version of
AU that is intermediate between the AU with individual and group
operations. For this purpose we must split RCV into several segments

RCSq, each containing (Q) registers of digit capacity p(n+r). The
arithmetic unit FVAU contains a total of Q adders of digit capacity

p(n+r), Q multipliers of digit capacity p(n+r), RCSq and a–digit
parameters register. The diagram of FVAU is shown in the Fig. 4.1.2.
This diagram is identical with the diagram in the Fig. 4.1.1, except that its
operational unit has Q coordinate units, detailed in the Fig. 4.1.1.

FVAU performs group operations with the point’s coordinates of a
figure fragment. In it the affine transformation of a figure has Q group
multiplications and Q group additions.

4.1. Data Representation and Vector Arithmetic Unit

56

Registers of all Parameters of
Transformation - a bytes

Input

Register of Coordinates - p(n+r) bytes

Adder of Vectors- p(n+r) bytes

Shifter - p(n+r) bytes

Input Output

Coordinate Block

Control
Unit

Coder of
Coordinates -
p(n+r) bytes

Decoder of
Coordinates -
p(n+r) bytes

Coder of Parametrs - a bytes

 Register of Parameter - pr bytes

Multiplexer

Fig. 4.1.2 Vector arithmetic unit with rectangular codes.

4. Vector Processor

 57

4.2. Comparisons

Table 4.2.1.a and 4.2.1.b review the comparative features of the

units described above. In these tables:
• R – digit capacity of all registers;
• U – number of multipliers;
• A – adder’s volume, measured in register’s digits; it is assumed that

the adder’s volume is three times larger than that of the register.
• M – shifter’s volume in multiplier, measured in register’s digits; it is

assumed that the shifter’s volume is twice as large as the
register’s volume;

• W=(R+A+M) – the volume of arithmetic unit, measured in
register’s digits;

• S – number of elementary operations of the given AU for an affine
transformations of a whole figure.

Table 4.2.1a. Comparative features of AU.

AU U R A M
1 SAU 1 2(n+r)+a 2(n+r) 3(n+r)
2 VAU 1 2p(n+r)+a 2p(n+r) 3p(n+r)
3 MSAU M 2M(n+r)+a 2M(n+r) 3(n+r)M
4 MVAU Mp2 2Mp(n+r)+a 2Mp(n+r) 3p(n+r)M
5 FSAU Q 2Q(n+r)+a 2Q(n+r) 3(n+r)Q
6 FVAU Qp2 2Qp(n+r)+a 2Qp(n+r) 3p(n+r)Q

Table 4.2.1b. Comparative features of AU.

AU U W S
1 SAU 1 7(n+r)+a M(D+p2)
2 VAU 1 7p(n+r)+a M
3 MSAU M 7M(n+r)+a D+p2
4 MVAU Mp2 7Mp(n+r)+a 1
5 FSAU Q 7Q(n+r)+a (D+p2)M/Q
6 FVAU Qp2 7Qp(n+r)+a M/Q

Tables 4.2.2, 4.2.3, 4.2.4 show the numerical comparative

characteristics of the above named units with various values of n, r, p,

4.2. Comparisons

58

M, Q. This table is built on the base of Table 4.2.1. Besides, this table
shows the quality of AU, measured as H=W*S/M, and also the value

1+
=

k
kk H

Hh ,

which determines a comparative quality of AU operating with numbers
as compared with AU operating with vectors.

Table 4.2.2. Numerical characteristics of AU with p=2, r=6, M= 106, n=12,
Q=256, a=72.

АУ R U W S H h
1 126 1 198 6*106 1188
2 180 1 324 106 324

3.7

3 54*106 106 126*106 6 756
4 108*106 106 254*106 1 254

3

5 14000 256 32000 24000 768
6 28000 256 64000 4000 256

3

Table 4.2.3. Numerical characteristics of AU with р=3, r=6, М=106, n= 12,
Q=256, а=90.

АУ R U W S H h
1 144 1 216 15*106 3240
2 252 1 468 106 468

6.9

3 54*106 106 126*106 15 1890
4 162*106 106 378*106 1 378

5

5 14000 256 32000 60000 1920
6 42000 256 96000 4000 384

5

Table 4.2.4. Numerical characteristics of AU with р=4, r=6, М=106, n= 12,
Q=256, а=240.
АУ R U W S H h
1 292 1 366 28*106 10248
2 384 1 744 106 744

13.8

3 54*106 106 126*106 28 3528
4 216*106 106 504*106 1 504

7

5 14000 256 32000 112000 3584
6 56000 256 128000 4000 512

7

From the above tables it follows that the quality of AU operating with

vectors exceeds the quality of AU operating with numbers. The

4. Vector Processor

 59

comparative quality increases h =3, 5, 7 times for p=2, 3, 4 and with

1>>Q . Comparative quality h increases with 1→Q . It means that
for a given volume of AU the performance of VAU, MVAU, FVAU
increases h times as compared with SAU, MSAU, FSAU. It means also
that for a given capacity of AU the volume of VAU, MVAU, FVAU
decreases h times as compared with SAU, MSAU, FSAU. Therefore it is
profitable to use vector arithmetic for the construction of geometrical
processors.

To choose the optimal value of Q, one can minimize the criterion
SkW +=λ , where k is a certain weight coefficient. The optimal

value of FVAU is equal to
)(7 rnap

MQ
+

=

Specifically, if a=0.05, М=106, r=6, n= 12, p =(2, 3, 4) then
the optimal value is Q = (282, 230, 199).

In the further discussion we shall concentrate mainly on geometrical
processors based on the arithmetic of geometrical codes. The described
above unit FVAU, based on vector arithmetic, will be used for
comparison.

5.1. Primary Geometrical Codes

60

5. Figure Coding Theory

5.1. Primary Geometrical Codes

5.1.1. Data Representation
Let us consider the binary tree shown in Fig. 5.1.1, and accord each of

its vertexes a binary number (i, k), where k will be the tier number and i –
the number of the vertex. Let us further assume that the tier numbering
proceeds from left to right, and the numbering of vertexes – from top to
bottom.

β1,mβ1 1,m+β1 2,m+

α2 2,m+

α4 2,m+

β3 2,m+ α2 1,m+

α
2 r n,

α 2 ,n

β 1 ,n k,1β

α
2 11r n− −,

β
2 1r n− ,

ki,β

β3 2,m+

Fig. 5.1.1. Binary Tree.

5. Figure Coding Theory

 61

Let m and n be the numbers of the extreme right and left tiers,
respectively. Then k=(n, n-1,..., m+1, m); i=(1, 2,..., 2k m−); the
number of tiers r=(n-m+1); the number of tree nodes u=(2r -1); the
number of vertexes in the n-tier 12 −= rN . Let us designate as α i k, the
vertex with even number i and as β i k, - the vertex with odd number i.

Let us call the path within the tree that connects vertexes β 1,m and

 the p-path. Obviously, each p-path can be described by a series

of symbols α i k, and βι,κ. For instance, the path emphasized in Fig.
5.1.1 is the p-path with the following corresponding series

β p n, ... β i k, ... β 3 2,m+ α 2 1,m+ β 1,m .

Let us refer to each symbol α or β of a series depicting a certain p-
path in the tree as k-digit of the p-path or (i, k)-digit of the tree. If we
set, for each of the digits in the p-path, a corresponding 1 for an α-digit
or a 0 for a β-digit, then the p-path can be represented by a binary code
K[p]. In particular, for Fig. 5.1.1 K[p] = 0...0...010. The number of the
p-path equals the number of the digit in the n-tier with which this path
ends. Let us now agree that α and β are binary values, i.e. α = (0,1) and β
= (0,1). Let us call the p-path open if the value of all its digits is 1, and
closed if the value of at least one of its digits is 0. For illustration, Fig
5.1.2 shows a binary digit tree in which the paths are open (indicated in
parentheses is the binary code that corresponds to the given path)

α 43 α 22 β 11 β 10 (K[4]=1100),
β 53 β 32 α 21 β 10 (K[5]=0010),
α 63 β 32 α 21 β 10 (K[6]=1010),
β 73 α 42 α 21 β 10 (K[7]=0110),

or, in other words, this tree represents 4 binary codes. It should be noted
that the open path depicted in the tree by 1-digits only has a
corresponding binary code that includes, in the general case, 0-digits as
well.

5.1. Primary Geometrical Codes

62

0
13β

1

0

0

0

1

1

1

0

1

1

1

1

1

1

23α

33β

53β

73β

43α

63α

83α

22α

42α

21α

10β11β12β

32β

Fig. 5.1.2. Examples: a tree of binary digits

Let us refer to the binary digits tree thus constructed, which depicts a

set of binary codes , as primary geometrical code PGC (in this section
the adjective “primary” is going to be omitted and we shall talk about
geometrical code GC), and the binary codes comprising it – as linear
codes. Let us refer to the number of the digit in the senior tier of the
geometrical code as the address of the corresponding linear code. The
reduction of the number of binary digits when depicting a binary codes
as geometrical code amounts to g=ra/(2 1r+ -2).

In particular, if all the tree’s paths are open, then it depicts all r-digit
binary codes. It follows from the above formula that the efficiency of the
geometrical code increases in proportion to the value of a. However the
main advantages of the geometrical code are that it is fairly simple to use
for performing a variety of operations. Therefore, it is advisable to use
geometrical code in those cases when there is a sufficiently large group of
binary codes with which it is necessary to perform identical, group
operations, for instance multiply all codes by one and the same number.
In addition it is possible (as will be demonstrated further on) to use the
geometrical code to depict random figures and interpret different
transformations of these figures as operations with geometrical code.

5. Figure Coding Theory

 63

5.1.2. Arithmetic operations with geometrical
codes in a real radix

5.1.2.1. Introduction
Operations with geometrical codes reviewed below are, as a rule,

equivalent to a certain logic or arithmetic operation involving the known,
basic, binary code and each of the linear codes included in the set
represented by the geometrical code. Besides, the operations are
connected with the propagation of carries from the right-hand – lower
tiers into the left-hand – upper tiers of the tree. Let us designate:
• β i k, - (i, k)-digit of geometrical code with i - odd;
• α i k, - (i, k)- digit of geometrical code with i - even;

• π i k, - general carry to β 2 1 1i k− +, and α 2 1i k, + digits (i-odd);

• μ i k, - carry p from the β i k, digit;
• η i k, - carry p from the α i k, digit;

• δ k - k-digit of the basic code;
• τ i k, - transposition signal of the code with the (i, k)-digit as its

angle digit.

μ i k,

η i k,π i k,

β2 1 1i k− +,

α i k,

β i k,π i k,

β2 1 1i k− +,

α2 1i k, +

α2 1i k, +

Fig. 5.1.2a. Carry propagation pattern in GC

The carry η i k, from the digit α i k, or the carry μ i k, from the

digit β i k, arrives at the digits β 2 1 1i k− +, and α 2 1i k, + as the carry

5.1. Primary Geometrical Codes

64

π i k, according to the following pattern represented in Fig. 5.1.2 а. The
transposition signal τ i k, precedes the signals μ i k, and η i k, that are

the logical functions of the digit values β 2 1 1i k− +, and α 2 1i k, + obtained
after the transposition.

The basic code and linear codes represented by the geometrical code
can be viewed as binary codes with a ρ radix of a certain number or
vector. In this case all digits of the geometrical code included in the k-tier
must be accorded the weight of the k-digit of the linear code.

The number of linear codes comprising the geometrical code does not
change during arithmetic operations.

5.1.2.2. Writing of Base Code
When the path is formed in GC with a linear code, equal to base code

δ, the carry propagation process is determined by the following formulas:

., δπηδπμ ∧=∧=

For μ=1 the digit β assumes the value “1” regardless of its previous
value. Similarly, for η=1 the digit α assumes the value “1”.

5.1.2.3. Transposition

0

1

0

0

0

1

1

1

0

1

1

1

1

1

1

Fig. 5.1.3. Example: a transposed code.

5. Figure Coding Theory

 65

Transposition of geometrical code will be the name of a
transformation whereby the lower and upper halves of the geometrical
code switch places. To be more precise, the digits of the initial code are
connected with the digits of the transposed code (marked with a dash
above the symbol) in the following manner:

α α β βi k j k i k j k
k i k ij rest, , , ,, , ()mod .= = = + − − +1 2 2 1

For instance, the code in Fig. 5.1.2 after transposition becomes the code
in Fig. 5.1.3.

5.1.2.4. Addition of Geometrical and Basic Codes when ρ=2

is described in Table 1.1.1, wherefrom it follows that
τ δ π η α δ π μ δ π β= ⊕ = ∧ ∧ = ∨ ∧, , () ,
Having distributed the indexes, we come up with the following formulae:
τ δ πi k k i k, ,= ⊕+1 , (5.1.1)

η α δ πi k i k k i k, , ,= ∧ ∧ − −1 1 with i - even, (5.1.2)

μ δ π βi k k i k i k, , ,()= ∨ ∧−1 with i - odd. (5.1.3)

Table 5.1.1a. Addition of geometrical and basic codes with ρ=2

α β δ π τ η μ
0 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 1 0 0
0 1 0 1 1 0 1
1 0 0 1 1 0 0
1 1 0 1 1 0 1
0 0 1 0 1 0 0
0 1 1 0 1 0 1
1 0 1 0 1 0 0
1 1 1 0 1 0 1
0 0 1 1 0 0 0
0 1 1 1 0 0 1
1 0 1 1 0 1 0
1 1 1 1 0 1 1

5.1. Primary Geometrical Codes

66

Example 5.1.1 of addition when ρ=2. Let the basic code be
K=<2> or K=10, and the geometrical code G depict a set of linear
codes {1100, 0010, 1010, 0110} or, which is exactly the same thing, a
set of numbers {12, 2, 10, 6}. Let us find the geometrical code
R=G+K – see Fig. 5.1.4. The process of carry proliferation stops. The
resulting code R= G4 depicts a set of codes {1110, 0010, 1100,
1000}, i.e. a set of numbers {14, 4, 12, 8}, which is what we needed to
obtain. Thus, addition of geometrical and basic codes when ρ=2 is
reduced to repeated transpositions.

