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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series over the Mobius function has been modified and rep-
resented in terms of the partial Euler product by progressively eliminating the numbers that
first have a prime factor 2, then 3, then 5, ..up to the prime pr. The properties of the new series
are analyzed as pr approaches infinity and its relationship to the function exp(E1((1−s) log pr)
and the partial Euler product is established and then used to examine the validity of the Rie-
mann Hypothesis.

1 Introduction

The Riemann zeta function ζ(s) satisfies the following functional equation over the complex
plain [1]

ζ(1− s) = 2(2π)2 cos(0.5sπ)Γ(s)ζ(s), (1)

where, s = σ + it is a complex variable and s 6= 0.

For σ > 1 (or <(s) > 1 ), ζ(s) can be expressed by the following series

ζ(s) =
∞∑
n=1

1

ns
, (2)

or by the following product over the primes pi’s

1

ζ(s)
=
∞∏
i=1

(
1− 1

psi

)
. (3)

where, p1 = 2,
∏∞
i=1(1 − 1/pi

s) is the Euler product and
∏r
i=1(1 − 1/pi

s) is the partial Euler
product. The above series and product representations of ζ(s) are absolutely convergent for
σ > 1.

The region of the convergence can be extended to <(s) > 0 by using the alternating series
η(s) where

η(s) =
∞∑
n=1

(−1)n−1

ns
, (4)

and
ζ(s) =

1

1− 21−s
η(s). (5)
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One may notice that the term 1 − 21−s is zero at s = 1. This zero cancels the simple pole
that ζ(s) has at s = 1 enabling the extension (or analog continuation) of the zeta function
series representation over the critical strip 0 < <(s) < 1 .

It is well known that all the non-trivial zeros of ζ(s) are located in the critical strip 0 <
<(s) < 1. Riemann stated that all the non-trivial zeros were very probably located on the crit-
ical line <(s) = 0.5 [2]. There are many equivalent statements for the Riemann Hypothesis
(RH) and one of them involves the Dirichlet series with the Mobius function.

The Mobius function µ(n) is define as follows
µ(n) = 1, if n = 1.
µ(n) = (−1)k, if n =

∏k
i=1 pi, pi’s are distinct primes.

µ(n) = 0, if p2|n for some p.

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
. (6)

This series is absolutely convergent to 1/ζ(s) for <(s) > 1 and conditionally convergent
to 1/ζ(s) for <(s) = 1. The Riemann hypothesis is equivalent to the statement that M(s) is
conditionally convergent to 1/ζ(s) for <(s) > 0.5.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ζ(s) and its partial Euler product for <(s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In sections 4 and 5, we will present a functional equation for ζ(s)
using its partial Euler product. The method is based on writing the Euler product formula as
follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r∏
i=1

(
1− 1

psi

) ∞∏
r+1

(
1− 1

psi

)
.

The above equation is valid for σ > 1. To be able to represent ζ(s) in term of its partial Euler
product for σ ≤ 1, we have to replace the term

∏∞
r (1− 1/psi ) with an equivalent one that

allows the analytic continuation for the representation of ζ(s) for σ ≤ 1. Thus, the new term,
that we need to introduce to replace

∏∞
r (1− 1/psi ), must have a zero that cancels the pole

that ζ(s) has at s = 1. In the section 4, we will use the complex analysis to compute this new
term. In section 5, we then use the new representation to compute the sum

∑r
i=1 pi

σ for σ < 1.
This sum is then used to examine the validity of the Riemann Hypothesis.

In this paper, we claim the the Riemann Hypothesis is invalid. We support our claim by
proving that the series M(σ) is divergent for σ < 1. We achieved this results by introducing
a method to represent the Dirichlet series M(s) (defined by Equation (6)) in terms of the par-
tial Euler product. This task is achieved (sections 2 and 3) by first eliminating the numbers
that have the prime factor 2 to generate the series M(s, 2). For the series M(s, 2), we then
eliminate the numbers with the prime factor 3 to generate the series M(s, 3), and so on, up
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to the prime number pr. In essence, we have applied the sieving technique to modify the
series M(s) to include only the numbers with prime factors greater than pr. In section 6, the
properties of the modified series are analyzed and then used to examine the validity of the
RH.

2 Applying the Sieving Method to the Dirichlet Series M(s).

The Dirichlet series M(s) with the Mobius function is defined as

M(s) =
∞∑
n=1

µ(s)

ns
,

where µ(n) is the Mobius function. Thus,

M(s) = 1− 1

2s
− 1

3s
+

0

4s
− 1

5s
+

1

6s
....

Now, we introduce the series M(s, 2) by eliminating all the numbers that have a prime
factor 2. Thus, M(s, 2) can be written as

M(s, 2) = 1− 1

3s
− 1

5s
− 1

7s
+

0

9s
− 1

11s
− 1

13s
+

1

15s
.....

To have the same index for both seriesM(s) andM(s, 2) referring to the same term, the above
series can be re-written as

M(s, 2) = 1 +
0

2s
− 1

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

or

M(s) =
∞∑
n=1

µ(n, 2)

ns
, (7)

where
µ(n, 2) = µ(n), if n is an odd number,
µ(n, 2) = 0, if n is an even number.

The above seriesM(s, 2) can be further modified by eliminating all the numbers that have
a prime factor 3 to get the series M(s, 3) where

M(s, 3) = 1− 1

5s
− 1

7s
− 1

11s
− 1

13s
− 1

17s
− 1

19s
− 1

23s
+

0

25s
....,

or more conveniently

M(s, 3) = 1 +
0

2s
− 0

3s
+

0

4s
− 1

5s
+

0

6s
− 1

7s
− 0

8s
....,

and so on.

Let I(pr) represent, in ascending order, the integers with distinct prime factors that belong
to the set {pi : pi > pr}. Let {1, I(pr)} be the set of 1 and I(pr) (for example, {1, I(2)} is the
set of square free odd numbers), then we define the series M(s, pr) as
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M(s, pr) =
∞∑
n=1

µ(n, pr)

ns
, (8)

where
µ(n, pr) = µ(n), if n ∈ {1, I(pr)} ,
otherwise, µ(n, pr) = 0.

It can be easily shown that M(s, pr) converges absolutely for <(s) > 1 for every prime
number pr. Furthermore, it can be shown that, for <(s) > 1, M(s, pr) satisfies the following
equation

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (9)

Since

M(s) =
∞∏
i=1

(
1− 1

psi

)
,

then we conclude that, for <(s) > 1, M(s, pr) approaches 1 as pr approaches infinity.

3 Convergence of the series M(s, pr) within the strip 0.5 < <(s) ≤ 1.

In this section, we will deal with the question of the conditional convergence of the series
M(s, pr) over the strip 0.5 < <(s) ≤ 1. This task can be achieved by examining the conver-
gence of the series M(s, pr) along the real axis (or along the line 0.5 < σ ≤ 1 ). Theorems 1
and 2 establishes the relationship between the conditional convergence of the two seriesM(s)
and M(s, pr) for 0.5 < σ ≤ 1.

Theorem 1 For s = σ + i0, where 0.5 < σ ≤ 1 and for every prime number pr, the series M(σ)
converges conditionally if and only if the seriesM(σ, pr) converges conditionally. Furthermore, M(σ)
and M(σ, pr) are related as follows

M(σ) = M(σ, pr)
r∏
i=1

(
1− 1

pσi

)
. (10)

The proof of Theorem 1 is outlined in Appendix 1.

Theorem 2 For s = σ + it, where 0.5 < σ ≤ 1 and for every prime number pr, the series M(s)
converges conditionally if and only if the series M(s, pr) converges conditionally. Furthermore, M(s)
and M(s, pr) are related as follows

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
. (11)

The proof of the first part of Theorem 2 follows from the fact thatM(s, pr) is a Dirichlet se-
ries and consequently this series is conditionally convergent if and only if the series M(σ, pr)
is conditionally convergent.

The second part of the theorem can be proved by first definingM(s, pr;N1, N2) as the sum
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M(s, pr;N1, N2) =
N2∑

n=N1

µ(n, pr)

ns
. (12)

Then, we have

M(s, pr−1; 1, Npr) = M(s, pr; 1, Npr)−
1

psr
M(s, pr; 1, N). (13)

If both seriesM(s, pr−1) andM(s, pr) are convergent, then asN approaches infinity, we obtain

M(s, pr−1) = M(s, pr)

(
1− 1

psi

)
.

By repeating this process r − 1 times, we then obtain

M(s) = M(s, pr)
r∏
i=1

(
1− 1

psi

)
.

Note that if we multiply both sides of the above equation by
∏r
i=1 (1 + pi

−s)

M(s, pr) =
1

ζ(s)
∏r
i=1

(
1− p−2si

) r∏
i=1

(
1 +

1

psi

)
.

As pr approaches infinity, we then have

M(s, pr) =
ζ(2s)

ζ(s)

r∏
i=1

(
1 +

1

psi

)
.

It should be pointed out that the sieving method applied to the Dirichlet series with Mo-
bious function can be also applied to the Dirichlet series with Lioville function. The Dirichlet
series L(s) with Lioville Function λ(n) is defined as

L(s) =
∞∑
n=1

λ(n)

ns
, (14)

where
λ(n) = 1, if n = 1,
λ(n) = 1, if n has an even number of prime factors including multiplicities,
λ(n) = −1, if n has an odd number of prime factors including multiplicities.

Following the same process, we define the series L(s, pr) as

L(s, pr) =
∞∑
n=1

λ(n, pr)

ns
, (15)

where
λ(n, pr) = λ(n), if n ∈ {1, I(pr)} ,
otherwise, λ(n, pr) = 0.
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It can be easily shown that L(s, pr) converges absolutely for <(s) > 1 for every prime
number pr. Furthermore, it can be also shown that, for <(s) > 1, L(s, pr) satisfies the follow-
ing equation

L(s, pr) = L(s)
r∏
i=1

(
1 +

1

psi

)
.

