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Annotation 
A new variational principle extremum of full action is 

proposed, which extends the Lagrange formalism on dissipative 
systems. It is shown that this principle is applicable in electrical 
engineering, mechanics, taking into account the friction forces.  
Its applicability to  electrodynamics and hydrodynamics is also 
indicated. The proposed variational principle may be considered 
as a new formalism used as an universal method of physical 
equations derivation, and also as a method for solving these 
equations.  The formalism consists in building a functional with 
a  sole saddle line; the equation that describes it presents the 
equation with dynamic variables for a certain domain of physics. 
The solution method consists in a search for global saddle line 
for given conditions of a physical problem. 
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Introduction 
Here we formulate principle extremum of full action, allowing to 

construct a functional for various physical systems and, which is most 
important, for dissipative systems. 

The first step in building such functional is to write for a certain 
physical system an equation of energy conservation or an equation of  
powers balance. There we take into account as the energy losses (for 
example, for friction or heating), as also the energy flow into the system 
and from it. 

Here we shall describe this principle applied to electric engineering 
and mechanics. 

 

1. The Principle Formulation 
The Lagrange formalism is widely known – it is an universal 

method of deriving physical equations from the principle of least action. 
The action here is determined as a definite integral - functional 

(∫ −= 2
1

)()()( t
t dtqPqKqS )     (1) 

from the difference of kinetic energy )(qK  and potential energy )(qP , 
which is called Lagrangian

)()()( qPqq K −=Λ .     (2) 
Here the integral is taken on a definite time interval 21 ttt ≤≤ , and   
is a vector of generalized coordinates, dynamic variables, which, in their 
turn, are depending on time. The principle of least action states that the 
extremals of this functional (i.e. the equations for which it assumes the 
minimal value), on which it reaches its minimum, are equations of real 
dynamic variables (i.e. existing in reality). 

q

For example, if the energy of system depends only on functions  

and their derivatives with respect to time
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q′ , then the extremal is 

determined by the Euler formula [1] 
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As a result we get the Lagrange equations. 
The Lagrange formalism is applicable to those systems where the 

full energy (the sum of kinetic and potential energies) is kept constant. 
The principle does not reflect the fact that in real systems the full energy 
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(the sum of kinetic and potential energies) decreases during motion, 
turning into other types of energy, for example, into thermal energyQ , i. 
e. there occurs energy dissipation. The fact, that for dissipative systems 
(i.e., for system with energy dissipation) there is no formalism  similar to 
Lagrange formalism, seems to be strange: so the physical world is found 
to be divided to a harmonious (with the principle of least action) part, 
and a chaotic ("unprincipled") part.  

The author puts forward the principle extremum of full action, 
applicable to dissipative systems. We propose calling full action a definite 
integral – the functional 

∫ ℜ=Φ 2
1

)()( t
t dtqq      (4) 

from the value 
( ))()()()( qQqPqKq −−=ℜ ,    (5) 

which we shall call energian (by analogy with Lagrangian). In it  is 
the thermal energy. Further we shall consider  a full action 

)(qQ
quasiextremal, 

having the form:   
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Functional (4) reaches its extremal value (defined further) on 
quasiextremals. The principle extremum of full action states that the 
quasiextremals of this functional are equations of real dynamic processes. 

Right away we must note that the extremals of functional (4) 
coincide with extremals of functional (1) - the component corresponding 
to , disappears )(qQ

Let us determine the extremal value of functional (5). For this 
purpose we shall "split" (i.e. replace) the function )(tq  into two 
independent functions )(tx  and )(ty  , and the functional (4) will be 
associated  with functional 

∫ ℜ=Φ 2
1

),(),( 22
t
t dtyxyx ,    (7) 
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which we shall call "split" full action. The function ),(2 yxℜ  will be 
called "split" energian. This functional is minimized along function )(tx  
with a  fixed function )(ty  and is maximized along function )(ty  with 
a fixed function )(tx . The minimum and the maximum are sole ones. 
Thus, the extremum of functional (7) is a saddle line, where one group of 
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functions  minimizes the functional, and another - , maximizes 
it.  The sum of the pair of optimal values of the split functions gives us 
the sought function 

ox oy

oo yxq += , satisfying the quasiextremal 
equation (6). In other words, the quasiextremal of the functional (4) is a 
sum of extremals  of functional (7), determining the saddle 
point of this functional. It is important to note that this point is 

oo yx ,
the sole 

extremal point – there is no other saddle points and no other minimum 
or maximum points. Therein lies the essence of the expression "extremal 
value on quasiextremals". Our statement 1 is as follows: 

In every area of physics we may find correspondence between full 
action and split full action, and by this we may prove that full action 
takes global extremal value on quasiextremals. 

Let us consider the relevance of statement 1 for several fields of physics.   
 