5. Figure Coding Theory

 67

 m = 3 2 1 0 numbers of digits
 K = 0 0 1 0 basic code
1) G1 = 0 0 1 1 π 10 = 0
 0
 0 1 τ δ10 1= = 1
 1
 1 1 1
 1
 1 1
 0
2) G 2 = 1 1 1 1 π δ π β11 1 10 11= ∨ ∧() =1
 1
 1 1 π α δ π21 21 1 10= ∧ ∧ =0
 0
 0 0 1 τ δ π11 2 11= ⊕ = 1
 0
 0 1 τ δ π21 2 21= ⊕ = 0
 1
3) G3 = 1 1 1 1 π 12 = 1
 0
 1 1 π π π22 32 42= = = 0
 1
 0 0 1 τ 12 = 1
 0
 0 1 τ τ τ22 32 42= = = 0
 1
4) G 4 = 0 1 1 1 π i,3 = 0
 1
 1 1 τ i,3 = 0
 1
 0 0 1
 0
 0 1
 1

Fig. 5.1.4. For example 5.1.1

5.1. Primary Geometrical Codes

68

5.1.2.5. Algebraic Addition of Geometrical and Basic Codes
when ρ=2
This operation is possible only if the initial numbers are represented

in the form of additional codes. In this case algebraic addition is
described by the same equations. It is impossible to use inverse codes
because there is no way to organize a chain of cyclical carries within the
geometrical code.

5.1.2.6. Algebraic Addition of Geometrical and Basic Codes
when ρ=-2
This operation consists of a repeated sequence of inversion

(multyplication by ‘-1’) operations and inverse addition (calculation
according to the c=-a-b formula). The inverse addition operation is
described in Table 5.1.1, wherefrom it follows that

τ δ π= ⊕ , η α δ π= ∧ ∨() , μ β δ π= ∧ ∧ .

Table 5.1.1b. Inverse addition of geometrical and basic codes with ρ=-2

α β δ π τ η μ
0 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 0 0
1 1 0 0 0 0 1
0 0 0 1 1 0 0
0 1 0 1 1 0 0
1 0 0 1 1 0 0
1 1 0 1 1 0 0
0 0 1 0 1 0 0
0 1 1 0 1 0 1
1 0 1 0 1 1 0
1 1 1 0 1 1 1
0 0 1 1 0 0 0
0 1 1 1 0 0 1
1 0 1 1 0 0 0
1 1 1 1 0 0 1

Where δ = 0, those same formulae describe the inversion of

geometrical code. Here we can also use the formulae in (5.1.1) and
η β δ πi k i k k i k, , ,= ∧ ∧ − −1 1 with i - even, (5.1.4)

5. Figure Coding Theory

 69

μ δ π αi k k i k i k, , ,()= ∨ ∧−1 with i - odd. (5.1.5)

Example 5.1.2 of inverse addition with ρ = -2. Let the basic code
be K = < 2 > or K = 110, and the geometrical code G depict a set of
linear codes {0000, 0100, 0010, 0110} or, which is the same thing, a
set of numbers { 0, 4, -2, 2 }. Let us find the geometrical code R = -
G - K – see Fig. 5.1.5. The process of carry propagation stops. The
resulting code R = G 4 depicts a set of codes { 0000, 1100, 0010, 1110
}, i.e. a set of numbers { 0, -4, -2, -6 }, which is what we needed to
obtain. Thus the addition of geometrical and basic codes with ρ = -2
is reduced to repeated transpositions.

5.1. Primary Geometrical Codes

70

 m = 3 2 1 0 numbers of digits
 K = 0 0 1 0 basic code
1) G1 = 1 1 1 1 π 10 = 0
 0
 1 1 τ δ10 1= = 1
 0
 1 1 1
 0
 1 1
 0
2) G 2 = 1 1 1 1 π β δ π11 11 1 10= ∧ ∧ =1
 0
 1 1 π α δ π21 21 1 10= ∧ ∨() =1
 0
 1 1 1 τ δ π11 2 11= ⊕ = 0
 0
 1 1 τ δ π21 2 21= ⊕ = 0
 0
3) G3 = 1 1 1 1 π π12 32= = 0
 0
 1 1 π π22 42= = 1
 0
 1 1 1 τ τ12 32= = 0
 0
 1 1 τ τ22 42= = 1
 0
4) G 4 = 1 1 1 1 π i,3 = 0
 0
 0 1 τ i,3 = 0
 1
 1 1 1
 0
 0 1
 1

Fig. 5.1.5. For example 5.1.2.

5. Figure Coding Theory

 71

5.1.2.7. Multiplication of Geometrical and Basic Codes
When describing this operation, let us limit ourselves to a case where

the basic code is whole because the other case is easily reduced to this
one by shifting the product. Thus let us suppose that the basic code is the
multiplicand, and the geometrical code – the multiplier. The essence of
multiplication is in replacing all digits α i k, = 1 of the multiplier with the
basic code. In order to effect such substitution, it is necessary
• to identify within the geometrical code G the geometrical code

Gi k, , in the lowest digit of which the α i k, = 1 digit and the

remainder code G0 are found;

• to add the Gi k, code to the basic code, assuming that the vertex of

the Gi k, code lies in the zero tier – as a result of this operation, a

certain code ′ −Gi k2 1, is formed;

• superimpose the ′ −Gi k2 1, code obtained in the previous step over

the remainder code G0 .
Multiplication as a whole is a successive substitution of the multiplier’s

1, =kiα digits, which begins with the upper tier digits and proceeds
from left to right. The carries during this addition propagate in the
opposite direction and do not distort those multiplier digits that have not
yet undergone the substitution process. Let us note that the kiG , code

consists of (r,s)-digits of the code, where

)12(2, 1 +≥≥> −−− krkr iriks . For instance, if α αi k, = 21 , then

 0...
325321, ββ== GG ki

63α

4273 αβ

83α

In order to eliminate overflow of the digit net, which is something
that can occur during multiplication, it is necessary to make use of the
rounding-off operation described below.

5.1. Primary Geometrical Codes

72

This method of multiplication is not applicable with ρ=2 if there are
negative numbers among those numbers represented by the linear codes.

Example 5.1.3 of multiplication with ρ = -2. Let us find the
product of the basic code K=<-2> or K=10 and the geometrical code
– see Fig. 5.1.6.

1

0

1 1 1

1 1 1

0

0

1 1

0

1 1 22G=

42G=

=G

m = 3 2 1 0 number of digits

K(0)

K(1)

K(-1)

K(-2)

Fig. 5.1.6. For example 5.1.3.

In the third tier of code G there are no digits α = 1. Thus we proceed
to analyze the second tier, where 14222 ==αα . We identify codes

22G ,
42G ,

0G ′ . Let us perform the addition of codes 22G , 42G

and 10, as a result of which we obtain the codes
11G ′ and 21G ′ .

Once we superimpose these codes onto the code
0G ′ , we obtain the

code – see Fig. 5.1.7.

5. Figure Coding Theory

 73

′G 0 = ′G 21 = ′G11 = ′G =

1 1 1 1 0 1 1 0 1 1 1 1 1 1
0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0
1 1 1 1 1 1
0 1
0 0 0 0
0 0

Fig. 5.1.7. For example 5.1.3.
We then review the first tier of the resulting code G ′ and identify

from it the codes – see Fig. 5.1.8.
′′G 21 = ′′G 0 =

1 1 1 1 1 1 1
1 1
0 0 0 0
0 0
 0 0 0
 0
 0 0
 0

Fig. 5.1.8. For example 5.1.3.
Let us add the code 21G ′′ with the code 10, and as a result we shall
obtain the code 11G ′′ . We then superimpose that code 11G ′′ onto the
code 0G ′′ and we obtain the final code G ′′ – see Fig. 5.1.9.

′′G11 = ′′G = K(…)

0 0 1 1 1 1 1 1 K(0)
0 1 K(4)
1 1 1 1 K(-2)
1 1 K(2)
0 0 0 0 0 0
0 0
0 0 0 0
0 0

Fig. 5.1.9. For example 5.1.3.

5.1. Primary Geometrical Codes

74

Thus GG 2−=′′ . It is easy to verify the correctness of this

multiplication. Indeed, the code G describes the set of numbers {-2, -
1, 0, 1}, and the code G ′′ - the set of numbers {-2, 0, 2, 4}, which is

obtainable from the first by multiplying by ‘-2’.

Let us review a special case when the basic code contains «1» in the
lowest digit. In this case the multiplication algorithm is simplified and
consists of the following:
• identify within the geometrical code G the geometrical code Gi k, ,

in the lowest digit of which the digit 1, =kiα is located;

• add the code Gi k, to the basic code in which the lowest digit has been

zeroized, assuming that the vertex of the code Gi k, lies in the zero

tier – as a result of this operation, a certain code ′Gi k, is formed;

• superimpose the code ′Gi k, obtained in the preceding step onto the

code G.
Such an algorithm is equivalent to all codes { }var,, −iG ki of the k-tier
being added to the basic code in which the lowest digit has been zeroized. The
carries in this case originate from the ki,α digits, and this digit itself
does not change its value since it is added to the zero digit of the basic
code.

Example 5.1.3a of multiplication with ρ = -2. Let us find the
product of the basic code K=<-1> or K=11 and the geometrical code
– see Fig. 5.1.9а. In the third tier of the code G there are no digits

1=α . Thus we shall proceed with the analysis of the second tier
where 14222 == αα . After the code G is added to the altered
basic code 10, we obtain the code G ′ – see Fig. 5.1.9b.

5. Figure Coding Theory

 75

1

0

1 1 1

1 1 1

0

0

1 1

=G

m = 3 2 1 0 number of digits

K(0)

K(1)

K(-1)

K(-2)

0

1 1

Fig. 5.1.9a. For example 5.1.3a.

′G = K(…) ′′G = K(…)

1 1 1 1 K(0) 1 1 1 1 K(0)
0 0
0 1 0 1
1 K(2) 1 K(2)
1 1 1 K(1) 1 1 1 K(1)
0 0
0 1 1 1 K(-1)
1 K(3) 0

Fig. 5.1.9b. For example 5.1.3a.

In the first tier of this code α 12 1= . After the code ′G is added

to the altered basic code 10, we obtain the code G ′′ – see Fig.

5.1.9b. Thus GG −=′′ . This multiplication is easily verified.

Indeed, the code G describes the set of numbers {-2, -1, 0, 1}, while
the code ′′G - the set of numbers {-1, 0, 1, 2}, which is obtainable

from the first by multiplying by ‘-1’.

5.1. Primary Geometrical Codes

76

5.1.2.8. Division of the geometrical code by the basic code of a
certain number is replaced by multiplication of the geometrical code by
the basic code of an inverse number.

5.1.2.9. Rounding-off of the geometrical code
This operation containing r tiers consists in discarding the lowest tier.

As a result, two codes are formed containing (r-1) tiers each. The
operation ends by superimposing the resulting codes. Thus, as a result of
superimposition, the lesser (or to be more precise, not the greater)
number of linear codes of a shorter word length remains. This is due to
the fact that when lower digits are discarded, equal linear codes may
form, which are fixed in the resulting geometrical code as a single code.

5. Figure Coding Theory

 77

5.1.3. Geometrical Codes in a Complex Radix.

Complex numbers can be used as the radix for coding linear codes.

Similarly, attribute geometrical codes can be constructed in a complex
radix. Unlike the preceding, the path value in such codes is the linear
binary code with a complex radix. Such codes are described to part 3.1-
see Table 3.1.1, where the existing systems of complex numbers are
outlined. Further we are going to review arithmetic operations with
geometrical codes in coding systems 1, 2 and 3. Therefore, in the
subsequent detailing of codes the results of the previous section can be
used. Some operations do not depend on the coding radix at all, and they
will not be reviewed here.

5.1.3.1. Algebraic Addition of Geometrical and Basic Codes.
In the indicated systems, the binary code of a complex number can be

viewed (when algebraic addition is being performed) as two codes of the
parts Im and Re with a radix ρ = −2 , their digits alternating. Due to
that, operations of inverse addition are described by the same equations
as with ρ = −2 , but the carries μ i k, and η i k, from the k-tier

arrive not into two digits of the (k+1)-tier, but into four digits of the
(k+2)-tier. Addition formulae in this case take on the following
appearance:
τ δ πi k k i k, ()/ ,= ⊕+ + −1 1 2 1 with i - even, (5.1.6)

τ δ πi k k i k, / ,= ⊕+ −1 2 1 with i - odd, (5.1.7)

η β δ πi k i k k j k, , ,= ∧ ∧ −2 with i - even, (5.1.8)

μ δ π αi k k j k i k, , ,()= ∨ ∧−2 with i - odd, (5.1.9)
where j=1+z[(i-1)/4], and the function z[x] – is a whole part of the
argument x.

Example 5.1.4 of inverse addition where 2j=ρ Let the basic

code be K = < j 2 > = 10, and the codes of the numbers 0 and

j 2 be represented by the geometrical code G. Let us find the
geometrical code R=-G-K – see Fig. 5.1.10.

5.1. Primary Geometrical Codes

78

 m = 3 2 1 0 numbers of digits
 K = 0 0 1 0 basic code
1) G= G1 = 1 1 1 1 π 10 = 0
 0
 0 0 τ δ10 1= = 1

 0
 1 1 1
 0
 0 0
 0
2) G 2 = 1 1 1 1 π β δ11 11 1= ∧ = 1

 0
 0 0 π α δ21 21 1= ∧ = 1

 0
 1 1 1 τ δ11 2= = 0

 0
 0 0 τ δ21 2= = 0

 0
3) G3 = 1 1 1 1 π π π π12 22 32 42= = = = 0
 0
 0 0
 0
 1 1 1 τ τ τ τ12 22 32 42= = = = 1
 0
 0 0
 0
4) G 4 = 0 1 1 1 π i,3 = 0
 1
 0 0 τ i,3 = 0
 0
 0 1 1
 1
 0 0
 0

Fig. 5.1.10. For example 5.1.4.