It is well known in the literature that, on RH, we have∑
n≤x

λ(n) = O(x1/2+ε),

where ε is an arbitrary small number.

Using the above equation and following similar steps to those used for Theorems (1) and
(2), we may obtain the following theorem.

Theorem 3 For s = σ + it, where 0.5 < σ ≤ 1 and for every prime number pr, the series L(s)
converges conditionally if and only if the series L(s, pr) converges conditionally. Furthermore, L(s)
and L(s, pr) are related as follows

L(s, pr) = L(s)
r∏
i=1

(
1 +

1

psi

)
. (16)

4 Functional representation of ζ(s) using its partial Euler product.

Theorem 1 of the previous section provides a relationship between ζ(s) = 1/M(s) and the
partial Euler product

∏r
i=1(1 − 1/psi ). In this section and the following one, we will derive a

functional representation for ζ(s) using its partial Euler product. In this section, we will use
the prime counting function to compute this functional representation and in the following
section we will use the von Mangoldt function to achieve the same task. This functional rep-
resentation is then used to compute the sum

∑r
i=1 pi

σ for σ < 1. In section, 6 we will use this
sum to show that the series M(σ, pr) is diverges for σ < 1.

We will start this task by first writing ζ(s) for σ > 1 as follows

1/ζ(s) =
∞∏
i=1

(
1− 1

psi

)
=

r∏
i=1

(
1− 1

psi

) ∞∏
r+1

(
1− 1

psi

)
. (17)

For σ > 0.5, we have

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

log

(
1− 1

pis

)
,

or

log
r2∏
i=r1

(
1− 1

psi

)
=

r2∑
i=r1

(
− 1

pis
− 1

2pi2s
− 1

3pi3s
− ...

)
.

Let δ be defined as the sum

δ =
r2∑
i=r1

(
− 1

2pi2s
− 1

3pi3s
− 1

4pi4s
...

)
. (18)
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Thus,

log
r2∏
i=r1

(
1− 1

psi

)
= −

r2∑
i=r1

1

pis
+ δ. (19)

Since |δ|<
∑∞
n=pr1

(
1

2n2σ + 1
3n3s + 1

4n4s ...
)

, thus δ = O(p1−2σr1 /(2σ − 1)). Furthermore, if 2σ − 1

is a fixed positive number, then δ = O(p1−2σr1 ). It should be pointed out that for σ = 0.5 and
t 6= 0, δ is convergent to a finite number by the virtue of the Prime Number Theorem.

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than x is given by [4, page 43]

π(x) = Li(x) +O

(
xe−a

√
log x

)
, (20)

or
π(x) = Li(x) +O

(
x/(log x)k

)
, (21)

where Li(x) is the Logarithmic Integral of x and k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum
∑r2
i=r1

1
piσ

for σ > 1 as follows

r2∑
i=r1

1

piσ
=

∫ pr2

x=pr1

dπ(x)

xσ
. (22)

Using Equation (21) for the representation of π(x), we may then write the integral in Equation
(22) as [5, Theorem 2, page 57]

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
, (23)

where k is a number greater than zero. Therefore,

r2∑
i=r1

1

pσi
=

∫ ∞
pr1

1

xσ
1

log x
dx−

∫ ∞
pr2

1

xσ
1

log x
dx+O

(
1

(log pr1)k

)
. (24)

Recalling that the Exponential Integral E1(r) is given by

E1(r) =

∫ ∞
r

e−u

u
du,

and using the substitutions u = (σ−1) log pr, du = (σ−1)dx/x and xσ/x = eu, then for σ > 1,
we may write Equation (24) as

r2∑
i=r1

1

pσi
= E1 ((σ − 1) log pr1)− E1 ((σ − 1) log pr2) +O

(
1

(log pr1)k

)
. (25)

Combining Equations (19) and ((25)) and noting that, for σ > 1, E1 ((σ − 1) log pr2) ap-
proaches zero as pr2 approaches infinity, we may write Equation (17) for σ > 1 as

− log ζ(σ) =
r∑
i=1

log

(
1− 1

piσ

)
−

∞∑
i=r+1

1

piσ
+ δ,
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or

log ζ(σ) +
r∑
i=1

log

(
1− 1

piσ

)
− E1 ((σ − 1) log pr+1) = ε,

where ε = O(1/(log pr1)
k) is an arbitrarily small number attained by setting pr sufficiently

large. Therefore,

ζ(σ)
r∏
i=1

(
1− 1

pσi

)
exp (−E1((σ − 1) log pr+1)) = 1 + ε. (26)

As pr approaches infinity, ε approaches zero. Hence, the right side of the above equation ap-
proaches 1 as pr approaches infinity.

Similarly, for <(s) > 1, we can use the following expression for E1(s)

E1(s) =

∫ ∞
1

e−xs

x
dx,

to show that

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1. (27)

Let the function G(s, pr) be defined as

G(s, pr) = ζ(s)
r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1)) (28)

where, G(s, pr) is a regular function for <(s) > 1. Referring to Equation (27), the function
G(s, pr) approaches 1 as pr approaches infinity. It should be noted that, for each pr, the func-
tion exp (−E1((s− 1) log pr+1)) is an entire function, the function ζ(s) is analytic everywhere
except at s = 1 and the function

∏r
i=1(1− 1/psi ) is analytic for <(s) > 0. Thus, for any σ > 1,

the function G(s, pr) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
σ > 1 + ε (where, ε is an arbitrary small number). Therefore, by the virtue of the Weiestrass
theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence fn is analytic over the region Ω and fn is uniformly convergent to a function f , then
f is also analytic on Ω and fn

′
converges uniformly to f

′
on Ω). If we define this limit as G(s),

where
G(s) = lim

r→∞
G(s, pr) (29)

then,G(s) is analytic over the half plane <(s) > 1 and it is equal to 1 by the virtue of Equation
(27).

The Prime Number Theorem (PNT) allows us to extend the above results to the line
s = 1 + it. Moreover, we will show that if RH is valid, then for the strip s = σ + it where,
0.5 < σ < 1, the above results will also be valid with the limit of G(s, pr) is 1 as pr approaches
infinity.
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We will start this task by showing that although both ζ(s) and E1((s− 1) log pr+1) have a
singularity at s = 1, the product G(s, pr) has a removable singularity at s = 1 for every pr.
This can be shown by first expanding ζ(s) as a Laurent series about its singularity at s = 1

ζ(s) =
1

s− 1
+ γ − γ1(s− 1) + γ2

(s− 1)2

2!
− γ3

(s− 1)3

3!
+ ..., (30)

where γ is the Euler-Mascheroni constant and γi’s are the Stieltjes constants. For s = 1 + ε,
where ε = ε1 + iε2, ε1 and ε2 are arbitrary small numbers, the above equation can be written
as

ζ(s) =
1

ε
+ γ − γ1ε+ γ2

ε2

2!
− γ3

ε3

3!
+ ... (31)

Furthermore, for σ > 1, using the definition of the Exponential Integral, we may write
E1(s) as

E1(s) = −γ − log s+ s− s2

2 2!
+

s3

3 3!
− s4

4 4!
+ .... (32)

Thus, for s = 1 + ε, we have

exp (−E1((s− 1) log pr)) = eγε log pr exp

(
−ε log pr +

(ε log pr)
2

2 2!
− (ε log pr)

3

3 3!
+ ....

)
. (33)

By taking the product ζ(s) exp (−E1((s− 1) log pr)) and allowing ε to approach zero, we then
obtain at s = 1 (in the same sense as computing sinx/x at x = 0)

ζ(s) exp (−E1((s− 1) log pr)) = eγ log pr. (34)

However, it is well known that the partial Euler product at s = 1 can be written as [8]

r∏
i=1

(
1− 1

pi

)
=

e−γ

log pr
+O

(
1

(log pr)2

)
. (35)

Multiplying Equations (34) and (35), we may conclude that at s = 1, G(s, pr) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and t 6= 1, the value of exp(−E1(it log pr))
approaches 1 as pr approaches infinity and since

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

pis

)}
= 1,

therefore, for s = 1 + it, we have the following

lim
r→∞

G(s, pr) = lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1.

So far, we have shown that the functionG(s, pr) is uniformly convergent to 1 when<(s) >
1 and using PNT, G(s, pr) is convergent to 1 for <(s) = 1. In the following, we will show
that, assuming the validity of the Riemann Hypothesis, the function G(s, pr) is uniformly
convergent to 1 for every value of s with <(s) > 0.5 + ε, where ε is an arbitrary small number.
Toward this goal, we will first show that the function G(s, pr) is convergent for any value
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of s on the real axis with σ > 0.5. This can be achieved by first writing the expressions for
G(σ, pr1) and G(σ, pr2) (where r2 is an arbitrary large number greater than r1)

G(σ, pr1) = ζ(σ) exp (−E1((σ − 1) log pr1+1))
r1∏
i=1

(
1− 1

pσi

)
, (36)

G(σ, pr2) = ζ(σ) exp (−E1((σ − 1) log pr2+1))
r2∏
i=1

(
1− 1

pσi

)
. (37)

Since the function G(s, pr) is analytic that is not equal to 0 for σ > 0.5, hence we can divide
Equation (37) by Equation (36) and then take the logarithm to obtain

log

(
G(σ, pr2)

G(σ, pr1)

)
= E1 ((σ − 1) log pr1+1)− E1 ((σ − 1) log pr2+1) + log

 r2∏
i=r1+1

(
1− 1

piσ

) .
(38)

To compute the logarithm of the partial Euler product in Equation (38), we recall Equation
(19)

log
r2∏
r1+1

(
1− 1

psi

)
= −

r2∑
i=r1+1

1

pis
+ δ,

where δ = O(p1−2σr1 /(2σ − 1)). Furthermore, on RH, we have

π(x) = Li(x) +O
(√
x log x

)
, (39)

where Li(x) is the Logarithmic Integral of x. Using Equation (39) for the representation of the
prime counting function, we may then obtain (Appendix 2)

r2∑
i=r1+1

1

piσ
= E1((σ − 1) log pr1+1)− E1((σ − 1) log pr2) + ε,

where ε = O
(

t
(σ−0.5)2 pr1

0.5−σ log pr1
)

. Hence, Equation (38) can be written as

log

(
G(σ, pr2)

G(σ, pr1)

)
= ε+ δ + E1((σ − 1) log pr2)− E1((σ − 1) log pr2+1).

