Dedicated to Prof.Feng Tian on Occasion of his 70th Birthday

COMBINATORIAL WORLD

----Applications of Voltage Assignament to Principal Fiber Bundles

Linfan Mao

(Chinese Academy of Mathematics and System Science, Beijing 100080) maolinfan@163.com

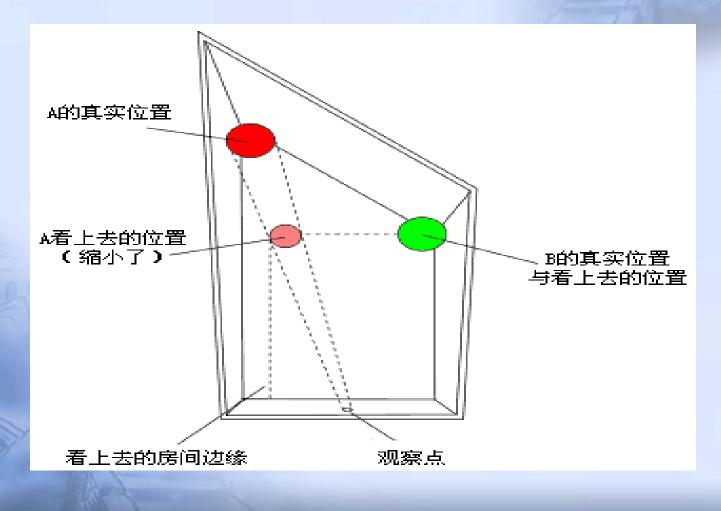
Nanjing Normal University

October 3, 2009

Contents

1. Why Is It Combinatorial? 2. What is a Combinatorial Manifold? 3. What is a Differentiable Combinatorial Manifold? 4. What is a Principal Fiber Bundle? 5. A Question 6. Voltage Graph with Its Lifting 7. Combinatorial Fiber Bundle 8. Principal Fiber Bundle(PFB) 9. Connection on PFB **10. Applications to Gauge Field**

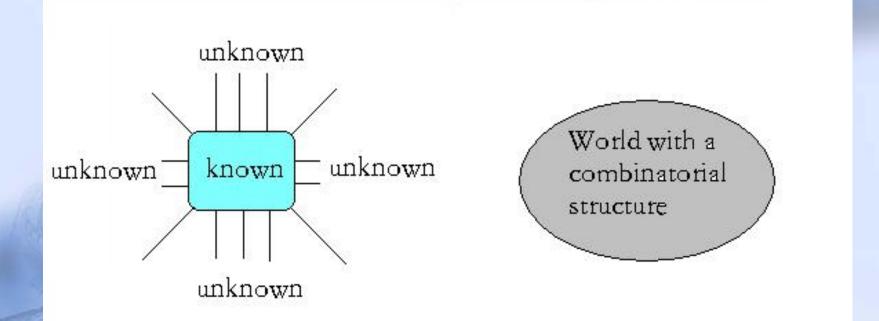
- **1. Why Is It Combinatorial?**
- Ames Room—It isn't all right of our visual sense.



• Blind men with an elephant

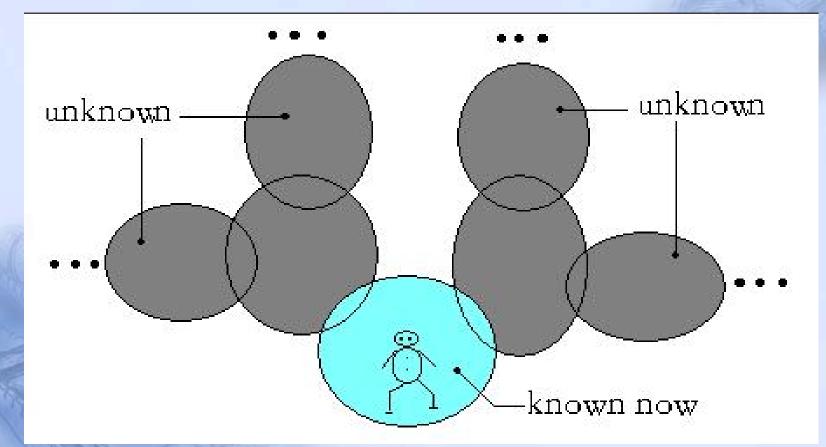
The man touched its leg, tail, trunk, ear, belly or tusk claims that the elephant is like a pillar, a rope, a tree branch, a hand fan, a wall or a solid pipe, respectively. All of you are right! A wise man said.