The process of carry proliferation stops. The resulting code R= G4

describes the codes 1010 and 1000 of the numbers (2j−) and

5. Figure Coding Theory

 79

(22 j−), respectively. Thus with 2j=ρ the process of addition
is reduced to repeated transpositions as well.

Thus, multiplication of GC by the basic code consists in adding the

fragments of the GC to the basic code. Where the radix is (-2), such
addition consists of inverse addition and inversion of the resulting
fragment.

5.1.3.2. Multiplication of geometrical and basic codes is
performed as described above for a random radix. However, in this case,
certain modifications of this operation are also possible in addition to
that:

• multiplication of the real part of geometrical code (even-
numbered tiers) by basic code, which involves the substitution of
only those digits 1, =kiα that belong to the real parts of linear
codes;

• multiplication of the imaginary part of geometrical code (odd-
numbered tiers) by basic code, which is performed similarly to the
preceding;

• multiplication of the real and imaginary parts of geometrical code
simultaneously by different basic codes.

Another difference has to do only with coding system 1, and it is as
follows. In even-numbered tiers, the 1, =kiα digits are substituted by

linear codes of the complex number Z as described above for the general

case. In odd-numbered tiers, the α i k, = 1 digits are substituted by

linear codes of the complex number jZ as described above for the
general case.

Example 5.1.5 of multiplication of the imaginary part of

geometrical code with 2j=ρ The basic code,

>+=< 21 jK or K=11, and the geometrical code G are known
– see Fig. 5.1.11.

5.1. Primary Geometrical Codes

80

m = 3 2 1 0 -1 m = 3 2 1 0 -1

G = 1 1 1 1 1 ′G 0 = 1 1 1 1 1
 0 0
 0 0 0 0
 0 0
 1 1 1 1 1 1
 0 0
 0 1 0 1
 1 0
 0 0 1 1 0 0 1 1
 0 0
 1 1 1 1
 0 0
 1 1 1 1 1 1
 0 0
 0 1 0 1
 1 0

Fig. 5.1.11. For example 5.1.5.

Let us find the geometrical code R=K(ImG). First we analyze the
upper odd (third) tier of the code G, and we find that

116383 == αα . We identify the codes 116383 == GG and

0G ′ , then we perform the addition of codes 83G and K, and as a
result we obtain these codes:

 ′G 73 = ′G153 0 0 1
 0
 0 1
 1

Let us superimpose 0G ′ , 73G ′ , and 153G ′ , and obtain the code

G ′ – see Fig. 5.1.12. By passing the second tier (since we are only

multiplying the imaginary part), we analyze the first tier of the code
G ′ , and we notice that 14121 == αα . We identify the codes

21G ′ , 41G ′ , and 0G ′′ . Then we add the codes 21G ′ and 41G ′ to

the code K, and as a result we obtain the codes 10G ′′ and 20G ′′ . We
then superimpose those codes onto the code 0G ′′ , and we obtain

finally the code R – see Fig. 5.1.13. A geometrical interpretation of
this example will be provided further on.

5. Figure Coding Theory

 81

1

0

1 1 1

0 0 1

0

0 0

0 1

0

1

1

0

1 1 1

0 0 0

0

0 0

0 0

0

0

0

0

0 1

1 1 1

0

0 0

0 0

0

0

1 1

0

1

0

1 1 1

0 0 1

0

0 0

0 1

0

1

1

α 41

α 21

′G53

′G41

′G13

′G21

G′

Fig. 5.1.12. For example 5.1.5.

5.1. Primary Geometrical Codes

82

′′G 0 = ′′G10 = ′′G 20 = R =

1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1 1
0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 0 1 1 0 1 1 0 1 1
0 1 1 1
0 0 1 1 1 1 1 1
0 0 0 0
0 0 1 1 0 0 1 1
0 0
1 1 1 1
0 0
0 0 0 0 1 1
0 1
0 0 1 1
0 0

Fig. 5.1.13. For example 5.1.5.

5.1.4. Coding and Transformation of Planar
Figures

5.1.4.1. Method of coding

When coding planar figures, we are going to assume that
• identified on a plane are N points distributed evenly with step of

Δx along the x axis and Δy along the y axis;
• each point can only be ascribed one of two values - 0 or 1;
• the shape is determined by a subset of points a, which are

ascribed the value of one.
A trivial method of coding the figure might have been to determine pairs
of coordinates x and y for all points, or the codes of complex numbers
x+jy corresponding to these points. Then the different transformations
of the figure would have involved computations with complex numbers
according to a certain routine. However the set a of binary codes of
complex numbers can be represented by geometrical code. Such coding,
first of all, requires less memory and, second, geometrical

5. Figure Coding Theory

 83

transformations of figures are easily interpreted as operations with
geometrical codes.

xΔ AB

C

DE

O

K

M

x

y

yΔ

L

Fig 5.1.14. Coding planar figure.

The section of the plane being coded by geometrical code has the
appearance of a rectangle EKLM, the sides of which pass through points
A, B, C, and D perpendicular to the axes – see Fig. 5.1.14. rN 2=
points are set out in the area EKLM, each of them corresponding to one
of the complex numbers’ linear codes, joined into a geometrical code.
Distances between these points are determined by the values Δx and Δy,
which depend on m and ρ : if (m+1) is an even number or 0, then

1|| +=Δ mx ρ and || ρxy Δ=Δ , otherwise 1|| +=Δ my ρ and
|| ρyx Δ=Δ The size and position of the area being coded depends on

Δx, Δy, n.

Example 5.1.6 of coding a plane with 2j=ρ Let m=-1, n=3,
r=n-m+1=5. The geometrical code for this case is shown in Table
5.1.2, which lists the linear codes corresponding to the paths in the
geometrical code tree (it is assumed that all paths are open), and the
values of complex numbers represented by these codes. In this table
(and also in the next table 5.1.2) we shall use the following notations:

N – number of a point,
Z - value (a complex number) of this point,
L – code of this complex point – linear code
G – geometrical code.

5.1. Primary Geometrical Codes

84

Fig. 5.1.15 shows the points on the complex plane that correspond to
these complex numbers. The section of the plane that is being coded
by this geometrical code was thereby constructed.

22 j−

7 15 5 13

3 11 1 9

8 16 6 14

4 12 2 10

2j−

2j
0

-2 -1 0 1

Y

X

Fig 5.1.15. Coding plane at y=3, m=-1, r=4 for example 5.1.6.

Table 5.1.2. Geometrical code of a plane with 2j=ρ .
N Z L G
1 0+0 0000 11111
2 0-2j 2 1000 1
3 -2+0 0100 11
4 -2-2j 2 1100 1
5 0+j 2 0010 111
6 0-j 2 1010 1
7 -2+j 2 0110 11
8 -2-j 2 1110 1
9 1+0 0001 1111
10 1-2j 2 1001 1
11 -1+0 0101 11
12 -1-2j 2 1101 1
13 1+j 2 0011 111
14 1-j 2 1011 1
15 -1+j 2 0111 11
16 -1-j 2 1111 1

Let us separate in this section of the plane the “black” (visible) and
“white” (invisible) points – see Fig. 5.1.15a. The geometrical code will
be on a form, presented in the Fig. 5.1.15b. The same code is

5. Figure Coding Theory

 85

described in the Table 5.1.2a, where (unlike the Table 5.1.2) the
invisible points are shown without their coordinates

Table 5.1.2a. Geometrical code of a separated plane points with 2j=ρ
N Z L G
1 0+0 0000 11111
2 0
3 -2+0 0100 11
4 0
5 001
6 0
7 01
8 -2-j 2 1110 1
9 0111
10 1-2j 2 1001 1
11 01
12 -1-2j 2 1101 1
13 1+j 2 0011 111
14 0
15 -1+j 2 0111 11
16 0

22 j−

7 15 5 13

3 11 1 9

8 16 6 14

4 12 2 10

2j−

2j
0

-2 -1 0 1

Y

X

Fig 5.1.15a. Example: planar figure.

5.1. Primary Geometrical Codes

86

0

1

0

0

0

1

1

0

1

1

1

1

1

1 1

1

0

0

0

0 1

1

1

0

1

0

1

1

1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1

0

Fig 5.1.15b. Example: GC tree of planar figure.

Let t=x+jy be a random point on the plane, represented by a linear
code within the geometrical code with a complex radix, and
b=|b| e jϕ =(c+jd) – a complex number represented by the basic code
with the same radix. Let us review those geometrical transformations that
are equivalent to arithmetic operations between the numbers t and b.

5.1.4.2. Carry

The carry of figures along the ray e jϕ by |b| units is equivalent to
the t+b operation, i.e. addition of the geometrical and basic codes.

5.1.4.3. Centroaffine transformation
Centroaffine transformation corresponds to multiplication of the real

and imaginary parts of the geometrical code simultaneously by different
basic codes (c+jd) and (g+jh) (component-by-component multiplication). This
operation is described by the formula z+jv=x(c+jd)+jy(g+jh) – here the

5. Figure Coding Theory

 87

point (x, y) changes into the point (z, v). In particular cases, centroaffine
transformation becomes a turn, a widening, a shift (but not the carry
reviewed earlier) or some combination of those transformations.

5.1.4.4. Affine transformation
Affine transformation is the product of centroafine transformation

and the carry, and is performed in two stages:
1. component-by-component multiplication of the geometrical code

by a pair of basic codes of the centroaffine transformation,
2. additon of the geometrical code resulting from the previous

operation to the basic code of the carry.
Example 5.1.7 of deformation with the 2j=ρ – see Fig. 5.1.16
and Table 5.1.3. Here we denote:
 i – number of a point,

 a i - a point of the initial figure,

 bi -a point of transformed figure,

)(iaL - linear code of the point a i ,

)(ibL - linear code of the point bi .
Let us review a figure determined by 6 points ia . Let us deform this
figure in such a way, that the points)(iii jyxa += would change
into the points ib , noting that))21((jjyxb iii ++= . This
deformation is equivalent to shifting the figure horizontally by an
angle of)2(55 0 =Ψ=Ψ tg . All number codes ia are depicted
by a single geometrical code G of the initial figure.
The above deformation of this figure is equivalent to multiplying the
imaginary part of the geometrical code G by the basic code K=0011
of the number)21(j+ . Such multiplication was performed in
example 5.1.5. As a result, geometrical code R is formed. Decoding
the code R, we find that it combines the linear codes of ib points of
the deformed figure.

5.1. Primary Geometrical Codes

88

22 j−
2j−

2j
0

-2 -1 0 1 2

Y

X

22 j

a1 a2 b1 b2

b5 b4 a5 a4

a6=b6 a3=b3

Fig. 5.1.16. Deformation of a figure for example 5.1.7

Table 5.1.3. Figure deformation with 2j=ρ
N a i)(iaL bi)(ibL

1 2-j 2 1110 0-j 2 1010
2 -1-j 2 1111 1-j 2 1011
3 0+j0 0000 0+j0 0000
4 1+j 2 0011 -1+j 2 0111
5 0+j 2 0010 -2+j 2 0110
6 -1+0 0101 -1+0 0101

5. Figure Coding Theory

 89

5.1.5. Coding and Transformation of Spatial
Figure

In this section we shall assume that linear codes to the radix

3 2j=ρ are used in the creation of geometrical code. Arithmetic
operations with geometrical codes to this radix are in many respects

similar to operations with geometrical codes to the radix 2j=ρ . The
distinction is in the following:

• vector codes addition is equivalent to the addition of three
components,

• componentwise multiplication of geometrical and base codes
includes multiplication of each of the three linear code
components by different base codes.

When coding three-dimensional figures we shall assume that
• we have singled out N points in three-dimensional space,

distributed uniformly with step Δx, Δy, Δz on the Cartesian
coordinate system’s axes,

• each point may assume one of the values - 0 or 1;
• a figure is defined by a subset a of points assuming the value 1;

If m is the number of lowest tier, n – the number of highest tier, and
r=(n-m+1) – the number of all geometrical code’s tiers, then

• the number of points singled out in the coded part of the space, is
N r= 2 ;

• for (m+1)=3t (t-an integer number) the steps by coordinate axes
are Δ x m= +| |ρ 1 , Δ Δy x= | |ρ , Δ Δz y= | |ρ ;

• the coded part of the space is a parallelepiped, with faces parallel
to coordinate planes.

Let U1 be a vector of an arbitrary point within a three-dimensional
figure. Then by analogy with the above said, we have that:

• the addition of geometrical code to the base code U5 is
equivalent to addition of codes U and U5 , that is, to a carry of
the figure by vector U5 ;

• componentwise multiplication of a geometrical code by ordered
three vectors U U U2 3 4, , is equivalent to a similar operation

5.1. Primary Geometrical Codes

90

with each vector U1 and consists in computing vector U by the
formula U x i U y j U z k U= + +1 2 1 3 1 4* * * , which means
that it is equivalent to a centroaffine transformation.

An affine transformation is a product of a centroaffine transformation and a
carry, and is performed in two stages:

1) componentwise multiplication of the geometrical code by three
base codes of centroaffine transformation;

2) addition of the geometrical code that is the result of preceding
operation, to the base carry code.

In particular cases this transformation is equivalent to a carry, a turn, a
compression, a shift of a figure, or a vector multiplication of all the
figure’s vectors by the base vector, or to other transformations of a
figure.

In the same way as the codes of three-dimensional figures,
geometrical codes of many-dimensional figures may be created, because,
as indicated above, in the ring of many-dimensional vectors there also
exists a positional system of binary codes. It means that a many-
dimensional figure may be also coded by geometrical code, and affine
transformations of this figure may be performed with this code. This fact
is convenient to use, for instance, for creating pattern recognition
devices, because the recognizable objects’ features are often invariant to
certain types of geometrical transformations.

5. Figure Coding Theory

 91

5.2. Attribute Geometrical Codes

5.2.1. Data Representation
It follows from the preceding that operations with PGC require

multiple transpositions. The schemes that perform the transpositions
must have a large volume since during transposition each PGC digit can
switch places with any digit in its tier.