Since, for σ > 0.5+ε, ε+δ andE1((σ−1) log pr2)−E1((σ−1) log pr2+1) can be made arbitrary
small by choosing pr1 arbitrary large, thus the limit ofG(σ, pr) exists as pr approaches infinity
and it is given by

G(σ) = lim
r→∞

G(σ, pr) (40)

This proves that, on RH, G(σ, pr) is convergent as pr approaches infinity and thus G(σ)
exists for σ > 0.5. In Appendix 3, we have shown that, on RH and for <(s) > 0.5, we have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε,

where ε = O
(

t+1
(σ−0.5)2 pr1

0.5−σ log pr1
)

. Thus, we can follow the same steps and show that
G(s, pr) is convergent as pr approaches infinity and thus G(s) exists for <(s) > 0.5.
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It should be noted that, while the function sequence G(s, pr) is not uniformly convergent
when the region of convergence is extended all the way to the line σ = 0.5, it is however
uniformly convergence for any strip with σ > 0.5 + ε, where ε is an arbitrary small number.
This follows from the fact that ε (or, the O term) is bounded for any σ > 0.5 + ε. Since G(s, pr)
is analytic for <(s) > 0 and it is uniformly convergent for <(s) > 0.5 + ε, thus G(s) is analytic
for the half right complex plain with <(s) > 0.5 + ε (Weiestrass theorem [6]). Since we have
shown that G(s) = 1 for <(s) ≥ 1, thus on RH, G(s) = 1 for <(s) > 0.5 + ε. Hence, we have
the following theorem

Theorem 4 For s = σ + it and σ > 0.5, the following holds if RH is valid

lim
r→∞

{
ζ(s)

r∏
i=1

(
1− 1

psi

)
exp (−E1((s− 1) log pr+1))

}
= 1. (41)

lim
r→∞

{M(s, pr) exp (E1((s− 1) log pr+1))} = 1. (42)

It should be pointed out that Theorem 4 can be generalized to the case where there are no
non-trivial zeros for values of s with <(s) > a (where, a > 0.5). For this case, Equation (41) is
valid for every s with <(s) > a and ε in Appendix 3 is given by O

(
t+1

(σ−a)2 pr1
a−σ log pr1

)
.

Equation (41) of Theorem 4 can be written as follows

log ζ(s) + log
r2∏
i=1

(
1− 1

psi

)
− E1 ((s− 1) log pr2+1) = 0,

where the equality of both sides is attained as r2 (or pr2) approaches infinity. It should be
pointed out that both functions log ζ(s) and E1((s− 1) log pr2+1) have a branch cut along the
real axis where 0.5 ≤ σ < 1, while the difference (i.e. log ζ(s)−E1((s− 1) log pr2+1)) does not
have a branch cut. For r < r2, the above equation can be then written as

log ζ(s) = E1 ((s− 1) log pr2+1)−
r∑
i=1

log

(
1− 1

psi

)
−

r2∑
i=r+1

log

(
1− 1

psi

)
.

Since, on RH and for <(s) > 0.5, (refer to Appendix 3)

−
r2∑

i=r+1

log

(
1− 1

psi

)
=

r2∑
i=r+1

1

pis
+ δ = E1 ((s− 1) log pr+1)− E1 ((s− 1) log pr2) + ε+ δ

where ε = O
(

t+1
(σ−0.5)2 pr

0.5−σ log pr
)

and δ = O(p1−2σr /(1− 2σ)), therefore

log ζ(s) = −
r∑
i=1

log

(
1− 1

psi

)
+ E1 ((s− 1) log pr+1) +O

(
t+ 1

(σ − 0.5)2
pr1

0.5−σ log pr

)
. (43)

Equation (43) represents well the singularity of log ζ(s) at s = 1 and it allows analytic con-
tinuation for values of s with <(s) < 1. This analytic continuation should extend all the way
to the non-trivial zeros with the highest value of σ. Unfortunately, Equation (43) poorly rep-
resents ζ(s) in the vicinity of the non-trivial zeros as the O term grows much faster than the
growth of log ζ(s) in the vicinity of the simple non-trivial zeros. In the next section, we will
use the von Mangoldt function to provide a better representation for log ζ(s) in the vicinity of
the no-trivial zeros.
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5 Partial Euler product functional representation of ζ(s) using von
Mangoldt function.

The derivation of Equation (43) was based on computing the sum
∑r2
i=r1 1/psi (Appendix 3) as

follows
r2∑
i=r1

1

psi
=

∫ pr2

pr1

dπ(x)

xs
=

∫ pr2

pr1

1

xs log x
dx+

∫ pr2

pr1

1

xs
dO

(√
x log x

)
dx.

The above sum can be also computed using the von Mangoldt function Λ(n) (where Λ(n) =
log p, if n = pk for some prime p and integer k ≥ 1, otherwise, Λ(n) = 0) to obtain

r2∑
i=r1

1

psi
=

r2∑
n=r1

1

ns log n
Λ(n) + ∆, (44)

where ∆ is added to eliminate the contribution by the terms of the form m−s, where m = pk

and 2 ≤ k < blog2 pr2c+ 1. In other words, ∆ is given by

∆ =

b√pr2c∑
pi=b

√
pr1c

1

2pi
2s +

b 3
√
pr2c∑

pi=b 3
√
pr1c

1

3pi
3s + ...+

b L√pr2c∑
pi=b L

√
pr1c

1

Lpi
Ls
, (45)

where L = blog2 pr2c+1 and bxc is the integer value of x. The order of ∆ is determined by the
order of the first term

∑b√pr2c
pi=b

√
pr1c 0.5/pi

2s. Thus, the order of ∆ can be computed (in the same

way the order of δ was computed) to obtain ∆ = O((
√
pr1)

1−2σ/(2σ−1)) = O(p0.5−σr1 /(2σ−1)).
Furthermore, if 2σ − 1 is a fixed positive number, then ∆ = O(p0.5−σr1 ). It should be pointed
out that for σ = 0.5 and t 6= 0, ∆ is convergent to a finite number by the virtue of PNT.

Since the Chebyshev function ψ(x) is given by the following sum

ψ(x) =
x∑

n=1

Λ(n)

therefore, using the Stieltjes integral, one may write the sum of Equation (44) as the following
integral

r2∑
i=r1

1

psi
=

∫ pr2

pr1

1

xs log x
dψ(x) + ∆, (46)

where ψ(x) is also given by [1]

ψ(x) = x−
∑
ρ

xρ

ρ
+
∑
n

x−2n

2n
− ζ ′(0)

ζ(0)
(47)

It should be pointed out that the first term x in Equation (47) is attributed to the pole of ζ(s) at
s = 1, the sum over ρ (or non-travail zeros) is attributed to the non-trivial zeros in the critical
strip and the sum over n is attributed to the trivial zeros. Hence, Equation (46) can be written
as

r2∑
i=r1

1

psi
=

∫ pr2

pr1

1

xs log x
dx−

∫ pr2

pr1

1

xs log x
d

(∑
ρ

xρ

ρ

)
+ ∆ (48)
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where the contribution by the last two terms of Equation (47) is negligible compared with the
term ∆. In Appendix (3), we have shown that∫ pr2

pr1

1

xs log x
dx = E1((s− 1) log pr1)− E1((s− 1) log pr2). (49)

For the integral with the sum over ρ, we first compute the integral over the ρ’s with
|=(ρ)|< T . Thus, we have

∫ pr2

pr1

1

xs log x
d

 ∑
|=(ρ)|<T

xρ

ρ

 =
∑

|=(ρ)|<T

(∫ pr2

pr1

1

xs log x
d

(
xρ

ρ

))
. (50)

For the above integral, for each ρ, |xρ/ρ| is a continuous function and bounded over the range
pr1 ≤ x ≤ pr2, therefore the interchange between the differentiation and summation is justi-
fied (alternatively, one may integrate by parts to get the same results, where the sum becomes
the integrand and the differentiation is applied to the term 1/(xs log x) instead of the sum).
Furthermore, for each ρ, <(s) is higher than <(ρ), therefore

∫ pr2
pr1
|xρ−1/(xs log x)|dx is conver-

gent as pr2 approaches infinity. Hence, the interchange between the integral and the sum is
justified. Therefore, Equation (50) can be written as

∫ pr2

pr1

1

xs log x
d

 ∑
|=(ρ)|<T

xρ

ρ

 =
∑

|=(ρ)|<T
(E1((s− ρ) log pr1)− E1((s− ρ) log pr2)) . (51)

In Appendix 4, we have shown that the sum on the right side of (51) is convergent as T
approaches infinity. Thus,

∫ pr2

pr1

1

xs log x
d

(∑
ρ

xρ

ρ

)
=
∑
ρ

(E1((s− ρ) log pr1)− E1((s− ρ) log pr2)) . (52)

Consequently,

r2∑
i=r1

1

psi
= E1((s−1) log pr1)−E1((s−1) log pr2)−

∑
ρ

(E1((s− ρ) log pr1)− E1((s− ρ) log pr2))+∆,

(53)
where ∆ = O(p0.5−σr1 ). If the function J(s, pr1, pr2) is defined as follows

J(s, pr1, pr2) =
r2∑
i=r1

1

psi
− E1((s− 1) log pr1) + E1((s− 1) log pr2), (54)

then
J(s, pr1, pr2) =

∑
ρ

(E1((s− ρ) log pr1)− E1((s− ρ) log pr2)) + ∆. (55)

We notice that the function J(s, pr1, pr2) is analytic for every pr1, pr2 and s. This follows
from the fact that although the functions E1((s − 1) log pr1) and E1((s − 1) log pr2) have a
branch cut on the negative real axis, the difference does not have a branch cut. Moreover,
although the functions E1((s − 1) log pr1) and E1((s − 1) log pr2) have a singularity at s = 1,
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the difference has a removable singularity at s = 1. This follows from the fact that as s
approaches 1, the difference can be written as

E1((s− 1) log pr1)− E1((s− 1) log pr2) = − log ((1− s) log pr1)− γ + log ((1− s) log pr2) + γ

or,
E1((s− 1) log pr1)− E1((s− 1) log pr2) = − log log pr1 + log log pr2 (56)

Therefore, the function J(s, pr1, pr2) is analytic for every pr1, pr2 and s.