What is the structure of the world?



It is out order? No! in order! Any thing has itself reason for existence.

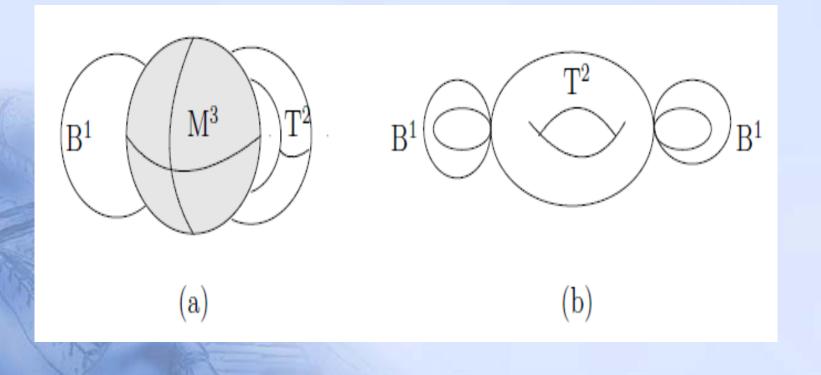
A depiction of the world by combinatoricians



How to characterize it by mathematics? Manifold!

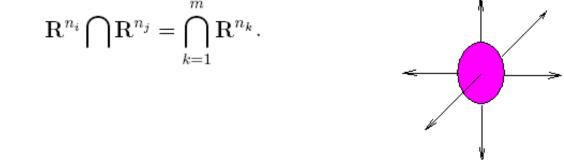
2. What is a Combinatorial Manifold?

Loosely speaking, a combinatorial manifold is a combination of finite manifolds, such as those shown in the next figure.



2.1 Euclidean Fan-Space

A combinatorial fan-space $\mathbf{R}(n_1, \dots, n_m)$ is the combinatorial Euclidean space $\mathscr{E}_{K_m}(n_1, \dots, n_m)$ of $\mathbf{R}^{n_1}, \mathbf{R}^{n_2}, \dots, \mathbf{R}^{n_m}$ such that for any integers $i, j, 1 \leq i \neq j \leq m$,



For $\forall p \in \widetilde{\mathbf{R}}(n_1, \dots, n_m)$ we can present it by an $m \times n_m$ coordinate matrix $[\overline{x}]$ following with $x_{il} = \frac{x_l}{m}$ for $1 \le i \le m, 1 \le l \le \widehat{m}$.

$$[\overline{x}] = \begin{bmatrix} x_{11} & \cdots & x_{1\widehat{m}} & x_{1(\widehat{m})+1} & \cdots & x_{1n_1} & \cdots & 0 \\ x_{21} & \cdots & x_{2\widehat{m}} & x_{2(\widehat{m}+1)} & \cdots & x_{2n_2} & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{m1} & \cdots & x_{m\widehat{m}} & x_{m(\widehat{m}+1)} & \cdots & \cdots & x_{mn_m-1} & x_{mn_m} \end{bmatrix}$$