Let us review a PGC modification that is free of this shortcoming,
and refer to it as attribute GC – AGC (in this section, the adjective
“attribute” will be omitted if it is clear from the context that reference is
not being made to primary GC). For each pair of digits ki ,12 −β and

ki,2α , there is an additional digit, ki,γ included in AGC, which is a

modulus 2 counter of transposition signals ki,τ . When the ki,γ digits
have a zero value (there was no transposition or it was performed an
even number of times), the PGC and AGC codes are identical: each path
in the geometrical code tree has a corresponding linear code wherein a
“1” stands in place of an α-digit, and a “0” – in place of the β-digit.
However, when the values of the digits ki,γ =(0,1), the linear code
corresponding to this path in the AGC tree is determined as follows: in
place of the ki,2α -digit stands the value ki,γ , and in place of

the ki ,12 −β -digit – the value ki,γ . Let us remind you that the values of

the digits α and β determine only that the path in the geometrical code
tree is open (or closed), and that the corresponding linear code is
included (or not included) in the set of linear codes being coded.

The principal difference between PGC and AGC is in the following.
Let a certain vector X have a corresponding p-path. During an operation
with geometrical code, the value of this vector changes to Y. In PGC,
after this operation is performed, q-path is going to correspond to this
vector. Thus the vector’s position in PGC depends upon its value. Not so in
AGC: a given vector always has one and the same path that corresponds
to it. One could say that a vector (and its corresponding point in space)
retains its individuality regardless of the changing value of this vector (the
position of the point). In this case the point can be accorded an attribute,
which can be a name, a color, a weight, etc. This attribute must be
connected with the terminal vertex of the same path where the linear
code of the given vector (point) is written.

5.2. Attribute Geometrical Codes

92

Let us consider the above statement more formally. A certain open
path in the AGC tree has corresponding series of digits α=1, β=1,
γ=(0,1):

α np, ... β qj ,12 − ... α ki,2 ... β m,1

This path depicts the linear code,

γ np ,2/ ... γ qj, ... γ ki, ,

that we are going to refer to as the value code, or simply the value of the
given path. In this path, the pair of digits α ki,2 and ki,γ is represented

by the value digit γ ki, , and the pair of digits ki ,12 −β and ki,γ is

represented by the value digit ki,γ .

Where γ≡0 for all digits of the given path, the linear code assumes
the value
 1 ... 0 ... 1 ... 0,
which we are going to refer to as the number code, or simply the number
of the given path. In this code, “1” stands in place of the α-digit, and “0” –
in place of the β-digit. Thus in AGC each path has a number, a value,
and an attribute.

AGC is presented in Fig. 5.2.1. The number of digits in AGC is
determined according to the following formula:

V k

k

n m n m= + ∑ = ⋅ −
=

− −1 3 2 3 2 2
0

.

5. Figure Coding Theory

 93

β1,mβ1 1,m+β1 2,m+

τ 1,m
τ1 1,m+

α2 2,m+

α4 2,m+

β3 2,m+

τ2 1,m+

α2 1,m+

α
2r n,

α 2 ,n

β 1 ,n

τ1 1,n−

β1 1,n−

τ
2 11r n− −,

α
2 11r n− −,

β
2 1r n− ,

Fig. 5.2.1. Attribute Geometrical Code.

5.2. Attribute Geometrical Codes

94

5.2.2. AGC in a Real Radix

Let us review the operations between the basic code and SGC with a

real radix. While doing that, we shall use the designations from section
5.1.2.1.

5.2.2.1. Writing of a given Number
In this case a path is created in AGC with a number equal to the base

code δ. If all the digits 0=γ , the code of the value is coincident with
the code of the number. The process is determined by the following
formulas:

μ π δ η π δ= ∧ = ∧, .
Where μ=1, the β digit takes on the value of “1” regardless of its former
value. Similarly, where η=1, the α digit takes on the value of “1”.

5.2.2.2. Writing of a given Value.
Табл. 5.2.1 describes the process of carry propagation when a value is

written in AGC with the basic code δ. The carries are determined by the
following formulae:

() ()μ π δ γ η π δ γ= ∧ ⊕ = ∧ ⊕, .

Table 5.2.1. Writing a value with a given code.

π δ γ μ η
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 0

Where μ=1, the β digit takes on the value of “1” regardless of its former
value. Similarly, where η=1, the α digit takes on the value of “1”. In such
way, or a new path is formed, and the given value is written in it, or a
path is discovered, in which the given value is already written. In this
case a search for the address of the given value is performed.

5. Figure Coding Theory

 95

5.2.2.3. Reading the value of the path with a given number.
Let an open path (β≡1 and α≡1) have a number with the linear code

δ. The process of carry propagation while reading the value of this path
is described in Table 5.2.2. In it, ω - is the corresponding digit of the
linear code of this path’s value. The signal ω is created in the digit α or β,
through which the carry signal has passed. Thus,

μ π δ η π δ ω μ γ η γ= ∧ = ∧ = ∧ ∨ ∧, ,. () ().
Table 5.2.2. Reading the value of the path with a given number

π δ γ μ η ω
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 0 1 1
1 1 1 0 1 0

5.2.2.4. Addition of AGC and the basic code when ρ=2
This operation is described in Table 5.2.3. Carry signals μ, η and the

transposition signal τ are created as functions of π, δ, γ. After that, the signal
τ=1 changes the value of γ into its opposite, and the signals μ and η propagate
further (if β=1 and α=1 respectively).

Table 5.2.3. Addition of AGC and the basic code when ρ=2

π γ δ μ η τ
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 0 0
0 1 1 1 0 1
1 0 0 0 1 1
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 0

Example 5.2.1 of addition when ρ=2. Same as in example 5.1.1, let
the basic code be K=<2> or K=10, and the attribute geometrical
code G depict a set of linear codes {1100, 0010, 1010, 0110} or,
which is the same thing, a set of numbers {12, 2, 10, 6}.

5.2. Attribute Geometrical Codes

96

0

1

0

0

0

1

1

1

0

1

1

1

1

1

1

0

1

0

1

1

0

0

Fig. 5.2.2. For example 5.2.1.

The resulting attribute geometrical code is R=G+K. Fig. 5.2.2 shows
code R. The thick arrows show those connections along which the
carry π=1 propagated during addition. Square windows show the γ
digits. They refer to that pair of digits α and β, which have been
placed in round windows conjugated with the given square window.
If all the γ digits were to be zeroized, the same figure would depict the
primary code G – compare with the geometrical code G1 in example
5.1.1. Thus the result differs from the primary code only by the values
of the γ digits. Note that if the transposition is performed in
accordance with the γ digit values, geometrical code G 4 of the result
is formed as shown in example 5.1.1.

5. Figure Coding Theory

 97

5.2.2.5. Inverse addition of AGC to the basic code when ρ=-2
This operation is described in Table 5.2.3a. The signals of carries μ, η

and the signal or transposition τ are produced as functions of π, δ, γ.
After that the signal τ=1 changes the value of γ into its opposite, and the
signals μ and η propagate further (if β=1 and α=1, respectively).

Table 5.2.3a. Inverse addition of AGC and basic code when ρ=-2

π γ δ μ η τ
0 0 0 0 1 0
0 0 1 1 1 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 0 0 1
1 1 1 1 0 0

Example 5.2.2 of inverse addition when ρ=-2. As in example 5.1.2,
let the basic code be K=<2> or K=110, and the attribute geometrical
code G depict a set of linear codes {0000, 0100, 0010, 0110} or,
which is the same thing, a set of numbers {0, 4, -2, 2}. The resulting
attribute geometrical code is R=-G-K. Fig. 5.2.3 shows code R. The
thick arrows show those connections along which the carry π=1
proliferated during addition. Square windows show the γ digits. They
refer to that pair of digits α and β, which have been placed in round
windows conjugated with the given square window. If all the γ digits
were to be zeroized, the same figure would depict the primary code G
– compare with the geometrical code G1 in example 5.1.2. Thus the
result differs from the primary code only by the values of the γ digits.
Note that if the transposition is performed in accordance with the γ
digit values, geometrical code G 4 of the result is formed as shown in
example 5.1.2.

5.2. Attribute Geometrical Codes

98

1

0

0

0

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

0

1

Fig. 5.2.3. For example 5.2.2.

Let us consider the circuit of forming the carries signals μ, η and the

transposition signal τ in the involved adder – see Fig. 5.2.3a. On this
scheme

π - the input carry signal,
μ, η - the output carry signals,
β - trigger of the digit β ,
α - trigger of the signal α ,
γ - trigger of the signal γ ,
δ - trigger of the signal δ of the basic code,
τ - trigger od the transposition signal τ ,
Sum – single-digit inverse addition circuit,
And – transposition signal key τ,
R – transposition enabling signal.

5. Figure Coding Theory

 99

τ

AND

μ

Sum
η

β

α

γ

π
R

δ

Fig. 5.2.3а. One-digit inverse addition circuit

This circuit covers the first threesome of geometrical code digits and

produces carry signals to the two next threesomes of geometrical code
digits. The transposition enabling code is common for all digits and
comes from the control circuit afer the end of carries propagation
though all the digits.

5.2.2.6. Inversion of AGC when ρ=-2.
Table 5.2.4 describes the process of carry propagation during the

inversion of geometrical code with a radix “-2”. In it
γ - is the value of the γ digit in the primary code;
τ - is the signal of transposition of the primary code to

the resulting code (this code is generated in the
primary code register).

Table 5.2.4. AGC inversion when ρ=-2.

π γ μ η τ
0 0 0 0 0
0 1 0 0 0
1 0 0 0 1
1 1 0 0 1

5.2.2.7. Algebraic addition of AGC splits into the operations of
addend inversion and inverse addition.

5.2. Attribute Geometrical Codes

100

5.2.2.8. Search for the Next Open Path, its Number and it's
Value
Here it is assumed that a known path is determined by its number.

The search consists of three consequently performed operations: 1)
search for a path with a given number and fixation of its terminal vertex;
2) search for the next terminal vertex; 3) reading the number and path
value with the given terminal vertex.

5.2.2.9. Multiplication of AGC by the basic code.
This multiplication is performed similarly to multiplication of the

primary GC by the basic code – see section 5.1.2.7. The difference is that
the analyzed digits are α=1, if τ=0, or β=1, if τ=1 (and not the digits
α=1, as in the primary geometrical code). This multiplication is
performed according to the following algorithm:

1. the primary geometrical code is shifted to the left one digit to
the left;

2. the lower digit Bj of the basic code is analyzed, where j=1;
3. if Bj=1, then an inverse addition of the shifted code with the

primary code is performed; a negative geometrical code of the
partial product is generated;

4. the geometrical code of the partial product is shifted to the
left 1 digit to the left;

5. the next digit Bj of the basic code is analysed;
6. if Bj=1, and the partial product was positive, then the inverse

addition of the shifted code with the primary code is
performed; a negative geometrical code of the partial product
is generated;

7. if Bj= 1, and the partial product was negative, then the inverse
addition of the shifted code with the negative primary code; a
positive geometrical code of the partial product is generated;

8. if all the digits are exhausted, the multiplication is completed;
9. then go to point 3.

Evidently, this algorithm is in many ways similar to an algorithm of
ordinary addition. The operations constituting the algorithm have already
been described above. It is important to note that in a geometrical code
of a product the attribute’s number is increased 2n times relative to
the number of initial geometrical code’s attribute (n is digit capacity of
the base code, number of shifts).

5. Figure Coding Theory

 101

5.2.3. Attribute Geometrical Codes in a
Complex Radix

As indicated above (see section 3.1), complex numbers can be used as

a basis for coding linear codes. In a similar fashion, attribute geometrical
codes can be constructed using a complex radix - AGCC. Unlike the
preceding, the value of the path in such codes is the linear binary code
with a complex radix. But the most important difference lies in the
algorithms of the arithmetic operations. Let us review algorithms of
arithmetic operations with geometrical codes in systems of 1, 2 and 3
coding. In these systems, the digits representing the real and imaginary
parts of a complex number alternate. Algebraic addition of each part is
performed independently according to the rules of algebraic addition of
codes of real numbers with a radix «-2». Therefore, in the further
presentation of codes we can make use of the results from the preceding
section. Some operations do not depend on the coding radix at all, and
they will not be reviewed here.

5.2.3.1. Inverse addition of AGCC with the basic code
This operation is described in Table 5.2.3. Carry signals μ, η and the

transposition signal τ are generated as functions of π, δ, γ. Thereafter the
signal τ=1 changes the value of γ into its opposite, and the signals μ and
η propagate further (if β=1 and α=1, respectively). These signals are
transmitted to every other tier. A pattern of their propagation is shown
in Fig. 5.2.4.

π
β α()

β

β β

α

α

α

μ η()

Рис. 5.2.4. Схема распространения переносов в комплексном GC

5.2. Attribute Geometrical Codes

102

5.2.3.2. Inversion of AGCC.
This operation is performed similarly to the way the operation for

codes with a radix «-2» is described in the preceding section.

5.2.3.3. Deformation of AGCC.
This operation is equivalent to the deformation of a figure, and is

performed according to the following formula:
ZGZGS ′′⋅+′⋅= ImRe ,

where
G – is the primary geometrical code,
S – is the resulting geometrical code,

′ ′′Z Z, - two linear codes (complex numbers).
This multiplication is performed similarly to the multiplication of

prime GC by the basic code – see Section 5.1.2.7. The difference is that
the analyzed digits are α=1, if τ=0, or β=1, if τ=1 (and not the digits
α=1, as in prime GC). The difference is that during inverse addition and
inversion, the carries are transmitted to every other tier.

Deformation is possible only if the complex codes ZZ ′′′, have a
junior digit of 1. In order to have this case, these codes must be
transformed according to the formula 1+⋅−⇒ ZZ ρ . After that the
resulting code must be shifted one digit to the left.

Let us indicate some particular cases:
• if ZZZ ′′=′= we have ordinary multiplication: ZGS ⋅= ,
• if jZZZ =′′=′= we have a 90 degree turn: jGS ⋅= ,
• if jZZZ −=′′=′= we have a (-90) degree turn: jGS ⋅−= .

The last two operations are greatly simplified in the coding system 1,
when the code of the number j is of the form “10”.