Referring to Appendix (4), we notice that for every s with <(s) > max<(ρ), the term∑
ρ (E1((s− ρ) log pr1)− E1((s− ρ) log pr2)) approaches zero as pr1 approaches infinity. Thus,

for <(s) > max<(ρ), we have

r2∑
i=r1

1

psi
= E1((s− 1) log pr1)− E1((s− 1) log pr2) +O(p

−σ+max<(ρ)
r1 ). (57)

To compute log ζ(s) using Equation (47), we recall Equation (41) of Theorem 1. Thus, for
every s with <(s) > max<(ρ), we have

log ζ(s) = E1 ((s− 1) log pr2+1)−
r2∑
i=1

log

(
1− 1

psi

)
,

where the equality of both sides is attained as pr2 approaches infinity. Alternatively,

log ζ(s) = E1 ((s− 1) log pr2+1)−
r∑
i=1

log

(
1− 1

psi

)
−

r2∑
i=r+1

log

(
1− 1

psi

)
.

Hence,

log ζ(s) = E1 ((s− 1) log pr2+1)−
r∑
i=1

log

(
1− 1

psi

)
+

r2∑
i=r+1

1

pis
+ δ.

Consequently, using Equations (46), (48), (49) and (52) (and noting that when <(s−ρ) > 0 for
every ρ, the sum

∑
ρE1 ((s− ρ) log pr2) approaches zero as pr2 approaches infinity), we have

the following theorem

Theorem 5 If <(s− ρ) > 0 for every non-trivial zero ρ, then

log ζ(s) = −
r∑
i=1

log

(
1− 1

psi

)
+ E1 ((s− 1) log pr+1)−

∑
ρ

E1 ((s− ρ) log pr+1) +O
(
pr

0.5−σ
)
.

(58)
where σ = <(s) and the O term is given by δ + ∆.

The differentiation of log ζ(s) or ζ ′(s)/ζ(s) has been extensively used in the analysis of the
Riemann zeta function. Using Equation (58), we may obtain a functional representation of
ζ ′(s)/ζ(s) in terms of the partial Euler product of ζ(s).

Theorem 6 If <(s− ρ) > 0 for every non-trivial zero ρ, then

ζ ′(s)

ζ(s)
= − d

ds

(
log

r−1∏
i=1

(
1− 1

psi

))
− pr

−(s−1)

s− 1
+
∑
ρ

pr
−(s−ρ)

s− ρ
+O

(
pr

0.5−σ
)
. (59)

where σ = <(s) and the O term is given by d(δ + ∆)/ds.
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Although Theorems (4), (5) and (6) provide a functional representation for ζ(s) in terms
of it partial Euler product, our attempts to proof or disproof the Riemann hypothesis using
these representations in conjunction with other properties (such as the growth of ζ(1 + iT )
with T ) have failed. However, the sum

∑
pr1≤pi≤pr2 1/pi

σ for σ < 1 (that was computed using
these theorems) has been successfully used to examine the convergence of the seriesM(σ) for
σ < 1 as described in the next section.

6 The convergence of the series M(σ, pr) and M(σ) for σ ≤ 1.

In this section, we will first provide an estimate for the function M(1, pr; 1, pr
a) as it ap-

proaches zero when a approach infinity. We then establish a relationship betweenM(1, pr; 1, pr
a)

and M(σ, pr; 1, pr
a) and use this result to show that M(σ, pr) and M(σ) diverge for σ < 1.

In the first step toward this end, we define the function f(a, pr) as

f(a, pr) = M(1, pr; 1, pr
a) =

pra∑
n=1

µ(n, pr)

n
,

then we will show that as pr approaches infinity, the function f(a, pr) approaches a determin-
istic function F (a) (that is independent of pr). In other words; if we plotM(1, pr; 1, N) (where
N = pr

a ) as a function a = logN/log pr, then for each value of a and as pr approaches infinity,
f(a, pr) approaches a unique value F (a) that is independent of pr. This result can be shown
by first dividing the prime numbers that are in the range pr < x ≤ pr

2 into N sections. The
first section comprises of all the prime numbers that are in the range pr < x ≤ pr

1+δ (where,
δ << 1 and it is given by δ = 1/(log pr)

α, α > 1 and (log pr)
α << pr). The second section

comprises of all the prime numbers that are in the range in the range pr1+δ < x ≤ pr
1+2δ

and so on (where the j-th section comprises of all the prime numbers that are in the range
pr

1+(j−1)δ < x ≤ pr1+jδ). Hence,

Nδ = 1. (60)

The process of dividing the prime numbers into sections continues for primes greater than
pr

2. Thus, the total number of sections L over the range pr < x ≤ pra is given by (a− 1)N .

If we define Ki as the sum of the reciprocals of the prime numbers in section j (where
i = j +N ), then by Mertens’ Theorem, Ki is given by

Ki = log log pr
(i+1)δ − log log pr

iδ +
O(1/log pr)

i
,

where 1 ≤ iδ ≤ a. Hence, for sufficiently small δ and sufficiently large pr, we may then have

Ki =
1

i
+

1

i
O(1/log pr) +O

(
1/i2

)
, (61)

where O(1/log pr) can be made arbitrary small by selecting pr arbitrary large. Therefore, we
may consider that each Ki is comprised of two terms. The first one is a deterministic term
defined as Di and it is given by 1/i and a ”random” term which is the remaining part of the
Ki (i.e. the random term is given by Ki −Di). As pr and N approach infinity, we have

Ki = Di =
1

i
. (62)
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In second step, we will device an algorithm to construct a series that is equivalent to the
series M(1, pr; 1, pr

a) from these (a− 1)N sections (that are comprised of the prime numbers
with their associated values of Ki’s) and the products of Ki’s (with the appropriate signs).
This series starts with the number 1. Then, instead of subtracting the terms 1/pr, 1/pr+1, ...,
we subtract the values of Ki’s for the first N sections. These sections are ordered based on
the value of the largest member within each section. It can be easily shown that the value of
M(1, pr; 1, pr

2) constructed by this method is given 1− log 2 (plus a factor that is determined
by the sum of N terms of the form (1/i)O(1/log pr)) and this factor (as mentioned earlier) can
be made arbitrary small by selecting pr arbitrary large. In other words; if we set Ki = 1/i,
then

M(1, pr; 1, pr
2) = 1−

2N∑
i=N

Ki = 1−
2N∑
i=N

1

i
= 1−

N∑
j=0

1

N + j
.

As N approaches infinity, we then have

M(1, pr; 1, pr
2) = 1−

∫ 1

0

1

1 + x
dx = 1− log 2

The terms of the series M(1, pr; 1, pr
a) in the range pr ≤ x < pr

3 are either a reciprocal of a
prime or a reciprocal of the product of two primes. To reconstruct these terms, we start with
1 and subtract the sum of Ki’s for the sections of primes in the range pr ≤ x < pr

3 and then
add to it the sum of the terms that are the product of Ki1’s and Ki2’s for any two sections of
the prime numbers (where the product of any member of the one section with any member
of the second section is less than pr3). Except for the terms of the form (1/i)O(1/log pr), the
contribution by these terms (i.e the terms in the range pr ≤ x < pr

3) is independent of pr
given by

M(1, pr; 1, pr
3) = 1−

3N∑
i=N

Ki +
1

2

2N∑
i=N

K3N−i

i∑
j=N

Kj


where the factor of 1/2 was added to the last term since each term of the form 1/(pj1pj2) is
repeated twice.

Similarly, the terms of the series M(1, pr; 1, pr
a) in the range pr ≤ x < pr

4 are either a
reciprocal of a prime, a reciprocal of the product of two primes or a reciprocal of the product
of three primes. To reconstruct these terms, we start with 1 and subtract the sum of Ki’s for
the sections of primes in the range pr ≤ x < pr

4 and then add to it the sum of the terms
that are the product of Ki’s and Kj ’s for any two sections of the prime numbers (where the
product of any member of the one section with any member of the second section is less than
pr

4). Finally, we subtract the sum of the terms that are the product of Ki1’s, Ki2’s and Ki3’s
for any three sections of the prime numbers (where the product of any member of the one
section with any member of the second section and any member of the third section is less
than pr4). Except for the terms of the form (1/i)O(1/log pr), the contribution by these terms
(i.e the terms in the range pr ≤ x < pr

4) is independent of pr.