2.2 Topological Combinatorial Manifold

Definition 2.1 For a given integer sequence $n_1, n_2, \dots, n_m, m \ge 1$ with $0 < n_1 < n_2 < \dots < n_m$, a combinatorial manifold \widetilde{M} is a Hausdorff space such that for any point $p \in \widetilde{M}$, there is a local chart (U_p, φ_p) of p, i.e., an open neighborhood U_p of p in \widetilde{M} and a homoeomorphism $\varphi_p : U_p \to \widetilde{\mathbf{R}}(n_1(p), n_2(p), \dots, n_{s(p)}(p))$, a combinatorial fan-space with

$$\{n_1(p), n_2(p), \cdots, n_{s(p)}(p)\} \subseteq \{n_1, n_2, \cdots, n_m\}$$

$$\bigcup_{p \in \widetilde{M}} \{n_1(p), n_2(p), \cdots, n_{s(p)}(p)\} = \{n_1, n_2, \cdots, n_m\},\$$

and

$$\widetilde{\mathcal{A}} = \{(U_p, \varphi_p) | p \in \widetilde{M}(n_1, n_2, \cdots, n_m))\}$$

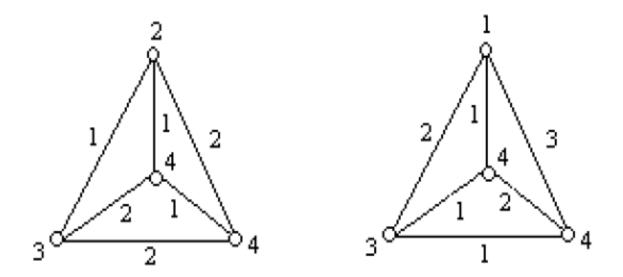
an atlas on $\widetilde{M}(n_1, n_2, \dots, n_m)$. The maximum value of s(p) and the dimension $\widehat{s}(p) = \dim(\bigcap_{i=1}^{s(p)} \mathbb{R}^{n_i(p)})$ are called the dimension and the intersectional dimension of $\widetilde{M}(n_1, n_2, \dots, n_m)$ at the point p and is *finite* if it is combined by finite manifolds with an underlying combinatorial structure G without one manifold contained in the union of others.

2.3 Vertex-Edge Labeled Graphs

A vertex-edge labeled graph G([1, k], [1, l]) is a connected graph G = (V, E) with two mappings

$$\tau_1: V \to \{1, 2, \cdots, k\}, \qquad \tau_2: E \to \{1, 2, \cdots, l\}$$

for integers k and l. For example, two vertex-edge labeled graphs with an underlying graph K_4 are shown in the next figure.



 $\mathcal{H}(n_1, n_2, \cdots, n_m)$ — all finitely combinatorial manifolds $\widetilde{M}(n_1, n_2, \cdots, n_m)$

 $\mathcal{G}[0, n_m]$ — all vertex-edge labeled graphs $G([0, n_m], [0, n_m])$ with (1) Each induced subgraph by vertices labeled with 1 in G is a union of complete graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1. (2) For each edge $e = (u, v) \in E(G), \tau_2(e) \leq \min\{\tau_1(u), \tau_1(v)\}.$