5. Figure Coding Theory

 103

Example 5.2.3 of deformation with 2j=ρ . We shall consider
the example of AGC deformation by analogy with the example 5.1.7
of GC deformation. Let us regard a figure determined by 6 points a i ,
see Fig. 5.1.16, and Table 5.1.3. We shall deform this figure in such a
way that the points a x jyi i i= +() will turn into points bi , where
b x jy ji i i= + +(())1 2 . This deformation is equivalent to a shift
of the figure horisontally by an angle Ψ Ψ= =55 20 ()tg . All
the codes of numbers a i are presented by a single code AGC of the
whole figure. This code is shown of the Fig. 5.2.5 and it combines all
the points of the initial figure. Al digits in this code are τ=0.
Decoding this code we may make certain that the linear codes of all
open paths have value a i indicated in the Table 5.1.3. Code of the
point a i for every open path is indicated in the Fig. 5.2.5 opposite
the corresponding terminal vertex.

This deformation of the figure is equivalent to the AGC imaginery
part‘s multiplication by basic code of K=0011 of the number
()1 2+ j . The result is the formation of AGC code of the
deformed figure. This code is shown in the Fig. 5.2.6, and it combines
the points of the deformed figure. The code changes for each open
path’s point, but the path’s position does not change – compare
Fig.5.2.5 and Fig. 5.2.6. In the deformed figure’s AGC not all the
digits are τ=0. Decoding this code we may see that linear codes of all
open paths have value bi , that is, it combines all codes of the
deformed figure’s points bi . The point’s codes bi for every open
path are indicated in the Fig. 5.2.6 opposite the corresponding
terminal vertex.

5.2. Attribute Geometrical Codes

104

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

0

00

0 0

0

a3=0000

a5=0010

a1=1110

a6=0101

a4=0011

1a2=1111

Fig. 5.2.5. For example 5.2.3: AGC of the initial figure.

5. Figure Coding Theory

 105

0

0

0

1

1

1

1

1

1

1

1

0

0

0

1

0

1

0

0

1

1

0

0

1

1

1

1

1

1

1

0

0

0

0

0

1

0

0

1

0

00

0 0

0

b3=0000

b5=0110

b1=1010

b6=0101

b4=0111

1a2=1111

Fig. 5.2.6. For example 5.2.3: AGC of the deformed figure

5.2. Attribute Geometrical Codes

106

5.2.4. Attribute Geometrical Codes of Spatial
Figures

Attribute geometrical codes with a complex radix reviewed above

represent planar figures. These codes may be used for affine
transformations of planar figures. In the general case, it is also necessary
to perform projection transformations of planar figures, as well as affine
and projection transformations of 3-dimensional figures. It is a known
fact that uniform coordinates are used for projection transformations. In
this case a point on a plane is represented by three coordinates, while a
point in 3-dimensional space – by four coordinates. If such
representation is being used, a projective transformation of a planar
figure includes an affine transformation of a three-dimensional figure,
and projective transformation of a three-dimensional figure includes a n
affine transformation of a four-dimensional figure.

Thus, attribute geometrical codes of planar, 3-dimensional and 4-
dimensional figures that lend themselves to affine transformations may
be used to solve all of the geometrical transformation problems. The
method applied for such codes’ synthesis is that of positional coding –
see part 3. This method, similarly to the complex nymbers coding
method, lets us represent a spatial vector by a single binary code.
Moreover, this method allows to perform algebraic addition and
multiplication of such codes.

Linear binary codes of vectors may be unified in GC. In this case, GC
of a 3- or 4-dimensional figure is formed. Arithmetic operations with
such GC are fully analogous to operations with the GC of a planar
figure. Addition circuits differ only in that the carries propagate through
every 2nd or 3rd tier (for a 3- or 4-dimensional figure, respectively).

Deformation of geometrical code in the general case is performed

according to the formula
() () () ()S G Z G Z G Z G Z= ⋅ + ⋅ + ⋅ + ⋅part part part part1 2 3 41 2 3 4 ,

where
G – is the initial geometrical code,
S – is the resulting geometrical code,
partp – a part of code G,
Zp – linear codes (vectors),

p = {1, 2, 3, 4},

5. Figure Coding Theory

 107

i, j, k, m – orts of vectorial space,
h >= 0- integer,
r = tier number.

As usual, deformation involves substituting the digits αr = 1 by linear

codes Zp . When the vector coding method 2 is used, the Z substitution

code is selected as follows:
for 3-dimensional vectors

Z Z= 1, if r = 3 h+1,

Z Z= 2 , if r = 3 h+2,

Z Z= 3 , if r = 3 h+3;
for 4-dimensional vectors

Z Z= 1, if r = 4 h+1,

Z Z= 2 , if r = 4 h+2,

Z Z= 3 , if r = 4 h+3,

Z Z= 4 , if r = 4 h+4.

When the vector coding method 1 is used, the Z substitution code is
selected as follows:
for 3-dimensional vectors

Z Z= 1, if r = 3 h+1,

Z j Z= ⋅ 2 , if r = 3 h+2,

Z k Z= ⋅ 3 , if r = 3 h+3;
for 4-dimensional vectors

Z Z= 1, if r = 4 h+1,

Z j Z= ⋅ 2 , if r = 4 h+2,

Z k Z= ⋅ 3 , if r = 4 h+3,

Z m Z= ⋅ 3 , if r = 4 h+4.

5.2. Attribute Geometrical Codes

108

5.2.5. Contracted Attribute Geometrical Codes

β1,mβ1 1,m+β1 2,m+

τ 1,mτ1 1,m+

α2 2,m+

α4 2,m+

β3 2,m+

τ2 1,m+

α2 1,m+

α
2 r n,

α 2 ,n

β 1,n

τ1 1,n−

β1 1,n−

τ
2 11r n− −,

α
2 11r n− −,β

2 1r n− ,

Fig. 5.2.7. Contracted Attribute Geometrical Code

In the previous section we have discussed AGC whose paths could be

both open and close. The values of digits α=1 (or 0) and β=1 (or 0)
determine only the fact that the path in the geometrical code’s tree is
open (or close) and the corresponding linear code is included (or not
included) into the coded set of linear codes. We shall now deal with the
case when all linear codes of a given dimension are included into the

5. Figure Coding Theory

 109

coded set. In this case all α=1 and all β=1. So there is no need to actually
include these digits to the geometrical code. In all manipulations with
AGC we may assume that all α=1 and all β=1. AGC without digits will
be called contracted AGC- СAGC.

Fig. 5.2.7 present a contracted AGC. The actually absent digits are
denoted by dotted line. The number of digits in a contracted AGC is
defined by the following formula:

122
0

−== ∑
−

=

rmn

k

kV .

Each terminal vertex 1, −nkτ of the contracted AGC’s tree has two
corresponding attributes – the upper one, corresponding to the imaginary
vertex nk ,β , and the lower one, corresponding to the imaginary vertex

nk ,1+α .
Evidently, the operation circuits for a contracted AGC are much

shorter, and the code’s volume is three times reduced. More accurately, if

in an ordinary AGC the number of digits is 223 −⋅= rV , in a

contracted GC it is equal to 12 −= rV .

6.0. Data Presentation

110

6. Geometrical Processor

6.0. Data Presentation

We shall assume, as before, that a set (M) of points in a p-

dimensional space is given. The points constitute the domain of
definition, which is a p-dimensional cube, and they are distributed in this
domain, located in the nodes of a uniform network. The node’s
coordinates are represented by a pn-digit code of a vector with fixed
point. All the domain is defined by the set of these codes, with the
overall number of M=2pn. Each node is defined by a triad: address-
coordinate vector- attribute.

Let us consider now the data representation in the random-access
memory and in the arithmetic unit.

There are two possible methods of the random-access memory
organization. The first, simple one involves building two interrelated
arrays. The first of them contains the coordinate vectors, and the second
– the attributes. For this method the random-access memory (RAM) may
be realized as a dynamic one (DRAM), or as a static one (SRAM). The
memory for realizing this method will be called traditional random-access
memory TRAM.

The second method, using GC, assumes that all the codes of
coordinate vectors are integrated in AGC. Each path in AGC
corresponds to a value interpreted as “coordinate vector”, and to a number,
interpreted as “address”. The attributes in this method are, as before,
integrated into an array connected with AGC by means of the addresses.
For this method the random-access memory should be realized as static
one (SRAM), because certain logic of access to the AGC memory should
be ensured. Further we shall call the random-access memory for realizing
this method – specific random-access memory SSRAM.

In future we shall consider only SSRAM, since this memory (unlike
traditional memory) makes possible to obtain the given code’s address by
one access. This access method is necessary for vector’s attribute
retrieval, and also increases essentially the processor speed. Besides,
SSPAM is much more efficient than traditional random-access memory.

6. Geometrical Processor

 111

More precisely, the coordinate array in TRAM contains 2pnpn digits, and
the reduced AGC has only 2pn digits. For example, if p=3 and n=12,
then the memory volume is 36 times smaller.
Two schemes of memory organization for AGC may be applied:

• full, when the whole code AGC with carry propagation schemes
is kept in PSSRAM

• fragmentary, when all the code is split into fragments, and there is
FSSRAM with carry propagation schemes for one fragment.

Such AGC structure will be called vertical fragmentation.
Let us consider now data presentation in the arithmetic unit. The first
method consists in creating a complete AGC of 2pn digit capacity in the
arithmetic unit. This is, however, insufficient, as when operating with
AGC, carries may occur in any path from high-order digit (by analogy
with vector processor). The resulting code may have a digit capacity of
pr, whereas the initial code had digit capacity pn. The higher digits of the
resulting code may be combined into a rectangular code of vectors RCV
(similar to the way it was done in a vector processor for full-sized code).
Thus, there must be register AGC and register RCV in the arithmetic
unit. Let us call this pair of codes – a mixed code of a figure MCF. The
register of mixed code has a digit capacity of pr+2pn.

Arithmetic unit with MCF register will serve simultaneously as
random-access memory. Let us call it a maximal arithmetic unit for
geometrical figures - MGAU. Evidently, this unit has a very large volume,
and the possibility of its realization is at the limit of modern technology
potential. Therefore we shall view another variant. Let us divide MCF
into several fragments MCFq, each of which consists of fragment AGCq
and fragment RCVq. MCFq combines Q paths in the code MCF, i.e. Q
resulting codes of digit capacity (n+r). If Q=2, then the lower tiers of the
AGCq code fragment will concentrate in one path, and MCFq will have a
structure as shown in the Fig. 6.0.1.

6.0. Data Presentation

112

Fragment
PCVq

Line Part LPq
Fragment

AGCq

(pn-f)(f)(pr)

()f2

Fig. 6.0.1. MCF structure

Such MCF structure will be called horizontal fragmentation. In this case

• the linear part LPq of the code MCFq contains (pn-f) digits,
• the rectangular part RCVq of the code MCFq contains (Qpr)

digits,
• the code MCFq contains (pn-f)+Qpr +Q) digits,
• the geometrical part AGCq of the code MCFq contains Q digits,
• the code MCF consists of 2pn-f fragments MCFq and contains

 ((pn-f)+Qpr +Q)*2pn-f digits.
Accordingly, the affine transformation for such data structure consists of
2 pn-f operations. An arithmetic unit with register of such structure will be
called fragmentary GAU – FGAU.

Notice that horizontal fragmentation is convenient for arithmetic unit,
and vertical fragmentation – for random-access memory.

6. Geometrical Processor

 113

6.1. Full Specific Random-access
Memory

RCV

(pn)(pr)

()pn2 AGC

Fig. 6.1.1. Full specific random-access memory

Full specific random-access memory PSSRAM of the code MCF is

shown in the Fig. 6.1.1 and it consists of two parts – memory for
rectangular code RCV and memory for AGC. It is complemented by a
certain scheme of carry propagation, and this makes it possible to
perform the following operations

S1. Writing the vector code – see section 5.2.2.1.

S2. Determining the address where this vector code is located – see
section 5.2.2.2. This operation is necessary for searching the
vector’s attribute.

S3. Reading the vector code according to the address where it is
located – see section 5.2.2.3.

S4. Writing a code fragment MCFq according to its number q.

S5. Reading a code fragment MCFq according to its number q.

S6. Determining the number of the first non-zero digit in the code
MCF, which is necessary for rounding off.

6.2. Fragmentary Specific Random-access Memory

114

6.2. Fragmentary Specific Random-
access Memory

In this case for representation in the memory, the geometrical code G

is split into fragments joined into F tiers. The fragment of each tier
contains r tiers of geometrical code. This statement is illustrated on Fig.
6.2.1, where fragments of the geometrical code are shown as triangles.
Their numeration has the following meaning: “number of tier”.”number of
fragment in the tier”.

1.12.m

2.1

F.m 3.m4.m

3.1

F.1

F F-1 4 3 2 1

2 2. r

322. r

F F r. ()2 1−

Fig. 6.2.1. Tiers of geometrical code and segments of linear code.

6. Geometrical Processor

 115

In the memory, the fragments are placed in a series, tier after tier:
1 1

2 1 2 2 2 2

3 1 3 2 3 2

1 2 2

1 2 2

2

1

1

. ,

. , . , ... , . ,

. , . , ... , . ,
...

. , . , ... , . , ... , . ,
...

. , . , ... , .

()

()

r

r

k r

F r

k k k m k

F F F

−

−

Note that the number j of the fragment in this series is connected with
the number k of the tier and the number m of the fragment in the tier by
the following dependence:

j m ma r

a

k k r

r= + ∑ = +
−

−
−

=

− −

2 1 2
1 2

1

1

1 1
()

()
. (6.2.1)

Given:
• number k of the tiers of fragment, where the processed

fragment is placed,
• number m of the processed fragment in the tier k,
• number v of a vertex in the last tier of the processed

fragment the carry arrives at,
the number f of the fragment is the next (k+1)-tier, where this carry
arrives, may be determined according to the formula:

1−+= vmf . (6.2.2)
Number of the fragment the carry arrived at, is

r

kr
fj

21
21

−
−

+= . (6.2.3)

Fragments numbered in accordance with (6.2.1), are saved in the
ordinary random-access memory of fragments, retrieved into the unit
FSSRAM for processing, and after processing returned to the fragments
memory. A fragment is written or read from the fragment memory
according to the fragment’s number in this memory. Unit FSSRAM
realizes the above named commands S1-S6; in order to do so it

6.2. Fragmentary Specific Random-access Memory

116

accesses some of the fragments. The following operations in the unit
FSSRAM are performed directly with fragments:

F1. Reading a fragment with a given number of the fragments
memory.