2. Energian in Electrical Engineering 
Full  action in electrical engineering takes the form (1.4, 1.5), where 
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Here stroke means derivative ,  - vector of functions-charges with 
respect to time, 

q
E  - vector of functions-voltages with respect to time,  

- matrix of inductivities and mutual inductivities,  - matrix of 
resistances,  - matrix of inverse capacities, and functions 

 present magnetic, electric and thermal energies 
correspondingly. Here and further vectors and matrices are considered in 
the sense of vector algebra, and the operation with them are written in 

L
R

S
)(),(),( qQqPqK

short form. Thus, a product of vectors is a product of column-vector by 
row-vector, and a quadratic form, as, for example, qqR ′  is a product of 
row-vector q  by quadratic matrix  and by column-vector . ′ R q

The equation of quasiextremal (1.6) in this case takes the form: 
0=−′+′′+ EqRqLSq .     (2) 

Substituting (1) to (1.5), we shall write the Energian (1.5) in expanded 
form: 



The Papers of independent Authors                                     Volume 17, 2010 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
′−+−

′
=ℜ qqREqSqqLq

22
)(

22
.   (3) 

Let us present the split energian in the form 
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Here the extremals of integral (1.7) by functions )(tx  and )(ty , found 
by Euler equation, will assume accordingly the form:  
 0222 =−′+′′+ EyRxLSx ,     (5) 
 0222 =−′+′′+ ExRyLSy .     (6) 
By symmetry of equations (5, 6) it follows that optimal functions  and 

, satisfying these equations, satisfy also the condition 
0x

0y
 .       (7) 00 yx =
Adding the equations (5) and (6),  we get equation (2), where 
 oo yxq += .      (8) 
Consequently, conditions (5, 6) are necessary for the existence of a sole 
saddle line. In [2, 3] showed that sufficient condition for this is that the 
matrix  has a fixed sign, which is true for any electric circuit.  L

Thus, the statement 1 for electrical engineering is proved.  From it 
follows also statement 2: 

Any physical process described by an equation of the form  (2), 
satisfies the principle extremum of full action. 
 
Note that equation (2) is an equation of the circuit without knots. 

However, in [2, 3] has shown that to a similar form can be transformed 
into an equation of any electrical circuit (with any accuracy). 

 

3. Energian in mechanics 
Here we shall discuss only one example - line motion of a body 

with mass  under the influence of a forcem f  and drag force , 
where 

qk ′
k  - known coefficient,  - body's coordinate. It is well known 

that 
q

qkqmf ′+′′= .     (1) 
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In this case the kinetic, potential and thermal energies are accordingly: 

qkqqQfqqPqmqK ′=−=′= )(,)(,2)( 2 .  (2) 
Let us write the energian  (1.5) for this case: 

qkqfqqmq ′−+′=ℜ 2)( 2 .    (3) 
The equation for energian in this case is (1)/ 
Let us  present the split energian as: 
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It is easy to notice an analogy between energians for electrical 
engineering and for this case, whence it follows that Statement 1 for this 
case is proved. However, it also follows directly from Statement 2.  
 

4. Mathematical Excursus 
Let us introduce the following notations: 

.ˆ, 0∫==′ t ydtydt
dyy      (1) 

There is a known Euler’s formula for the variation of a functional of 
function ,...),,( yyyf ′′′  [1]. By analogy we shall now write a similar 
formula for function ,...),,,ˆ(..., yyyyf ′′′ : 

,...),,,ˆ(..., yyyyf ′′′ :      (2) 

......var '
2

2
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0
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t
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dt
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f

dt
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In particular, if yxf ′=() , then x′−=var ; if yxf ˆ() = , then x̂var −= . 
The equality to zero of the variation (1) is a necessary condition of the 
extremum of functional from function (2). 
 

5. Action for Powers 
Further we shall refer to the power of energy (kinetic, potential, 

thermal)   as to the variation of this energy in a time unit.  We shall 
consider these powers as the functions of integral generalized coordinates 

 - integrals  from generalized coordinates . We shall denote 

these powers as . It is important to note the 

qi =ˆ i q
)(ˆ),(ˆ),(ˆ iQiPiK
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following.  The energy functions contain as an argument the generalized  
coordinates  and their derivatives q qq ′′′, . The energy functions 

contain as their arguments the integral generalized coordinates , their 
derivatives   i  and their integrals i .  

i
′ ˆ

Let us consider action-2 for powers and define it as  a definite 
integral - functional  

(∫ += 2
1

)(ˆ)(ˆ)(ˆ t
t dtiPiKiS )     (1) 

from the sum of kinetic and potential powers 
)(ˆ)(ˆ)(ˆ iPiKi +=Λ .     (2) 

and we shall call this sum Lagrangian-2. 
The principle of minimal action may be extended also on action-2, 

i.e. assert that the extremals of functional (1) are equations of real 
physical processes  over the same integral generalized coordinates as 
quasiexstremals. But the extremals should be calculated by the formulas 
(4.3). 