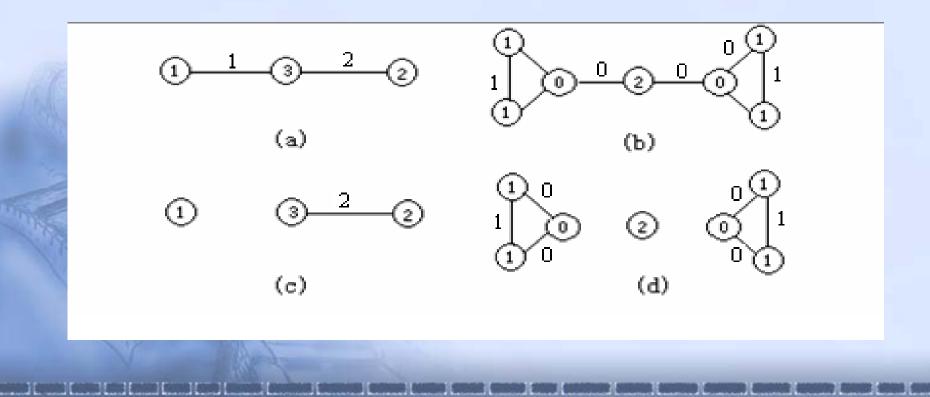
Theorem 2.1 Let $1 \leq n_1 < n_2 < \cdots < n_m, m \geq 1$ be a given integer sequence. Then every finitely combinatorial manifold $\widetilde{M} \in \mathcal{H}(n_1, n_2, \cdots, n_m)$ defines a vertex-edge labeled graph $G([0, n_m], [0, n_m]) \in \mathcal{G}[0, n_m]$. Conversely, every vertex-edge labeled graph $G([0, n_m], [0, n_m]) \in \mathcal{G}[0, n_m]$ defines a finitely combinatorial manifold $\widetilde{M} \in$ $\mathcal{H}(n_1, n_2, \cdots, n_m)$ with a 1 - 1 mapping $\theta : G([0, n_m], [0, n_m]) \to \widetilde{M}$ such that $\theta(u)$ is a $\theta(u)$ -manifold in \widetilde{M} , $\tau_1(u) = \dim \theta(u)$ and $\tau_2(v, w) = \dim(\theta(v) \cap \theta(w))$ for $\forall u \in V(G([0, n_m], [0, n_m]))$ and $\forall (v, w) \in E(G([0, n_m], [0, n_m]))$.

2.4 Fundamental d-Group

Definition 2.2 For two points p, q in a finitely combinatorial manifold $M(n_1, n_2, \dots, n_m)$, if there is a sequence B_1, B_2, \dots, B_s of d-dimensional open balls with two conditions following hold.

(1) $B_i \subset M(n_1, n_2, \dots, n_m)$ for any integer $i, 1 \leq i \leq s$ and $p \in B_1, q \in B_s$; (2) The dimensional number dim $(B_i \cap B_{i+1}) \geq d$ for $\forall i, 1 \leq i \leq s-1$.

Then points p, q are called d-dimensional connected in $\widetilde{M}(n_1, n_2, \dots, n_m)$ and the sequence B_1, B_2, \dots, B_e a d-dimensional path connecting p and q, denoted by $P^d(p,q)$. If each pair p, q of points in the finitely combinatorial manifold $\widetilde{M}(n_1, n_2, \dots, n_m)$ is d-dimensional connected, then $\widetilde{M}(n_1, n_2, \dots, n_m)$ is called d-pathwise connected and say its connectivity $\geq d$. Choose a graph with vertex set being manifolds labeled by its dimension and two manifold adjacent with a label of the dimension of the intersection if there is a d-path in this combinatorial manifold. Such graph is denoted by G^d . d=1 in (a) and (b), d=2 in (c) and (d) in the next figure.



Definition 2.3 Let $\widetilde{M}(n_1, n_2, \dots, n_m)$ be a finitely combinatorial manifold of darcwise connectedness for an integer $d, 1 \leq d \leq n_1$ and $\forall x_0 \in \widetilde{M}(n_1, n_2, \dots, n_m)$, a fundamental d-group at the point x_0 , denoted by $\pi^d(\widetilde{M}(n_1, n_2, \dots, n_m), x_0)$ is defined to be a group generated by all homotopic classes of closed d-pathes based at x_0 .

A combinatorial Euclidean space $\mathscr{E}_G(d, d, \cdots, d)$ of \mathbb{R}^d underlying a combinatorial structure G, |G| = m is called a *d*-dimensional graph, denoted by $\widetilde{M}^d[G]$ if $(1) \ \widetilde{M}^d[G] \setminus V(\widetilde{M}^d[G])$ is a disjoint union of a finite number of open subsets e_1, e_2, \cdots, e_m , each of which is homeomorphic to an open ball B^d ;

(2) the boundary $\overline{e}_i - e_i$ of e_i consists of one or two vertices B^d , and each pair (\overline{e}_i, e_i) is homeomorphic to the pair $(\overline{B}^d, S^{d-1})$,