F2. Writing a given vector code SEGMENT according to its
number of the same code – see section 5.2.2.1. This operation
is applicable only if all the digits 0=γ , i. e. with initial
formation of AGC.

F3. Determining the address where this vector code SEGMENT is
located – see section 5.2.2.2.

F4. Reading a vector code SEGMENT at the address where it is
located – see section 5.2.2.3.

F5. Writing a fragment with a given number into the fragments
memory.

F6. Determining the number of the highest nonzero digit in a
fragment (used only in highest tier fragments).

F7. Determining by the formula (6.2.3) the number j of the next
fragment the carry arrives at.

Let us now compare the volume and performance speed for different
methods of random-access memory organization. When evaluating the
performance speed we shall assume that all the paths in the GC tree are
open, i. e. it integrates all the codes of the same digit capacity. Let us
denote:

r – number of tiers in a fragment,
F – number of fragments’ tiers in GC.
Then we have:
n r F= ⋅ - digit capacity of linear codes and number of GC

tiers,
2 r - number of terminal vertexes in a fragment,

()2 12 r − - total number of vertexes in a fragment,

2 1()F r− - number of terminal fragments in GC.
As was shown above, number of digits in reduced AGC is

12 −= nV .
This code joins all n – digit codes. Total number of bits for storing these
codes is

′ = ⋅V n n2 .
Hence using AGC reduces the data volume n times.

6. Geometrical Processor

 117

Let us consider now the number of elementary operations in writing
the fragmentary AGC. In the lowest fragments tier 1 operation with
fragment is being performed, in the second tier - 2 r operations, the
third one - 2 2 r operations, …, in the highest tier - 2 1()F r−
operations. So the total number of elementary operations with a
fragment is

a r r F r
F r

r1
2 11 2 2 2 1 2

1 2
= + + + + =

−
−

−... ()

or
rnrFa −− =≈ 22)1(

1 (6.2.4)
The ratio of memory capacity for all fragment in SSRAM to one

SSRAM fragment’s capacity is equal to
rnR −≈2 (6.2.5)

The volume of FSSRAM unit is approximately 3 times larger than
one fragment’s volume, because the unit contains carries schemes in
every digit. Hence the random-access memory complexity is
characterized by the value

() rFrn 223232 ⋅+=⋅+≈θ (6.2.6)

6.3. Maximal AU of Geometrical Figures

118

6.3. Maximal Arithmetic Unit of
Geometrical Figures
Maximal arithmetic unit of geometrical figures MGAU, similarly to

full specific random-access memory PSSRAM, operates with code MCF,
presented in Fig. 6.1.1. This unit contains a well-developed scheme of
carries propagation, and due to this it can perform the following
operations:

M1. Writing the given vector code – see section 5.2.2.1.
M2. Reserve.
M3. Reading the vector code according to its address – see

section 5.2.2.3.
M4. Reserve.
M5. Reserve.
M6. Determining the highest nonzero digit in the code MCF,

which is necessary for rounding off.
M7. Adding MCF to given vector code – see section 5.2.2.7.
M8. Multiplying MCF by transformation matrix – see

section 5.2.2.9.
M9. Determining the length of vector code by its address.
M10. Reading from MGAU a vector code according to the

first\next address – see section 5.2.2.8.

6. Geometrical Processor

 119

6.4. Fragmentary Arithmetic Unit of
Geometrical Figures
The arithmetic unit FGAU for operations with code MCFq is shown

in the Fig. 6.4.1

Registers of all Parameters of
Transformation - a bytes

Input

Input Output

Control
Unit

Coder of Parametrs - a bytes

Shifter - p(n+r) bytes

 Register of Parameter - pr bytes

Multiplexer

Operational Block

Fig. 6.4.1. Fragmentary arithmetic unit

6.4. Fragmentary Arithmetic Unit of Geometrical Figures

120

It is in many ways similar to the unit FVAU. The difference is in the
fact that FVAU includes operational unit of digit capacity:

R6 = Qp(n+r), (6.4.1)
and FGAU includes operational unit of digit capacity

R7 = (pn-f)+Qpr +2pn-f. (6.4.2)
Operational unit consists of register MCFq and carry propagation

schemes. The carry schemes in the linear and the rectangular parts are
organized according to the rules of vector arithmetic, and in geometrical
part – according to the rules of geometrical codes arithmetic.

The ratio between digit capacity of the units FVAU and FGAU is:
R6 / R7 ≈ (n+r)/r (6.4.3)
Let us consider the list of co-processor commands realized in FGAU:
A1. Receiving the transformation parameters.
A2. Adding MCFq to carry vector.
A3. Multiplying MCFq by carry matrix.
A4. Yielding the code MCFq.
A5. Receiving the code MCFq.
A6. Yielding the vector by address – without rounding off and

with rounding off.
A7. Determining the vector code length according to the address.
A8. Determining a vector adjacent to the given vector, according

to a given coordinate and given direction on the coordinate
axis.

6. Geometrical Processor

 121

6.5. Processor with a Maximal
Arithmetical unit

SSRAM

Coder/Decoder

Control
Unit

Co-processor

ARAM-2

Processor

Central
RAM

Central
AU

MGAUARAM-1

Registers of all Parameters of
Transformation - a bytes

Coder of Parametrs - a bytes

Shifter - p(n+r) bytes

 Register of Parameter - pr bytes

Multiplexer

a

Fig. 6.5.1. Processor with a maximal arithmetical unit

6.5. Processor with a Maximal Arithmetical unit

122

Processor with a maximal arithmetic unit PMGAU contains an

arithmetic unit MGAU for operation with codes MCF that combines the
functions of arithmetic unit and of random-access memory. The co-
processor РMGAU and its place in the central processor are shown in
the Fig.6.5.1.

Thus, PMGAU contains the arithmetic unit MGAU and a unit of
additional specific random-access memory SSRAM, coder/decoder of
vectors and control unit, as well as other units, similarly to the unit
FVAU. Coder/decoder is connected with the main memory of the
central processor. MGAU and SSRAM are connected with attribute
memory units ARAM-1 and ARAM-2, which are parts of the central
processor.

It should be noted that the co-processor entirely releases the central
processor from solving respective problems, so that the latter may solve
other problems simultaneously with co-processor. Let us consider now
the list of co-processor’s commands and the units used in performing
these commands:

R1. Receiving (by the bus a) and coding the carry parameters.
R2. Adding MCF to carry vector (see operation M7).
R3. Multiplying MCF by transformation matrix (see operation

M8).
R4. Reserve.
R5. Reserve
R6. Determining the number of the highest non-zero digit in

MGAU for rounding off (see operation M6).
R7. Transmitting the rounded k-vector from MGAU into SSRAM.
R8. Determining a vector code length according to the address (see

operation M9).
R9. Reading a vector by its address in SSRAM (see operation S3).
R10. Determining a vector adjacent to a given vector, by a known

coordinate and known direction.
R11. Determining an address of a known vector in SSRAM (see

operation S2).
R12. Transforming coordinates into vector, writing it to MGAU

and determining its address (see operation M1). The coding of
a point’s coordinates into vector code is performed by the
coder.

6. Geometrical Processor

 123

R13. Reading from MGAU vector’s code by a given address (see
operation M3) and transforming this vector into a point’s
coordinates – performed by the decoder.

R14. Reading from MGAU a vector code by the first/next address
(see operation M10).

6.6. Processor with Fragmentary Arithmetic Unit

124

6.6. Processor with Fragmentary
Arithmetic Unit

Co-processor PFGAU with fragmentary FGAU and its place in the

central processor is shown in the Fig. 6.6.1. Co-processor contains an
arithmetic unit FGAU, specific random-access memory unit SSRAM-1
and an additional specific random-access memory unit SSRAM-2,
coder/decoder of vectors and a control unit.

SSRAM-1

FGAU

Coder/Decoder

Control
Unit

Co-processor

ARAM-1

Processor

Central
RAM

Central
AU

a

b

c d

SSRAM-2ARAM-2

Fig. 6.6.1. Processor with fragmentary FGAU

6. Geometrical Processor

 125

Coder/decoder is connected with the main memory of the central
processor. SSRAM-1 and SSRAM-2 are connected with attribute
random-access memory units ARAM-1 and ARAM-2, which are parts of
the central processor.

It should be noted that the co-processor entirely releases the central
processor from solving respective problems, so that the main processor
may solve other problems simultaneously with co-processor.

From further discussion it follows that in the SSRAM-2 memory only
two operations: S1 and S3 should be provided.

Let us consider list of commands of co-processor and of units used in
their performance. (operations of arithmetic unit FGAU are denoted by
symbols А):

P1. Receiving and coding transformation parameters. These
parameters are transmitted by buses a and b. Operation A1
is being used at that.

P2. Adding MCFq to the carry vector GAU. Operation A2 is
being used at that.

P3. Multiplying MCFq by transformation matrix in GAU.
Operation A3 is being used at that.

P4. Yielding code MCFq from GAU to SSRAM-1 by bus d.
Operations A4 and S4 are being used at that.

P5. Receiving code MCFq from SSRAM-1 to GAU by bus с.
Operations A5 and S5 are being used at that.

P6. Determining number of highest non-zero digit SSRAM-1 for
rounding off. Operation S6 is being used at that.

P7. Transmitting a rounded k-vector from GAU to SSRAM-2.
Operations A6 and S1 are being used at that.

P8. Determining the vector code length by its address. It is
assumed that the corresponding fragment is in GAU and
operation А7 is being performed.

P9. Reading a vector by its address. Operation S3 is being used in
SSRAM-2.

P10. Determining a vector adjacent to a given vector, by a
known coordinate and known direction. Operation А8 is
being used at that.

P11. Determining an address by a known vector. Operation S2
is being used in SSRAM-2.

P12. Transforming coordinates into vector, writing it into
SSRAM-1 and determining its address. The coding of the
point’s coordinates into the vector code is performed by

6.6. Processor with Fragmentary Arithmetic Unit

126

the coder, and operation S1 is used for writing the vector
and for determining its address.

P13. Reading a vector code from SSRAM-1 by the vector’s
address and transforming this vector into point’s
coordinates. Operation S3 is used for reading the vector
code, and its decoding to point’s coordinates is performed
by the decoder.

P14. Reading a vector’s code from SSRAM-1 by the first/next
address. Operation S3 is used for reading the vector code.

Notice that for SSRAM-2 only the operations S1, S2, S3 may be used.

6. Geometrical Processor

 127

6.7. The Main Procedures
Here we shall use the following (described above) notations of the

units and operations performed by the units.
Section Unit Type The used units Operations
6.1 PSSRAM RAM - S1-S6
6.2 FSSRAM RAM - S1-S6; F1-F7
6.3 MGAU AU - M1-M10
6.4 FGAU AU - A1-A8
6.5 PMGAU processor MGAU;

PSSRAM
R1-R14

6.6 PFGAU processor FGAU;
PSSRAM
or FSSRAM

P1-P14

6.7.1. Affine Transformation
In the processor PFGAU:

1. Receiving and coding the transformation parameters - operation Р1.
2. Enumerating all q-fragments (in the central processor).

2.1. Receiving code MCFq from SSRAM-1 - operation Р5.
2.2. Multiplying MCFq by the transformation matrix – centroaffine

transformation - operation Р3.
2.3. Adding MCFq to the carry vector - operation Р2.
2.4. Yielding code MCFq from GAU to SSRAM-1 - operation Р4.

In the processor PMGAU:

1. Receiving and coding the transformation parameters - operation R1.
2. Multiplying MCF by the transformation matrix - operation R7.
3. Adding MCF to the carry vector - operation R2.

6.7.2. Rounding
We shall call so an operation of building an array of pairs “point’s

coordinates” – “point’s attribute” with simultaneous compression of the
figure in the direction of one or several coordinate axes. To do this the
complex codes are read from GC without some of the lower-order digits.
For example, for plane figures

• the absence of the lowest digit is equivalent to twofold
compression along the abscissa axis,

• the absence of two lowest digits is equivalent to twofold
compression along both axes,

6.7. The Main Procedures

128

• the absence of three lowest digits is equivalent to 4-fold
compression along abscissa axis and two-fold compression along
both axes.

During such compression one coordinate may correspond to one or
several attributes. The attributes’ joining (as was noted above) is
determined entirely by their application meaning.
During the operation of rounding all vector codes are rounded off (their
lower digits are discarded) and are written from SSRAM-1 to SSRAM-2.
The algorithm is as follows

In the processor PFGAU:
1. Determining the highest non-zero digit in SSRAM-1 - operation Р6.
2. Zeroing ARAM-2 (in the central processor)).
3. Enumerating all q-fragments (in the central processor).

3.1. Receiving all MCFq from SSRAM-1 into GAU - operation Р5.
3.2. Enumerating all local k-addresses in the code MCFq (operation

Р14.
3.2.1. Transmitting the rounded k-vector from GAU to SSRAM-

2 - operation Р7.
3.2.2. Transmitting ((q-1)k)-attribute from ARAM-1 to ARAM-

2 (in the central processor). It is significant that there is a
possibility of attribute being added to already existing
attributes of this point.

In the processor PMGAU:

1. Determining the number of the highest non-zero digit in SSRAM-1 -
operation R7.

2. Zeroing ARAM-2 (in the central processor).
3. Transmitting the rounded k-vector from GAU to SSRAM-2 -

operation R7.
4. Transmitting ((q-1)k)-attribute from ARAM-1 to ARAM-2 (in the

central processor). It is significant that there is a possibility of
attribute being added to already existing attributes of this point.

6.7.3. Rough rounding
During all arithmetic operations there may occur an overflow – i.e.

there may appear tiers with a number exceeding the maximal. Such
overflow is equivalent to the point going out of the limits of coding
domain (for example, out of the screen bounds). At rough rounding all
the out-of-the limits points are excluded from the figure’s code. To do

6. Geometrical Processor

 129

this would require only discarding the higher digits of the vector code
and zeroing its attribute. The algorithm is as follows.