This process is repeated a−1 times to show that, except for the terms of the form (1/i)O(1/log pr),
the constructed series is only dependent on a.
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It should be pointed out that the series constructed by this algorithm includes both square-
free terms (that forms M(1, pr; 1, pr

a)) as well as the non square-free terms. Therefore, the se-
ries generated by this algorithm is L(1, pr; 1, pr

a) instead of M(1, pr; 1, pr
a). In the following,

we will show that, as pr approaches infinity, the contribution by the non square-free terms
approaches zero as well. Toward this end, let S0 be the sum of the terms with the factor 1/pr

2.
Let S1 be the sum of the remaining terms with the factor 1/pr+1

2, S2 be the sum of the re-
maining terms with the factor 1/pr+2

2, and so on. Let H be sum of all the terms associated
with non square-free terms of L(1, pr; 1, pr

a). Thus, H is given by

H =
1

pr2
S0 +

1

pr+1
2
S1 + ...+

1

pr+l2
SL,

where pr+l is the largest prime that its square is less than pra. However,

|S0|, |S1|, ..., |Sl|< 1 +
1

2
+

1

3
+ ...+

1

pra

Thus,

|S0|, |S1|, ..., |Sl|< a log pr

In fact, since S0 = L(1, pr; 1, pr
a/pr

2), S1 = L(1, pr+1; 1, pr+1
a/pr+1

2), ... and Sl = L(1, pr+l; 1, pr+l
a/pr+l

2)
and since, as pr approaches infinity, L(1, pr; 1, pr

a) approaches a deterministic function of a,
thus S0, S1, ..., SL are all bounded or,

|S0|, |S1|, ..., |Sl|= O(1).

Therefore

H =

(
1

pr2
+

1

pr+1
2

+ ...+
1

pr+l2

)
O(1).

Hence, the contribution by the non square free terms H is given by,

H = O(1/pr).

In the third step, we will compute M(1, pr; 1, pr
a) as a function of a. Toward this end, we

first assume that Ki = 1/i (i.e, we ignore the terms of the form (1/i)O(1/log pr) as we will
show later that their contribution is negligible). Thus, M(1, pr; 1, pr

a) can be written as

M(1, pr; 1, pr
a) = 1− 1

2
KNM(1, pr; 1, pr

a−1)− 1

2
KN −

1

2
KN+1M(1, pr; 1, pr

a−1−δ)− 1

2
KN+1

−1

2
KN+2M(1, pr; 1, pr

a−1−2δ)− 1

2
KN+2 − ...−

1

2
K(a−1)N−1M(1, pr; 1, pr

1+δ)− 1

2
K(a−1)N−1

−K(a−1)N −K(a−1)N+1 − ...−KaN ,

where the factor of 1/2 was added to each of the products KiM(1, pr; 1, pr
a−iδ)’s since each

term with a factor of 1/(pr1pr2) is repeated twice. Since the terms 1/pj ’s are not repeated,
therefore we added the terms 1

2Ki’s (for N ≤ i < (a − 1)N ). As pr approaches infinity,
M(1, pr; 1, pr

x) approaches the function F (x). Thus, M(1, pr; 1, pr
a) is then given by
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M(1, pr; 1, pr
a) = 1− 1

2

(
KN +KN+1 + ...+K(a−1)N−1

)
−K(a−1)N − ...−KaN

−1

2

(
KNF (a− 1)−KN+1F (a− 1− δ)−KN+2F (a− 1− 2δ)− ...−K(a−1)N−1F (1 + δ)

)
.

Furthermore, as N approaches infinity, δ approaches zero and the above sums can be
given by the following integrals

KN +KN+1 − ...+K(a−1)N−1 =

(a−1)N−1∑
i=N

1

i
=

∫ a−2

1

1

1 + x
dx = log(a− 1),

K(a−1)N +K(a−1)N+1 − ...+KaN =

∫ a−1

a−2

1

1 + x
dx = log a− log(a− 1) =

1

a
+O(1/a2),

and

KNF (a− 1) +KN+1F (a− 1− δ) + ...+K(a−1)N−1F (1 + δ) =

∫ 1

a−1

F (x)

a− x
dx.

Hence

F (a) = 1− 1

2

∫ 1

a−1

F (x)

a− x
dx− 1

2
log(a− 1)− 1

a
+O(1/a2).

As a approaches infinity, we then have∫ a−1

1

F (x)

a− x
dx = log(a− 1). (63)

Hence, we conclude that F (a) approaches zero at a rate that is no faster than rate at which
1/a approaches zero. In other words;. F (a) decays no faster than 1/a. Therefore, for some
constant C, we have

F (a) > C/a

or
F (a) = Ω(1/a)

In the following, we will show that the effect of the terms of the form (1/i)O(1/log pr) is
negligible (note that on RH, these terms are reduced to O((pr

iδ)0.5−1) which is much less that
(1/i)O(1/log pr). In general, if there are no non-trivial zeros to the right of the line <s = c,
then these terms are given by O((pr

iδ)c−1)). If we define B(a, pr) as the contribution by these
terms to M(1, pr; 1, pr

a), then

B(a, pr) =

(
M(1, pr; 1, pr

a−1) +
1

2
M(1, pr; 1, pr

a−2) + ...+
1

a− 1
M(1, pr; 1, pr)

)
O(1/log pr).

For M(1, pr; 1, pr
a) = F (a), we then have

B(a, pr) =

(
F (a− 1)

1
+
F (a− 2)

2
+ ...+

F (1)

a− 1

)
O(1/log pr),
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or
B(a, pr) = O

(
1

a− 1
+

1

2(a− 2)
+ ...+

1

a− 1

)
O(1/log pr).

Thus
B(a, pr) = O(log a/a)O(1/log pr).

Hence, as pr approaches infinity,B(a, pr) is negligible compared to F (a) (It should be pointed
out that the above bound for B(a, pr) is obtained by setting F (a) = 1/a. However, it will be
shown later that a necessary condition for the validity of the RH is the exponential decay of
F (a) to zero. With this decay, B(a, pr) would have a much lower bound and it would ap-
proach zero much more rapidly as a approaches infinity).

In the fourth step, we will follow the previous steps to analyze the properties ofM(1, pr; 1, pr
a)

for σ < 1. Toward this end, we follow the same algorithm (that we used for the construction
of M(1, pr; 1, pr

a)) to construct the series M(σ, pr; 1, pr
a). For this case, on RH, Ki is given by

(refer to Equation (57))

Ki =
∑

priδ<pj<pr(i+1)δ

1

pσj
= E1

(
(σ − 1) log pr

iδ
)
− E1

(
(σ − 1) log pr

(i+1)δ
)

+O(p−σ+0.5
r ).

Using the following asymptotic representation of the Exponential Integral

E1(z) =
e−z

z

(
1 +O

(
1

z

))
,

we then obtain

E1

(
(σ − 1) log pr

iδ
)

= − e(1−σ)iδ log pr

(1− σ)iδ log pr

(
1 +O

(
1

i log pr

))
,

and

E1

(
(σ − 1) log pr

(i+1)δ
)

= − e(1−σ)(i+1)δ log pr

(1− σ)(i+ 1)δ log pr

(
1 +O

(
1

i log pr

))
.

Hence,

Ki = C
pr

(1−σ)iδ

i

(
1 +O

(
1

i log pr

))
+O(p−σ+0.5

r ),

where

C =
pr

(1−σ)δ − 1

(1− σ)δ log pr
.

Without loss of generality, we can select (1− σ)δ log pr so that C = 1 (one way to achieve this
is by setting δ = 1/(log pr)

2. As pr approaches infinity, (1− σ)δ log pr approaches zero and C
approaches 1). Hence, as pr approaches infinity, we have

Ki =
pr

(1−σ)iδ

i
(64)
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For the final step, we will show that,

M
(
σ; pr

Jδ, pr
(J+1)δ

)
= pr

J(1−σ)δM
(
1; pr

Jδ, pr
(J+1)δ

)
where, J > N andNδ = 1. Toward this end, we defineM1

(
1; pr

Jδ, pr
(J+1)δ

)
as the sum of the

terms of the form 1/pj in the interval [prJδ, pr(J+1)δ] and we define M1

(
σ; pr

Jδ, pr
(J+1)δ

)
as

the sum of the terms of the form 1/pi
σ in the same interval. We also defineM2

(
1; pr

Jδ, pr
(J+1)δ

)
as the sum of the terms of the form 1/(pj1pj2) in the interval [prJδ, pr(J+1)δ] and we define
M2

(
σ; pr

Jδ, pr
(J+1)δ

)
as the sum of the terms of the form 1/(pj1pj2)

σ in the same interval and
so on. Hence,

M
(
1; pr

Jδ, pr
(J+1)δ

)
= −M1

(
1; pr

Jδ, pr
(J+1)δ

)
+M2

(
1; pr

Jδ, pr
(J+1)δ

)
−M3

(
1; pr

Jδ, pr
(J+1)δ

)
+...

and

M
(
σ; pr

Jδ, pr
(J+1)δ

)
= −M1

(
σ; pr

Jδ, pr
(J+1)δ

)
+M2

(
σ; pr

Jδ, pr
(J+1)δ

)
−M3

(
σ; pr

Jδ, pr
(J+1)δ

)
+...

The term M1

(
1; pr

Jδ, pr
(J+1)δ

)
is given by

M1

(
1; pr

Jδ, pr
(J+1)δ

)
= Ki =

1

J
.

Similarly,

M1

(
σ; pr

Jδ, pr
(J+1)δ

)
=
pr
J(1−σ)δ

J
.

Hence,

M1

(
σ; pr

Jδ, pr
(J+1)δ

)
= pr

J(1−σ)δM1

(
σ; pr

Jδ, pr
(J+1)δ

)
.

The term M2

(
1; pr

iδ, pr
(i+1)δ

)
is given by

M2

(
1; pr

Jδ, pr
(J+1)δ

)
=

1

2

J∑
j=N

KJ−jKj =
1

2

J∑
j=N

1

J − j
1

j

where the factor of 1/2 is added since each term of the form 1/pj1pj2 is repeated twice in the
above sum. The term M2

(
σ; pr

iδ, pr
(i+1)δ

)
is also given by

M2

(
σ; pr

Jδ, pr
(J+1)δ

)
=

1

2

J∑
j=N

pr
(J−j)(1−σ)δ

J − j
pr
j(1−σ)δ

j
.