Example 1. Let us consider the example from Section 3, for which 
the equation (3.1) is applicable, or, if the thermal losses are absent,  

imf ′⋅= .      (3) 
In this case the kinetic and potential powers are accordingly: 

ifiPiimiK ⋅−=′⋅⋅= )(ˆ,)(ˆ .    (4) 
Let us write the Lagrangian-2 (2) for this case: 

ifiimi ⋅−′⋅⋅=ℜ )(ˆ .     (5) 
The equation  of extremal for functional (1) in this case coincides with 
equation (3). 

Example 2. Let us consider the example from Section 2, for which 
the equation (2.2) is applicable, or, if the thermal losses are absent,  

0ˆ =−′+ EiLiS .      (6) 
In this case the kinetic and potential powers are accordingly: 

iEiiSiPiiLiK ⋅−⋅⋅=′⋅⋅= ˆ)(ˆ,)(ˆ .   (7) 
Let us write the Lagrangian-2 (2) for this case: 

iEiiSiiLi ⋅−⋅⋅+′⋅⋅=ℜ ˆ)(ˆ .    (8) 
The equation of extremal for functional (1) in this case may be obtained 
by formula (4.3) and coincides with equation (6). 
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6. Full Action for Powers 
In this case full action-2 is a definite integral - functional 

∫ ℜ=Φ 2
1

)(ˆ)(ˆ t
t dtii       (1) 

from the value 
( ))(ˆ)(ˆ)(ˆ)(ˆ iQiPiKi ++=ℜ ,    (2) 

which we shall call Energian-2. In this case we shall define full action 
quasiextremal-2  as 
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Functional (1) assumes extremal value on these quasiextremals. The 
principle extremal of full action-2 asserts that quasiextremals of this 
functional are equations of real dynamic processes over integral 
generalized coordinates .  i

Let us now determine the extremal value of functional (1, 2). For 
this purpose we, as before, will “split” the function )(ti  to two 
independent functions )(tx  and )(ty , and put in accordance to 
functional (1) the functional 

∫ ℜ=Φ 2
1

),(ˆ),(ˆ 22
t
t dtyxyx ,    (4) 

which we shall call  "split full action-2. We shall call the function 
 ),(ˆ 2 yxℜ "split " Energian--2.  This functional is being minimized by 

the function )(tx  with fixed function )(ty  and maximized by function 
)(ty  with fixed function )(tx . As before, the quasiextremal (3) of 

functional (1) is a sum oo yxi +=  of extremals  of the 
functional (4), determining the saddle point of this functional. 

oo yx ,

 

7. Energian-2 in mechanics 
As in Section 3 we shall consider an example, for which the 

equation (3.1) is applicable, or 
ikimf ⋅+′⋅= .     (1) 

In this case the kinetic, potential and thermal powers are accordingly: 
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2)(ˆ,)(ˆ,)(ˆ ikqQifiPiimiK ⋅=⋅−=′⋅⋅= .  (2) 
Let us write the energian-2 (6.2) for this case: 

2)(ˆ ikifiimi ⋅+⋅−′⋅⋅=ℜ .    (3) 
Уравнение квазиэкстремали в этом случае принимает вид (1). 

 

8. Energian-2 in Electrical Engineering 
Let us consider an electrical circuit which equation has the form, 

(2.2) or 
0ˆ =−⋅+′⋅+⋅ EiRiLiS .     (1) 

In this case the kinetic, potential and thermal powers are accordingly: 

.)(ˆ,ˆ)(ˆ,)(ˆ 2iRiQiEiiSiPiiLiK ⋅=⋅−⋅⋅=′⋅⋅=  (2) 
Let us write the energian-2 (6.2) for this case: 

.ˆ)(ˆ 2iRiEiiSiiLi ⋅+⋅−⋅⋅+′⋅⋅=ℜ    (3) 
The equation of quasiextremal in this case assumes the form (1). 

 
Let us now present the “split” Energian-2 as 
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The extremals of integral (6.4) by the functions )(tx  and )(ty , found 
according to equation (4.3),  will assume accordingly the form: 
 022ˆ2 =−+′+ ERxyLyS ,     (5) 
 022ˆ2 =−+′+ ERyxLxS .     (6) 
From  the symmetry of equations (5, 6) it follows that optimal functions 

 and , satisfying these equations, satisfy also the condition  0x 0y
 .       (7) 00 yx =
Adding together the equations (5) and (6), we get the equation (1), where   
 oo yxq += .      (8) 
Therefore, the equation (1) is the necessary condition of the existence of 
saddle line. In [2, 3] it is shown that the sufficient condition for the 
existence of a sole saddle line   is  matrix  having fixed sign, which is  
true   for every electrical circuit.   

L
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Conclusion 
The functionals (1.7) and (6.4) have global saddle line and therefore 

the gradient descent to saddle point method may be used for calculating 
physical systems with such functional. As the global extremum exists, 
then the solution also always exists. Such method applied to electrical 
engineering and electro mechanics is described in [2, 3].  

The author has applied the full time extremum principle for 
powers, and also the calculation method applicable for electrodynamics   
[2, 3] and hydrodynamics [4, 5]. 
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