In the processor PFGAU:
1. Zeroing ARAM-2 (in the central processor).
2. Enumerating all q-fragments (in the central processor).

2.1. Receiving code MCFq from SSRAM-1 to GAU - operation Р5.
2.2. Enumerating all local k-addresses in the code MCFq – operation

Р14.
2.2.1. Analyzing the length of k-vector code in GAU - operation

Р8.
2.2.2. If there is no overflow in this code, then ((q-1)k)-attribute

is transmitted from ARAM-1 to ARAM-2 (in the central
processor). Otherwise it will be left equal to zero.

In the processor PMGAU:

1. Zeroing ARAM-2 (in the central processor).
2. Enumerating all k-addresses in code MCF - operation R14.

2.1. Analyzing the length of k-vector code in GAU - operation R8.
2.2. If there is no overflow in this code, then ((q-1)k)-attribute is

transmitted from ARAM-1 to ARAM-2 (in the central
processor). Otherwise it will be left equal to zero.

6.7.4. Attributes Correction
After the figure’s code rounding it may occur that in a certain node of

the network several points are present. It means that by a certain address
in the attributes memory there is a list of attributes present. Attribute of
a node is defined as a function of all attributes of all points found in this
node. This procedure is known and is performed in the central
processor.

6.7.5. Attributes Calculation
After rough rounding of the figure’s code it may occur that in a

certain node of the network a certain point is absent – its attribute is
equal to zero. Attribute of a node is defined as a function of all attributes
of all points found in this node. This procedure is also known and is
performed in the central processor. But in this case it is necessary to
access the co-processor. The algorithm is as follows.
1. The memory ARAM-2 is scanned (in the central processor)
2. If at a certain address the attribute is equal to zero, then

6.7. The Main Procedures

130

2.1. Vector V0 of the point С0 is determined at the given address A0
- see operation P9 (or R9).

2.2. Coordinates and directions by the coordinates are enumerated
(in the central processor). For every variant k
2.2.1. Vector Vk of the adjacent point Сk is determined - see

operation P10 (or R10).
2.2.2. The address Ak of the point Сk is determined according

to the known vector Vk - see operation P11 (or R11).
2.2.3. The attribute Tk of the point in ARAM-2 is found by the

known address Ak (in the central processor).
2.3. The attribute T0 of the point С0 is determined and written into

ARAM-2 as a known function of attributes Tk of points Сk (in
the central processor).

6.7.6. Coding a Figure.
By this term we mean a transformation of the connected arrays

“attributes”-“coordinates” into mixed code of the figure. The algorithm
is as follows:
The connected arrays are enumerated. For every address of the pair
“attributes”-“coordinates” the following actions are performed

1. The coordinates of the point are transformed into vector code
and this vector is written to SSRAM-1. A new address is yielded
from SSRAM-1 . Operation Р12 (or R12) is used for this
purpose.

2. The point’s attribute is written to ARAM-1 (in the central
processor).

6.7.7. Decoding a Figure.
By this term we mean a transformation of mixed code of the figure into
connected arrays “attributes”-“coordinates”. The algorithm is as follows.
The addresses of ARAM-1 are enumerated. For each address the
following actions are performed:

1. By given address the point’s attribute is written to ARAM-1 into
“attribute array” (in the central processor).

2. The vector code is read by the address from SSRAM-1, and then
is transformed into point’s coordinates. Operation P13 (or R13)
is used for this purpose.

3. These coordinates are written into “coordinate” array (in the
central processor).

6. Geometrical Processor

 131

6.8. Operational Units
Following is the description of operational units included in the

arithmetic unit and specialized random-access memory. These units
constitute the patterns of carries propagation in AGC. Algorithms of the
corresponding operations were presented above. When outlining the
patterns we shall use the following notations:

π - input carry signal,
β - β digit trigger,
α - α digit trigger,
μ, η - output carry signals arriving at the β and α digits,

respectively,
γ - γ digit trigger,
δ - basic code δ digit trigger,
τ - transposition signal τ trigger.

A general pattern of carry propagation is shown in Fig. 5.1.2а and Fig.
5.2.4. Algorithms of the corresponding operations were described above.

6.8.1. Writing unit for the number with the given code
Fig. 6.8.1 shows a fragment of the circuit for writing a number with

the given basic code into the AGC – see section 5.2.2.1. Shown in this
Figure are units that calculate the μ, η signals according to specific
formulae. One of these signals always equals “1” and is transmitted
further in the form of signal π. The signal μ=1 or η=1 establishes the
appropriate trigger in “1”. The signal μ=0 or η=0 does not change the
condition of the corresponding trigger.

α

β

π δ∧
μ

η

π

π δ∧

δ

Fig. 6.8.1. Writing unit of number with given code.

6.8. Operational Units

132

6.8.2. Writing unit for the value with the given code
Fig. 6.8.2 shows a fragment of the circuit for writing a number with

the given basic code into the AGC – see section 5.2.2.2. Shown in this
Figure are units that calculate the μ, η signals according to specific
formulae. One of these signals always equals “1” and is transmitted
further in the form of signal π. The signal μ=1 or η=1 establishes the
appropriate trigger in “1”. The signal μ=0 or η=0 does not change the
condition of the corresponding trigger.

α

β
γ

()π δ γ∧ ⊕
μ

η

π

()π δ γ∧ ⊕

δ

Fig. 6.8.2. Writing unit of value with given code.

6.8.3. Reading unit for path value of the given number
Fig. 6.8.3 shows a fragment of the circuit for reading the value of the

path of a known number with the given basic code – see section 5.2.2.3.
The path value is formed as the second basic code with ω digits. Shown
in this Figure are units that calculate the μ, η signals according to specific
formulae. One of these signals always equals “1” and is transmitted
further in the form of signal π. The unit that calculates the ω signal
writes it into the same-name trigger of the value code register. The ω
signal is generated in the α or β digit that the carry signal has passed
through.

6. Geometrical Processor

 133

α

β

π δ∧
μ

η

π

π δ∧

δ

γ
μ γ∧

η γ∧

or

ω

Fig. 6.8.3. Reading unit of value with given code.

6.8.4. Inverse adder
Fig. 6.8.4 shows a fragment of the adder for inverse addition of AGC

to the basic code with a radix (–2) – see section 5.2.2.5. This Figure
shows units that calculate the μ, η, τ signals according to specific
formulae in accordance with Table 5.2.3a. One of these signals μ, η
always equals “1”, and is transmitted further in the form of signal π. The
signal τ is written into the trigger that has the same name. The
transposition enabling signal R is common for all digits and is received
from the control circuit once the carry propagation through all the digits
is finished. After that, the value τ is set in the digits γ.

The same circuit is used for multiplication. The difference is that the
addition start signal is sent to the root vertex; during multiplication – to
all vertexes of a specific tier in which α=0.

In a particular case where δ≡0, the same adder performs the function
of an inverter.

6.8. Operational Units

134

α

β

()π δ γ πδγ∨ ∨
μ

η

π

π δ γ πδγ∨

δ

γ π δ⊕AND

R

τ

Fig. 6.8.4. Inverse adder.

6.8.5. Search unit for the first open path, its numbers and its
values
Fig. 6.8.5 shows a fragment of the circuit for searching out the first

open path and reading its number and its value. The number code is
formed as the first basic code with δ digits, and the value code is formed
as the second basic code with ω digits. The figure shows units that
calculate the signals μ, η according to certain formulae. Only one of
these signals may equal “1”, and is transmitted further as a π signal. If
both of these signals equal zero, then the Null signal is generated, and
the carry propagation process stops. Units calculating the δ and ω signals
write them into the same-name trigger of the corresponding code’s
register. This circuit finds the uppermost open path in the GC tree.

α

β

π β
μ

η

π

π β α

ω

πβα

Null

γμγ ηγ∨

δ

Fig. 6.8.5. Search unit for first open path, its number and value.

6. Geometrical Processor

 135

6.8.6. Reading unit of the number and value of the path with a
given terminal vertex
Fig. 6.8.6 shows a fragment of the circuit for reading the number and

value of the path ending in the given terminal vertex. Unlike the previous
circuits, here the carries propagate from left to right. At the same time,
the number code is formed as the first basic code with δ digits, and the
value code is formed as the second basic code with ω digits. Circuits
conjugated with the β and α digits are differing.

β

π

π β γ

ω

γ

δ

π β
π

α
π

π α γ

ω

γ

δ

πα
π

Fig. 6.8.6. Reading unit of number and value of path with a given terminal vertex.

6.8. Operational Units

136

6.8.7. Next terminal vertex search unit
This unit scans (with Carry_In and Carry_Out signals) the

terminal vertexes starting with the given one (upon the InPut signal) and
up to the first vertex with a value of one. The output signal is generated
in such a vertex (OutPut) – see Fig. 6.8.7.

α βor

OutPut

InPut

Carry_Out

Carry_In

Fig. 6.8.7. Next terminal vertex search unit.

7. Comparative Analysis

 137

7. Comparative Analysis

This section is concerned with comparison between the

characteristics of arithmetic units and random-access memory units that
were presented above. Table 7.1 gives the list of the units, and Table 7.2
shows their characteristics, where

• T – reading/writing time
• S – time of attribute search by known coordinates
• R – digit capacity for random-access memory and equivalent

digit capacity of AU
• A – number of operations for affine transformation
• n – digit capacity of one coordinate code
• r – digit capacity of transformation parameter
• a – total digit capacity of all transformation parameters (see

(2.1.1.)
• p – space dimension

• M=2pn
 – number of points in the space - see (2.1.2)

• F – number of fragments tiers when using vertical
fragmentation

• Q=2f
 – number of points in a fragment when using

horizontal fragmentation
• D=p(p-1) – number of adding in an affine transformation –

see (2.2.1)
• In p. 1 it is assumed that the search is performed in an

unordered array TRAM

7. Comparative Analysis

138

Table 7.1. The list of compared units
№
1 TRAM Random-access memory in traditional performance
2 PSSRAM Full specific random-access memory
3 FSSRAM Specific fragmentary random-access memory
4 SAU Simplest arithmetic unit
5 MSAU Arithmetic unit with rectangular codes
6 FSAU Arithmetic unit with fragmentary rectangular codes
7 VAU Vector arithmetic unit
8 MVAU Vector arithmetic unit with rectangular codes
9 FVAU Vector arithmetic unit with fragmentary rectangular

codes
10 FGAU Arithmetic unit with fragmentary geometrical codes
11 MGAU Arithmetic unit with fragmentary geometrical codes

combined with random-access memory

Table 7.2. Characteristics of compared units
№ T S R A
1 TRAM 1 M/2 Mp(n+r) -
2 PSSRAM 1 1 Mpr+M -
3 FSSRAM F F ⎟

⎠
⎞

⎜
⎝
⎛ + F Mpr

F
MF -

4 SAU - - 7(n+r)+a M(D+p2)
5 MSAU - - 7M(n+r)+a D+p2
6 FSAU - - 7Q(n+r)+a (D+p2)M/Q
7 VAU - - 7p(n+r)+a M
8 MVAU - - 7Mp(n+r)+a 1
9 FVAU - - 7Qp(n+r)+a M/Q
10 FGAU - - ((pn-f)+Qpr +Q) M/Q
11 MGAU 1 1 (Mpr +M) 1

The performance time τ of one operation is practically independent
of the type of each listed unit. Therefore the performance time of affine
transformation in each of these units is τAt = . In a unit time each
unit solves τAtz 11 == problems of affine transformation. It is

reasonable to define the quality of an arithmetic unit by the unit’s volume

7. Comparative Analysis

 139

necessary for solving a certain number of affine transformation
problems, or by relative volume of a unit: the less is the relative volume W,
the higher is the unit’s quality. Clearly, the relative volume of a unit is

z
RW ≡ or W=AR.

Similarly, the quality of random-access memory may be described by
the ratio of its volume to the number of access operations performed in a
unit time. Speaking of a reading/writing operation, the relative volume of
random-access memory is W1=TR. Considering the operation of a
point’s search in an unordered array, the relative volume of random-
access memory will be equal to W2=SR. It would be useful to consider
a given mixture of these operation, but for that the statistics of access
operations must be known.

Table 7.3 shows the relative volume of all above described units.

Table 7.3. Relative volume of compared units.

№ AR SR
1 TRAM

2
)(2 rnpM +

2 PSSRAM
⎟
⎠
⎞

⎜
⎝
⎛ + F Mpr

F
MF 2

3 FSSRAM

Mpr
4 SAU
5 MSAU
6 FSAU

()rnMp +214

7 VAU
8 MVAU
9 FVAU

7Mp(n+r)

10 FGAU Mpr
11 MGAU Mpr Mpr

Based of this table we have built a more illustrative Table 7.4 of the
relative volumes of the main units.

7. Comparative Analysis

140

Table 7.4. Relative volumes of the main units
№ Unit W=AR for processor;

W1=TR or W2=SR for RAM
1 TRAM - traditional random

access memory
)(1 rnMpW +=

2/)(2
2 rnpMW +=

3 SSRAM - specific static
random access memory

⎟
⎠
⎞

⎜
⎝
⎛ +

==

F Mpr
F
MF

WW

2

21

5 SAU - scalar arithmetic unit ()rnMp +214

8 VAU - vector arithmetic unit 7Mp(n+r)
10 GAU – geometrical

arithmetic unit
Mpr

Fig. 1.1 (in the Introduction) gives a bar graph of the quality of all

considered arithmetic units with n=r. The measuring unit in this bar
graph is 14*М. For instance for p=3 the ratio of quality characteristics
is (84:14:1).

The relative volume W2 of the unit TRAM for n=r is М times larger
than relative volume W2 of the unit PSSRAM. For F>1 the ratio of
relative volumes W2 of the units TRAM and FSSRAM is

Fr
rnM

2
)(+ .