Hence

M2

(
σ; pr

Jδ, pr
(J+1)δ

)
= pr

J(1−σ)δM2

(
σ; pr

Jδ, pr
(J+1)δ

)
.
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The term M3

(
1; pr

iδ, pr
(i+1)δ

)
is given by

M3

(
1; pr

Jδ, pr
(J+1)δ

)
=

1

2

J∑
j=N

KJ−jM2

(
1; pr

jδ, pr
(j+1)δ

)
,

or

M3

(
1; pr

Jδ, pr
(J+1)δ

)
=

1

2

J∑
j=N

1

J − j
M2

(
1; pr

jδ, pr
(j+1)δ

)
.

Similarly, M3

(
σ; pr

iδ, pr
(i+1)δ

)
is given by

M3

(
σ; pr

Jδ, pr
(J+1)δ

)
=
pr
J(1−σ)δ

2

J∑
j=N

1

J − j
M2

(
σ; pr

jδ, pr
(j+1)δ

)
.

Hence,

M3

(
σ; pr

Jδ, pr
(J+1)δ

)
= pr

J(1−σ)δM3

(
1; pr

Jδ, pr
(J+1)δ

)
.

Repeating the process i times, we then obtain

Mi

(
σ; pr

Jδ, pr
(J+1)δ

)
= pr

J(1−σ)δMi

(
1; pr

Jδ, pr
(J+1)δ

)
.

Consequently,

M
(
σ; pr

Jδ, pr
(J+1)δ

)
= pr

J(1−σ)δM
(
1; pr

Jδ, pr
(J+1)δ

)
. (65)

The termM
(
1; pr

Jδ, pr
(J+1)δ

)
converges to zero by the virtue of the convergence ofM(1, pr).

However, the term pr
J(1−σ)δ grows at a rate faster than the rate M

(
1; pr

Jδ, pr
(J+1)δ

)
decays

to zero (where M(1; 1, pr
(J+1)δ) > C/(Jδ) ). Therefore, the term M

(
σ; pr

Jδ, pr
(J+1)δ

)
does

not converge to zero as J approaches infinity. Consequently, the series M(σ, pr) and M(σ)
diverge for σ < 1. This implies that the Riemann Hypothesis is invalid and the zeros can be
found arbitrary close to line <(s) = 1.

To summarize our method to disprove the Riemann Hypothesis:

• We have first represented the series M(σ, pr; 1, pr
a) as the sum of a deterministic com-

ponent and a ”random” component. We defined the terms Di’s as the building blocks
for the deterministic component (where Ki approaches Di when pr and N approach
infinity). For σ = 1, the deterministic component of M(1, pr; 1, pr

a) is given by F (a).

• We then showed that for σ = 1, Di = 1/i. For σ < 1, Di is given by Cpr(1−σ)iδ/i.

• We have then showed that F (a) decays no faster than 1/a. We then showed that the
deterministic component of M(σ, pr; 1, pr

a) was divergent for σ < 1.

• On the assumption that M(σ, pr; 1, pr
a) converges for σ < 1, we have shown that the

”random” component of M(σ, pr; 1, pr
a) is bounded by 1/log pr. Since M(σ, pr; 1, pr

a)
is the sum of the deterministic component (which was shown earlier to be divergent)
and the random component, therefor M(σ, pr; 1, pr

a) is divergent which contradicts our
earlier assumption that it is convergent.
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• Since M(σ, pr) is divergent for σ < 1, therefore M(σ) is divergent for σ < 1. Hence,
non-trivial zeros can be found arbitrary close to the line <(s) = 1

Appendix 1
To prove the first part of Theorem 1 (i.e. for s = σ + i0 and 0.5 < σ ≤ 1, the series M(σ, pr)
converges conditionally if M(σ) converges conditionally), we first start with proving that
M(σ, 2) is convergent if M(σ) is convergent. Since M(σ) is convergent, then for any arbitrary
small number δ, there exists an integer N0 such that for every integer N > N0

|M(σ;N,∞)| =
∣∣∣∣∣
∞∑
n=N

µ(n)

nσ

∣∣∣∣∣ < δ

Let the sumsM(σ; 1, N),M(σ;N+1, 2N),M(σ; 2N+1, 22N),M(σ; 22N+1, 23N), ...,M(σ; 2L−1N+
1, 2LN) be defined as

M(σ; 1, N) =
N∑
n=1

µ(n)

nσ
= A1,

M(σ;N + 1, 2N) =
2N∑

n=N+1

µ(n)

nσ
= δ1,

M(σ; 2N + 1, 22N) =
22N∑

n=2N+1

µ(n)

nσ
= δ2,

M(σ; 22N + 1, 23N) =
23N∑

n=22N+1

µ(n)

nσ
= δ3,

M(σ; 2L−1N + 1, 2LN) =
2LN∑

n=2L−1N+1

µ(n)

nσ
= δL−1,

where by the virtue of the convergence of M(σ),

|δ1|, |δ2|, |δ3|, ..., |δL−1|< δ.

Furthermore, let the sumsM(σ, 2; 1, N),M(σ, 2;N+1, 2N),M(σ, 2; 2N+1, 22N),M(σ, 2; 22N+
1, 23N), ..., M(σ, 2; 2L−1N + 1, 2LN) be defined as

M(σ, 2; 1, N) =
N∑
n=1

µ(n, 2)

nσ
= B1,

M(σ, 2;N + 1, 2N) =
2N∑

n=N+1

µ(n, 2)

nσ
= ε1,

M(σ, 2; 2N + 1, 22N) =
22N∑

n=2N+1

µ(n, 2)

nσ
= ε2,
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M(σ, 2; 22N + 1, 23N) =
23N∑

n=22N+1

µ(n, 2)

nσ
= ε3,

M(σ, 2; 2L−1N + 1, 2LN) =
2LN∑

n=2L−1N+1

µ(n, 2)

nσ
= εL−1,

Since

2N∑
n=1

µ(n)

nσ
=

2N∑
n=1

µ(n, 2)

nσ
−

N∑
n=1

µ(n, 2)

(2n)σ
,

thus

M(σ; 1, 2N) = M(σ, 2; 1, 2N)− 1

2σ
M(σ, 2; 1, N).

Similarly, since

2l+1N∑
n=2lN+1

µ(n)

nσ
=

2l+1N∑
n=2lN+1

µ(n, 2)

nσ
−

2lN∑
n=2l−1N+1

µ(n, 2)

(2n)σ
,

thus

M(σ; 2lN + 1, 2l+1N) = M(σ, 2; 2lN + 1, 2l+1N)− 1

2σ
M(σ, 2; 2l−1N + 1, 2lN).

Rearranging the previous equations, we then have

A1 + δ1 = B1 + ε1 −
1

2σ
B1, (66)

δ2 = ε2 −
1

2σ
ε1,

δ3 = ε3 −
1

2σ
ε2,

δL−1 = εL−1 −
1

2σ
εL−2,

where |δ1|, |δ2|, |δ3|, ..., |δL−1|< δ, |δ1|+|δ2|< δ, |δ1|+|δ2|+|δ3|< δ, |δ1|+|δ2|+|δ3|+...+ |δL−1|< δ
and ε is arbitrary small. Hence

ε2 =
1

2σ
ε1 + δ2,

ε3 =
1

2σ
ε2 + δ3 =

1

22σ
ε1 +

1

2σ
δ2 + δ3,

εL−1 =
1

2σ
εL−2 + δL−1 =

1

2(L−2)σ
ε1 +

1

2(L−3)σ
δ2 +

1

2(L−4)σ
ε3 + ...+ δL−1.

Therefore,
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ε1 + ε2 + ε2 + ...+ εL−1 =

(
1 +

1

2σ
+

1

22σ
+ ...+

1

2(L−1)σ

)
ε1 + (δ2 + δ3 + ...+ δL−1)+

1

2σ
(δ2 + δ3 + ...+ δL−2) +

1

22σ
(δ2 + δ3 + ...+ δL−3) + ...+

1

2(L−3)σ
δ2.

Since |δ2|< δ, | |δ2 + δ3|, < δ, ..., |δ1 + δ2 + δ3 + ...+ δL−1|< δ, hence

|δ2 + δ3 + ...+ δL−1|+
1

2σ
|δ2 + δ3 + ...+ δL−2|+...+

1

2(L−3)σ
|δ2|<

∣∣∣∣δ +
1

2σ
δ + ...+

1

2(L−3)σ
δ

∣∣∣∣ ,
or

|δ2 + δ3 + ...+ δL−1|+
1

2σ
|δ2 + δ3 + ...+ δL−2|+...+

1

2(L−3)σ
|δ2|<

2σ

2σ − 1
|δ|.

Therefore

ε1 + ε2 + ε3 + ...+ εL−1 =

(
1 +

1

2σ
+

1

22σ
+ ...+

1

2(L−2)σ

)
ε1 + γ1,

where γ1 is of the same order as δ. Since δ is an arbitrary small number that tends to zero as
N approaches infinity, thus γ1 also tends to zero as N approaches infinity. As L approaches
infinity, we then obtain

∞∑
i=1

εi =
2σ

2σ − 1
ε1 + γ1.

Therefore, the sum M(σ, 2;N + 1,∞) (which is equal to ε1 + ε2 + ε3 + ... ) is bounded by the
sum M(σ, 2;N + 1, 2N) (which is equal to ε1).

The previous process can be repeated with 2N is substituted for N and Equation (66)
becomes

A2 + δ2 = B2 + ε2 −
1

2σ
B2,

where A2 = M(σ; 1, 2N) and B2 = M(σ, 2; 1, 2N). Thus,

A2 = B2 −
1

2σ
B2 +

1

2σ
ε1.