For example, at n=r the ratio of these volumes is М/F.
The relative volume W1 of the unit TRAM at n=r is twice as large as

the relative volume W1 of unit PSSRAM. For F>1 the ratio of relative
volumes W1 of the units TRAM and FSSRAM is

Fr
rn)(+ . For

example, at n=r their ratio is 2/F, i.e. the relative volume W1 of the
unit TRAM is F/2 times smaller than the relative volume W1 of the
unit FSSRAM.

Let us assume now that in a given problem the reading/writing
operations occur H times more often than search operations.

Then the relative volume of random-access memory should be
defined by the formula ()STHRW += . This value can be found in

7. Comparative Analysis

 141

the Table 7.2. For the units TRAM and FSSRAM the relative volume is
accordingly

()2/)(MHrnMpWT ++=
and

() ()1+≈+⎟
⎠
⎞

⎜
⎝
⎛ += HFMprFFHMpr

F
MFW F

F .

Ratio ()
()()2

1
MHrnMp

HFMpr
W
W

T

F
++
+

≈ .

For rnMH =<<<< ,1 this ratio
M

HF
W
W

T

F ≈ . Thus, the relative

volume of FSSRAM is smaller than that of TRAM, if 1<≈
M

HF
W
W

T

F or

MHF < . The average number of tiers during vertical fragmentation is
10≈F . Consequently,

The relative volume of a specialized storage device is
H

M
10

 times

smaller than the relative volume of a traditional storage device.

Reference

142

References

1. H. Haberdar. Affine Transformation Example, University of

Houston, 2012.
2. E. Angel, D. Shreiner. Interactive Computer Graphics : A Top-Down

Approach with Shader-Based OpenGL (6th Edition), 2011.
3. Sébastien Roy, Daniel Lefebvre and Henri H. Arsenault. Recognition

invariant under unknown affine transformations of intensity, Optics
Communications, Volume 238, 2004.

4. Shih-Hsuan Yang, Chun-Yen Liao, and Chin-Yun Hsieh.
Watermarking MPEG-4 2D Mesh Animation in Multiresolution
Analysis, Computer Science, Volume 2532, 2002.

5. Khmelnik S.I., The Planar Figures Coding. Avtomatika i
Vychislitelnaya Tekhnika, Ac. of Sc. of Republic of Latvia, 1970, №6
(in Russian)

6. Khmelnik S.I., Algebra of Many-dimensional Vectors and Spatial
Figures Coding. Avtomatika i Vychislitelnaya Tekhnika, Ac. of Sc. of
Latvia Republic, 1971, №1 (in Russian)

7. Khmelnik S.I., High-performance Search Procedures. The Third
International Symposium in Information Theory, part II, Tallinn,
1973 (in Russian)

8. Khmelnik S.I, Multi-criteria Assignment Problem. Isvestiya of USSR
Ac. of Sc., Tekhnicheskaya Kibernetika, №4, 1977 (in Russian)

9. Khmelnik S.I, Search Procedures with Geometric Codes, journ.
"Kibernetika", Ac. of Sc., Republic of Ukraine, 1990, №6 (in
Russian)

10. Khmelnik S.I, Digital Device for Image Geometrical Transformations
Author’s Certificate. 333573, 1972 (in Russian)

11. Khmelnik S.I, A Device for Image Geometrical Transformations.
Author’s Certificate 1030816, 1983 (in Russian)

12. S. Khmelnik. Method and System for Processing Geometrical
Figures. International patent application under PCT.
PCT/CA02/00835, WO 02 099625 A2. Priority 07.06.01.

13. S. Khmelnik. Computer Arithmetic of Vectors, Figures and
Functions, Publishing «Mathematics in Computers Comp.»,
Moscow– Tel-Aviv, 1995 (in Russian)

14. S. Khmelnik, I. Doubson. Positional codes of complex numbersand
vectors. Printed in USA, Lulu Inc., ID 10834718, 2011, ISBN 978-1-
257-83907-0.

http://www.haberdar.org/Affine-Transformation-Example.htm

References

 143

15. S. Khmelnik. A Method and System for Processing Complex
Numbers. International patent application under PCT.
PCT/CA01/00007, WO 01 50332 A2. Priority 05.01.00.

16. Khmelnik S.I., The Vectors Coding, journ. "Kibernetika", Ac. of Sc.,
Republic of Ukraine, 1969, №5 (in Russian)

Designation

144

Designation

Add – M-codes Adder
AGC – attributic geometrical code
AGCC – attributic geometrical complex code
ARAM - attribute traditional random-access memory
AU – arithmetic unit
СAGC – contracted attributic geometrical code
CoderPM - coder of positive P-code into М-code
С-code – complex code in complex radix
DecoderMP - decoder of M-code into P-code
Deven – one-digit decoder circuit for even-numbered digit
Dodd - one-digit decoder circuit for odd-numbered digit
DRAM - dynamic random access memory
FGAU – fragmetntary geometrical arithmetic unit
FSAU – fragmetntary scalar arithmetic unit
FSSRAM – fragmetntary specific static random access memory
FVAU – fragmetntary vectorial arithmetic unit
GAU – geometrical arithmetic unit
GC - geometrical code
Inv - M-code inverter
InvAdd – M-codes inverse adder
LP – linear part of MCF
MCF - mixed code of figure
mDecoderMP - full decoder of M-code into P-code
Meven – one-digit coder circuit for even-numbered digit
MGAU – maximum geometrical arithmetic unit
Modd - one-digit coder circuit for odd-numbered digit
MSAU – maximum scalar arithmetic unit
MVAU - maximum vectorial arithmetic unit
M-code – real numbers code in the radix “-2”
nSign – M-code sign determinant
Partitioning - partitioning unit for code’s parts
PFGAU - processor with FGAU
PGC – primary geometrical code
PMGAU - processor with MGAU
PreCoder - precoder of P-code into M-code

Designation

 145

PSSRAM – perfect specific static random access memory
P-code – traditional code in the radix “2”
RAM - random access memory
RCS - rectangular code of scalars
RCV - rectangular code of vectors
RGP – raster geometrical processor
SAU - scalar arithmetic unit
Seven – one-digit sign determinant circuit for even-numbered

digits
Sodd - one-digit sign determinant circuit for odd-numbered digits
SRAM - static random access memory
SSRAM - specific static random access memory
Sub – M-codes subtractor
TRAM - traditional random access memory
VAU - vector arithmetic unit

List of Examples

146

List of Examples

Example 5.1.1 of addition when ρ=2 \ 67
Example 5.1.2 of inverse addition with ρ=-2 \ 70
Example 5.1.3 of multiplication with ρ=-2 \ 73
Example 5.1.3a of multiplication with ρ=-2 \ 75

Example 5.1.4 of inverse addition where 2j=ρ \ 78
Example 5.1.5 of multiplication of the imaginary part of

geometrical code with 2j=ρ \ 80

Example 5.1.6 of coding a plane with 2j=ρ \ 84

Example 5.1.7 of deformation in the 2j=ρ \ 88
Example 5.2.1 of addition when ρ=2 \ 96
Example 5.2.2 of inverse addition when ρ=-2 \ 98

Example 5.2.3 of of deformation when 2j=ρ \ 103

List of Tables

 147

List of Tables

Table 3.1.1. Systems of complex numbers coding \ 20
Table 3.1.2. Binary coding systems \ 20
Table 3.2.1. 3-dimensional vectors multiplication \ 21
Table 3.2.2. Compex numbers multiplication \ 24
Table 3.2.3. 4-dimensional vectors multiplication\ 24
Table 3.4.2. One-digit inverting circuit \ 30
Table 3.4.3. One-digit inverse adder circuit \ 30
Table 3.4.4. One-digit adder circuit \ 31
Table 3.4.5. One-digit subtractor circuit \ 32
Table 3.4.6.1. One-digit sign determinant circuit for even-

numbered digits \ 33
Table 3.4.6.2. One-digit sign determinant circuit for odd-

numbered digits \ 34
Table 3.6.1. One-digit scalar multiplication \ 39
Table 3.6.2. One-digit vector multiplication \ 40
Table 3.6.3 Carries in scalar multiplication \ 41
Table 3.6.4 Carries in scalar multiplication \ 42
Table 3.6.5. Carries in vector multiplication \ 43
Table 3.7.5.1. One-digit coder circuit for even-numbered digit \

48
Table 3.7.5.2. One-digit coder circuit for odd-numbered digit \ 48
Table 3.7.6.1. One-digit decoder circuit for even-numbered digit

\ 50
Table 3.7.6.2. One-digit decoder circuit for odd-numbered digit \

50
Table 3.7.8. Precoder of P-code into M-code \ 52
Table 3.7.9. Partitioning Unit for Code’s Parts \ 52
Table 4.2.1. Comparative features of AU \ 57
Table 4.2.2. Numerical characteristics of AU with р=2, r=6,

М=106, n= 12, Q=256, а=72 \ 58
Table 4.2.3. Numerical characteristics of AU with р=3, r=6,

М=106, n= 12, Q=256, а=90 \ 58
Table 4.2.4. Numerical characteristics of AU with при р=4, r=6,

М=106, n= 12, Q=256, а=240 \ 58

List of Tables

148

Table 5.1.1a. Addition of geometrical and basic codes with ρ=2 \
65

Table 5.1.1b. Inverse addition of geometrical and basic codes
with ρ=-2 \ 68

Table 5.1.2. Geometrical code of a plane with 2j=ρ \ 84
Table 5.1.2a. Geometrical code of a separated plane points with

2j=ρ \ 85

Table 5.1.3. Figure deformation with 2j=ρ \ 88
Table 5.2.1. Writing a value with a given code \ 94
Table 5.2.2. Reading the value of the path with a given number \

95
Table 5.2.3. Addition of AGC and the basic code when ρ=2 \ 95
Table 5.2.3a. Inverse addition of AGC and basic code when ρ=-2

\ 97
Table 5.2.4. AGC inversion when ρ=-2 \ 99
Table 7.1. The list of compared units \ 138
Table 7.2. Characteristics of compared units \ 138
Table 7.3. Relative volume of compared units \ 139
Table 7.4. Relative volumes of the main units \ 140

List of Figures

 149

List of Figures

Fig. 1.1. Bar graph of the relative volume of the named arithmetic

\ 11
Fig. 2.2.1. The simplest arithmetic unit \ 14
Fig. 2.2.2. Arithmetic unit with fragmentary rectangular codes \ 18
Fig. 3.4.1. Multidigit algebraic addition circuit \ 29
Fig. 3.4.2. One-digit inverting circuit \ 30
Fig. 3.4.3. One-digit inverse adder circuit \ 31
Fig. 3.4.4. One-digit adder circuit \ 31
Fig. 3.4.5. One-digit subtractor circuit \ 32
Fig. 3.4.6.1. One-digit sign determinant circuit \ 33
Fig. 3.4.6.2. Sign determinant \ 34
Fig. 3.6.1. Adder in the scalar multiplication unit \ 42
Fig. 3.6.2. Adder in vector multiplication unit \ 44
Fig. 3.7.5.1. Coder of positive P-code into М-code \ 47
Fig. 3.7.5.2. One-digit coder circuit \ 48
Fig. 3.7.6.1. Decoder of M-code into P-code \ 49
Fig. 3.7.6.2. One-digit decoder circuit \ 50
Fig. 3.7.7. Full decoder \ 51
Fig. 4.1.1. Vector arithmetic unit \ 54
Fig. 4.1.2. Vector arithmetic unit with rectangular codes \ 56
Fig. 5.1.1. Binary Tree.\ 60
Fig. 5.1.2. Examples: a tree of binary digits \ 62
Fig. 5.1.2a. Carry propagation pattern in GC \ 63
Fig. 5.1.3. Example: a transposed code \ 64
Fig. 5.1.4. For example 5.1.1 \ 67
Fig. 5.1.5. For example 5.1.2 \ 70
Fig. 5.1.6. For example 5.1.3 \ 72
Fig. 5.1.7. For example 5.1.3 \ 73
Fig. 5.1.8. For example 5.1.3 \ 73
Fig. 5.1.9. For example 5.1.3 \ 73
Fig. 5.1.9a. For example 5.1.3a \ 75
Fig. 5.1.9b. For example 5.1.3a \ 75
Fig. 5.1.10. For example 5.1.4 \ 78
Fig. 5.1.11. For example 5.1.5 \ 80
Fig. 5.1.12. For example 5.1.5 \ 81

List of Figures

150

Fig. 5.1.13. For example 1.1.5 \ 82
Fig 5.1.14. Coding planar figure \ 83
Fig 5.1.15. Coding plane at y=3, m=-1, r=4 for example 5.1.6 \ 84
Fig 5.1.15a. Example: planar figure \ 85
Fig 5.1.15b. Example: GC tree of planar figure \ 86
Fig. 5.1.16. Deformation of a figure for example 5.1.7 \ 88
Fig. 5.2.1. Attribute Geometrical Code \ 93
Fig. 5.2.2. For example 5.2.1 \ 96
Fig. 5.2.3. For example 5.2.2 \ 98
Fig. 5.2.3а. One-digit inverse addition circuit \ 99
Fig. 5.2.4. Carry propagation pattern in complex GC \ 101
Fig. 5.2.5. For example 5.2.3: AGC of the initial figure \ 104
Fig. 5.2.6. For example 5.2.3: AGC of the deformed figure \ 105
Fig. 5.2.7. Contracted Attribute Geometrical Code \ 108
Fig. 6.0.1. MCF structure \ 112
Fig. 6.1.1. Full specific random-access memory \ 113
Fig. 6.2.1. Tiers of geometrical code and segments of linear code \

114
Fig. 6.4.1. Fragmentary arithmetic unit \ 119
Fig. 6.5.1. Processor with a maximal arithmetical unit \ 121
Fig. 6.6.1. Processor with fragmentary FGAU \ 124
Fig. 6.8.1. Writing unit of number with given code \ 131
Fig. 6.8.2. Writing unit of value with given code \ 132
Fig. 6.8.3. Reading unit of value with given code \ 133
Fig. 6.8.4. Inverse adder \ 134
Fig. 6.8.5. Search unit for first open path, its number and value \

134
Fig. 6.8.6. Reading unit of number and value of path with a given

terminal vertex \ 135
Fig. 6.8.7. Next terminal vertex search unit \ 136