Following the same process, we can show that that the sum M(σ, 2; 2N + 1,∞) is given by

∞∑
i=2

εi =
1

2σ − 1
ε1 + γ2.

where γ2 is of the same order as γ1. Since γ1 tends to zero as N approaches infinity, thus γ2
also tends to zero as N approaches infinity

If we repeat the process l times, we obtain
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Al = Bl −
1

2σ
Bl +

1

2(l−1)σ
ε1,

where Al = M(σ; 1, 2lN) and Bl = M(σ, 2; 1, 2lN) and the sum M(σ, 2; 2lN + 1,∞) is given
by

∞∑
i=l

εi =
1

2(l−2)σ
1

2σ − 1
ε1 + γl.

where γl tends to zero as N approaches infinity

Thus, we conclude that M(σ, 2; 2lN + 1,∞) approaches zero as l approaches infinity. Fur-
thermore, as l approaches infinity, B = liml→∞Bl approaches its limit given by(

1− 1

2σ

)
B = M(σ; 1,∞).

Hence, (
1− 1

2σ

)
M(σ, 2) = M(σ).

Similarly, following the same steps, we can show that(
1− 1

3σ

)
M(σ, 3; 1,∞) = M(σ, 2; 1,∞).

or (
1− 1

2σ

)(
1− 1

3σ

)
M(σ, 3; 1,∞) = M(σ; 1,∞).

This task can be achieved by first defining

M(σ, 2; 1, N) =
N∑
n=1

µ(n, 2)

nσ
= A1,

M(σ, 2;N + 1, 3N) =
3N∑

n=N+1

µ(n, 2)

nσ
= δ1,

M(σ, 2; 3N + 1, 32N) =
32N∑

n=3N+1

µ(n, 2)

nσ
= δ2,

M(σ, 2; 3L−1N + 1, 3LN) =
3LN∑

n=3L−1N+1

µ(n, 2)

nσ
= δL−1,

and

M(σ, 3; 1, N) =
N∑
n=1

µ(n, 3)

nσ
= B1,
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M(σ, 3;N + 1, 3N) =
3N∑

n=N+1

µ(n, 3)

nσ
= ε1,

M(σ, 3; 3N + 1, 32N) =
32N∑

n=3N+1

µ(n, 3)

nσ
= ε2,

M(σ, 3; 3L−1N + 1, 3LN) =
3LN∑

n=3L−1N+1

µ(n, 3)

nσ
= εL−1,

Since

3N∑
n=1

µ(n, 2)

nσ
=

3N∑
n=1

µ(n, 3)

nσ
−

N∑
n=1

µ(n, 3)

(3n)σ
,

thus

M(σ, 2; 1, 3N) = M(σ, 3; 1, 3N)− 1

3σ
M(σ, 3; 1, N)

Similarly,

M(σ, 2; 3lN + 1, 3l+1N) = M(σ, 3; 3lN + 1, 3l+1N)− 1

3σ
M(σ, 3; 3l−1N + 1, 3lN)

Following the same process, we can show that

∞∑
i=1

εi =
3σ

3σ − 1
ε1 + γ1,

where γ1 is an arbitrary small number.

Similarly, if we define A2 = M(σ, 2; 1, 3N) and B2 = M(σ, 3; 1, 3N), then

A2 = B2 −
1

3σ
B2 +

1

3σ
ε1.

Therefore
∞∑
i=2

εi =
1

3σ − 1
ε1 + γ2.

where γ2 is of the same order as γ1.

Repeating the steps l times, we then obtain

∞∑
i=l

εi =
1

3(l−2)σ
1

3σ − 1
ε1 + γl.

where γl tends to zero as N approaches infinity
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Thus, we conclude that M(σ, 3; 3lN + 1,∞) approaches zero as l approaches infinity. Fur-
thermore, as l approaches infinity, B = liml→∞Bl approaches its limit given by(

1− 1

3σ

)
B = M(σ, 2; 1,∞).

Hence, (
1− 1

3σ

)
M(σ, 3) = M(σ, 2).

Repeating the process r times, we then conclude

M(σ) = M(σ, pr)
r∏
i=1

(
1− 1

piσ

)
.

The second part of the theorem can be proved by recalling

M(s, pr−1; 1, Npr) = M(s, pr; 1, Npr)−
1

psr
M(s, pr; 1, N).

If both seriesM(s, pr−1) andM(s, pr) are convergent, then asN approaches infinity, we obtain

M(s, pr−1) = M(s, pr)

(
1− 1

psi

)
.

Repeating the process r times, we then conclude

M(σ) = M(σ, pr)
r∏
i=1

(
1− 1

piσ

)
.

Appendix 2
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε

where, ε = O
(

t
(σ−0.5)2 pr1

1/2−σ log pr1
)

, we first recall that

r2∑
i=r1

1

pσi
=

∫ pr2

pr1

dπ(x)

xσ
=

∫ pr2

pr1

1

xσ log x
dx+

∫ pr2

pr1

1

xσ
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xσ

)
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Since x > 0, thus∫ pr2

pr1

1

xσ
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2σ

−
O
(√
pr1 log pr1

)
pr1σ

−O
(∫ pr2

pr1

√
x log x d

(
1

xσ

))
With the substitution of variables y = log x, we then obtain∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −

∫ pr2

pr1
σye(

1
2
−σ)ydy.

Since ∫
xeaxdx =

(
x

a
− 1

a2

)
eax,

therefore∫ pr2

pr1

√
x log x d

(
1

xσ

)
= −σ

(
log pr2
0.5− σ

− 1

(0.5− σ)2

)
pr2

0.5−σ+σ

(
log pr1
0.5− σ

− 1

(0.5− σ)2

)
pr1

0.5−σ.

Hence, for σ > 0.5, we have∫ pr2

pr1

1

xσ
dO

(√
x log x

)
= O

(
pr1

0.5−σ log pr1
(σ − 0.5)2

)
(67)

For σ ≥ 1, the integral
∫ pr2
pr1

1
xσ log xdx can be computed directly from the definition of the

Exponential Integral E1(r) =
∫∞
r

e−u

u du (where r ≥ 0) to obtain∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

To compute the integral
∫ pr2
pr1

1
xσ log xdx for σ < 0, we first use the substantiation y = log x

to obtain∫ pr2

pr1

1

xσ log x
dx =

∫ log pr2

log pr1

e(1−σ)y

y
dy =

∫ log pr2

ε

e(1−σ)y

y
dy −

∫ log pr1

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

1

xσ log x
dx =

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2 −

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1.

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w2 = (1 − σ)(log pr2)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1
(1−σ)ε

dw1
w1

, we then have

∫ pr2

pr1

1

xσ log x
dx =

∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.
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Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = −E1(−a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

1

xσ log x
dx = E1((σ − 1) log pr1)− E1((σ − 1) log pr2)

Hence, for σ > 0.5, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε

It should be pointed out that in general, if there are no non-trivial zeros for values of s
with <(s) > a, then by following the same steps, we may also show that for σ > a, we have

r2∑
i=r1

1

piσ
= E1((σ − 1) log pr1)− E1((σ − 1) log pr2) + ε

where, ε = O
(

t
(σ−a)2 pr1

a−σ log pr1
)

.

Appendix 3
Assuming RH is valid and for σ > 0.5, to show that

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε

where, ε = O
(

t+1
(σ−0.5)2 pr1

1/2−σ log pr1
)

, we first recall that

r2∑
i=r1

1

pis
=

∫ pr2

pr1

dπ(x)

xs
=

∫ pr2

pr1

1

xs log x
dx+

∫ pr2

pr1

1

xs
dO

(√
x log x

)
.

We will first compute the integral with the O notation. This can be done by integration by
parts to obtain∫ pr2

pr1

1

xs
dO

(√
x log x

)
=
O
(√
pr2 log pr2

)
pr2s

−
O
(√
pr1 log pr1

)
pr1s

−
∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
The integral on the right side of the above equation can be then written as∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)
= −s

∫ pr2

pr1
O
(√
x log x

)
x−s−1dx.
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Hence, ∣∣∣∣∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)∣∣∣∣ ≤ |s|∫ pr2

pr1
O
(√
x log x

)
|x−s−1|dx.

For sufficiently large t, we can write |s|= t and consequently∣∣∣∣∫ pr2

pr1
O
(√
x log x

)
d

(
1

xs

)∣∣∣∣ = O

(
t
pr1

0.5−σ log pr1
(σ − 0.5)2

)
.

Hence, ∫ pr2

pr1

1

xs
dO

(√
x log x

)
= O

(
(t+ 1)

pr1
0.5−σ log pr1

(σ − 0.5)2

)
.

For <(s) ≥ 1, the integral
∫ pr2
pr1

1
xs log xdx can be computed directly from the definition of

the Exponential Integral E1(z) =
∫∞
1

e−tz

t dt (where <(z) ≥ 0) to obtain∫ pr2

pr1

1

xs log x
dx = E1((s− 1) log pr1)− E1((s− 1) log pr2)

To compute the integral
∫ pr2
pr1

1
xs log xdx for <(z) < 1, we first write the integral as follows

∫ pr2

pr1

1

xs log x
dx =

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx− i

∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx.

The first integral on the right side
∫ pr2
pr1

e−σ log x cos(t log x)
log x dx can be computed by using the sub-

stitution y = log x to obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy,

or ∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr2

pr1

e(1−σ)y cos(ty)

y
dy +

∫ pr2

pr1

e(1−σ)y

y
dy −

∫ pr2

pr1

e(1−σ)y

y
dy.

Hence,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ pr1

ε

e(1−σ)y(1− cos(ty))

y
dy −

∫ pr2

ε

e(1−σ)y(1− cos(ty))

y
dy−

∫ pr1

ε

e(1−σ)y

y
dy +

∫ pr2

ε

e(1−σ)y

y
dy

where, ε is an arbitrary small positive number. With the variable substantiations z1 = y/log pr1
and z2 = y/log pr2 , we then obtain∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx =

∫ 1

ε/log pr1

e(1−σ)(log pr1)z1(1− cos(t(log pr1)z1))

z1
dz1−

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2(1− cos(t(log pr2)z2))

z2
dz2−
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∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1 +

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

By the virtue of the following identity ([9], page 230)∫ 1

0

eat(1− cos(bt))

t
dt =

1

2
log(1 + b2/a2) + Li(a) + <[E1(−a+ ib)],

where a > 0 , we then obtain the following∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−

<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)−∫ 1

ε/log pr1

e(1−σ)(log pr1)z1

z1
dz1+

∫ 1

ε/log pr2

e(1−σ)(log pr2)z2

z2
dz2

With the variable substantiations w1 = (1 − σ)(log pr1)z1 and w1 = (1 − σ)(log pr1)z1 and by
adding and subtracting the terms −

∫ (1−σ) log pr2
(1−σ)ε

dw2
w2

+
∫ (1−σ) log pr1
(1−σ)ε

dw1
w1

, we then have

∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)] + Li((1− σ) log pr1)−

<[E1((s− 1) log pr2)]− Li((1− σ) log pr2)+∫ (1−σ) log pr2

(1−σ)ε

ew2 − 1

w2
dw2 −

∫ (1−σ) log pr1

(1−σ)ε

ew1 − 1

w1
dw1+

∫ (1−σ) log pr2

(1−σ)ε

dw2

w2
−
∫ (1−σ) log pr1

(1−σ)ε

dw1

w1
.

Using the following identity [9, page 230]∫ a

0

et − 1

t
dt = Ei(a)− log(a)− γ

where a > 0, we then obtain for σ < 1,∫ pr2

pr1

e−σ log x cos(t log x)

log x
dx = <[E1((s− 1) log pr1)]−<[E1((s− 1) log pr2)]

Similarly, using the identity [9, page 230]∫ 1

p0

eat sin(bt)

t
dt = π − arctan(b/a) + =[E1(−a+ ib)],

where a > 0 , we can show that for σ < 1, we have

−
∫ pr2

pr1

e−σ log x sin(t log x)

log x
dx = =[E1((s− 1) log pr1)]−=[E1((s− 1) log pr2)].
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Therefore, for <(s) > 0.5, we have

r2∑
i=r1

1

pis
= E1((s− 1) log pr1)− E1((s− 1) log pr2) + ε

where, ε = O
(

t+1
(σ−0.5)2 pr1

1/2−σ log pr1
)

.

Appendix 4
In Appendix 4, we will show that the sum

∑
ρE1 ((s− ρ) log pr) is convergent if |s− ρ|> 0 for

every ρ. Furthermore, we will show that the sum approaches zeros as pr approaches infinity.
this task will be achieved by noting that, for sufficiently large pr, E1 ((s− ρ) log pr) can be
written as

E1 ((s− ρ) log pr) =
e−(s−ρ) log pr

(s− ρ) log pr

(
1 +O

(
1

|s− ρ|log pr

))
(68)

Therefore, if the sum
∑
ρE1 ((s− ρ) log pr) is convergent, then it will be given by

∑
ρ

E1 ((s− ρ) log pr) =
∑
ρ

e−(s−ρ) log pr

(s− ρ) log pr
+ ε, (69)

where ε is the contribution by the sum of the O terms in Equation (68). It can be easily shown
that if |s−ρ|≥ ε > 0 for every ρ, then ε in Equation (69) tends to zero as pr approaches infinity.
This result can be deduced by noting that O(ε) = (p

min<(s−ρ)
r /(log pr)

2)
∑
ρ 1/|s − ρ|2. Since

the sum
∑
ρ 1/|s− ρ|2 is bounded, therefore Equation (69) can be further simplified to

∑
ρ

E1 ((s− ρ) log pr) =
pr
−s

log pr

∑
ρ

pr
ρ

s− ρ
+O(pmin<(s−ρ)

r /(log pr)
2). (70)

To show the sum
∑
ρE1 ((s− ρ) log pr) is convergent, let s = σ + iT and ρi = βi + iγi. We

split ρi’s into two groups. The first group comprises of the non-trivial zeros with γi’s less than
or equal to mT , where m > 1. The rest of the non-trivial zeros belong to the second group.
Since the first group has a finite number of ρi’s, thus the sum

∑
|γi|≤mT E1 ((s− ρ) log pr) is

bounded. Since |pr−sprρ|< 1 for every ρ, therefore∣∣∣∣∣∣
∑

|γi|≤mT
E1 ((s− ρ) log pr)

∣∣∣∣∣∣ = (1/log pr)
∑

|γi|≤mT

1

|s− ρ|
.

Hence ∑
|γi|≤mT

E1 ((s− ρ) log pr) = O(1/log pr).
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The sum over the second group can be expanded as follows

∑
|γi|>mT

E1 ((s− ρ) log pr) = − pr
−s

log pr

 ∑
|γi|>mT

pr
ρi

ρi
+ s

∑
|γi|>mT

pr
ρi

ρi2
+ s2

∑
|γi|>mT

pr
ρ

ρi3
+ ...

+ ε.

The first sum
∑
|γi|>mT pr

ρi/ρi is convergent by the virtue of Equation (47). The upper bound
for the second term (pr

−s/log pr) s
∑
|γi|>mT pr

ρi/ρi
2can be determined as follows∣∣∣∣∣∣pr

−ss

log pr

∑
|γi|>mT

pr
ρi

ρi2

∣∣∣∣∣∣ ≤ |pr
−s||s|

log pr

∑
|γi|>mT

|prρi |
|ρi2|

.

Since for sufficiently large T , |s| is given by T and the density of the non-trivial zeros is given
by O(log t) (note that if there are roots off the critical line then their density is given by Bohr
Landau theorem [1] and it is less than O(log t)), thus∣∣∣∣∣∣pr

−ss

log pr

∑
|γi|>mT

pr
ρi

ρi2

∣∣∣∣∣∣ ≤ pr
−σ+maxβiT

log pr

∫ ∞
mT

O(log t)

t2
dt.

Hence ∣∣∣∣∣∣pr
−ss

log pr

∑
|γi|>mT

pr
ρi

ρi2

∣∣∣∣∣∣ ≤ pr
−σ+maxβi

log pr

O(log T ))

m
.

Similarly, we can show that∣∣∣∣∣∣pr
−ss2

log pr

∑
|γi|>mT

pr
ρi

ρi3

∣∣∣∣∣∣ ≤ pr
−σ+maxβi

log pr

O(log T )

m2
,

and, ∣∣∣∣∣∣pr
−ssi

log pr

∑
|γi|>mT

pr
ρi

ρii+1

∣∣∣∣∣∣ ≤ pr
−σ+maxβi

log pr

O(log T )

mi
.

Therefore,∣∣∣∣∣∣ pr
−s

log pr

s ∑
|γi|>mT

pr
ρi

ρi2
+ s2

∑
|γi|>mT

pr
ρ

ρi3
+ ...

∣∣∣∣∣∣ ≤ pr
−σ+maxβiO(log T )

log pr

∞∑
i=1

1

mi
.

Since
∑∞
i=1 1/mi is convergent, hence (pr

−σ+maxβi O(log T )/log pr)
∑∞
i=1 1/mi is convergent

and it is given by∣∣∣∣∣∣ pr
−s

log pr

s ∑
|γi|>mT

pr
ρi

ρi2
+ s2

∑
|γi|>mT

pr
ρ

ρi3
+ ...

∣∣∣∣∣∣ = O(pr
−σ+maxβi log(T )/log pr).

Hence

∑
|γi|>mT

E1 ((s− ρ) log pr) = − pr
−s

log pr

 ∑
|γi|>mT

pr
ρi

ρi

+O(pr
−σ+maxβi log(T )/log pr).
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Thus

∑
|γi|>mT

E1 ((s− ρ) log pr) = − pr
−s

log pr

 ∑
|γi|>mT

pr
ρi

ρi

+O(pr
−σ+maxβi log(T )/log pr).

Consequently,
∑
ρE1 ((s− ρ) log pr) is convergent and it is given by

∑
ρ

E1 ((s− ρ) log pr) =
pr
−s

log pr

∑
ρ

pr
ρ

s− ρ
+O(1/log pr).

In the remaining of this Appendix, we will derive a formula to show the dependence of
the sum

∑
ρE1 ((s− ρ) log pr) on T (where, s = σ + iT ). On RH, we have

∑
|γi|>mT

E1 ((s− ρ) log pr) = − pr
−s

log pr

 ∑
|γi|>mT

pr
ρi

ρi

+O
(
pr

0.5−σ log(T )/log pr
)
.

Thus ∣∣∣∣∣∣
∑

|γi|>mT
E1 ((s− ρ) log pr)

∣∣∣∣∣∣ = O
(
p0.5−σr log pr

)
+O

(
pr

0.5−σ log(T )/log pr
)
.

Since the density of the roots on the critical line is given by log T , thus the sum over the
roots with |γi|≤ mT can be given by the following integral∣∣∣∣∣∣

∑
|γi|≤mT

E1 ((s− ρ) log pr)

∣∣∣∣∣∣ =
p0.5−σr

log pr

∫ mT

−mT

O(log t)√
(t− T )2 + (σ − 0.5)2

dt.

Thus, for fixed σ > 0.5 + ε, we have∣∣∣∣∣∣
∑

|γi|≤mT
E1 ((s− ρ) log pr)

∣∣∣∣∣∣ = p0.5−σr O((m log T )2)/log pr.

Therefore, on RH, we have∣∣∣∣∣∑
ρ

E1 ((s− ρ) log pr)

∣∣∣∣∣ = O
(
pr

0.5−σ log pr(log T )2
)
. (71)
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