Theorem 2.2 $\pi^d(\widetilde{M}^d[G], x_0) \cong \pi_1(G, x_0), x_0 \in G.$

Theorem 2.3 Let $\widetilde{M}(n_1, n_2, \dots, n_m)$ be a *d*-connected finitely combinatorial manifold for an integer $d, 1 \leq d \leq n_1$. If $\forall (M_1, M_2) \in E(G^L[\widetilde{M}(n_1, n_2, \dots, n_m)]),$ $M_1 \cap M_2$ is simply connected, then

(1) for $\forall x_0 \in G^d$, $M \in V(G^L[\widetilde{M}(n_1, n_2, \cdots, n_m)])$ and $x_{0M} \in M$,

$$\pi^d(\widetilde{M}(n_1, n_2, \cdots, n_m), x_0) \cong \left(\bigoplus_{M \in V(G^d)} \pi^d(M, x_{M0})\right) \bigoplus \pi(G^d, x_0),$$

where $G^d = G^d[\widetilde{M}(n_1, n_2, \dots, n_m)]$ in which each edge (M_1, M_2) passing through a given point $x_{M_1M_2} \in M_1 \cap M_2$, $\pi^d(M, x_{M0}), \pi(G^d, x_0)$ denote the fundamental d-groups of a manifold M and the graph G^d , respectively and

(2) for $\forall x, y \in \widetilde{M}(n_1, n_2, \cdots, n_m)$,

$$\pi^d(\widetilde{M}(n_1, n_2, \cdots, n_m), x) \cong \pi^d(\widetilde{M}(n_1, n_2, \cdots, n_m), y).$$

2.5 Homology Group

For a subspace A of a topological space S and an inclusion mapping $i : A \hookrightarrow S$, it is readily verified that the induced homomorphism $i_{\sharp} : C_p(A) \to C_p(S)$ is a monomorphism. Let $C_p(S, A)$ denote the quotient group $C_p(S)/C_p(A)$.

$$Z_p(S, A) = \operatorname{Ker}\partial_p = \{ u \in C_p(S, A) \mid \partial_p(u) = 0 \},$$
$$B_p(S, A) = \operatorname{Im}\partial_{p+1} = \partial_{p+1}(C_{p+1}(S, A)).$$

The *pth relative homology group* $H_p(S, A)$ is defined to be

$$H_p(S, A) = Z_p(S, A) / B_p(S, A)$$

Theorem 2.4 Let $\widetilde{M}^d(G)$ be a d-dimensional graph with $E(\widetilde{M}^d(G)) = \{e_1, e_2, \dots, e_m\}$. Then the inclusion $(e_l, \dot{e}_l) \hookrightarrow (\widetilde{M}^d(G), V(\widetilde{M}^d(G)))$ induces a monomorphism $H_p(e_l, \dot{e}_l) \to H_p(\widetilde{M}^d(G), V(\widetilde{M}^d(G)))$ for $l = 1, 2 \cdots, m$ and $H_p(\widetilde{M}^d(G), V(\widetilde{M}^d(G)))$ is a direct sum of the image subgroups, which follows that

$$H_p(\widetilde{M}^d(G), V(\widetilde{M}^d(G))) \cong \begin{cases} \underbrace{\mathbf{Z} \oplus \cdots \mathbf{Z}}_m, & \text{if } p = d, \\ \underbrace{\mathbf{M}}_m, & \mathbf{M}_m, \\ 0, & \text{if } p \neq d. \end{cases}$$

3. What is a Differentiable Combinatorial Manifold?3.1 Definition

Definition 3.1 For a given integer sequence $1 \leq n_1 < n_2 < \cdots < n_m$, a combinatorial C^h -differential manifold $(\widetilde{M}(n_1, n_2, \cdots, n_m); \widetilde{\mathcal{A}})$ is a finitely combinatorial manifold $\widetilde{M}(n_1, n_2, \cdots, n_m)$, $\widetilde{M}(n_1, n_2, \cdots, n_m) = \bigcup_{i \in I} U_i$, endowed with a atlas $\widetilde{\mathcal{A}} = \{(U_{\alpha}; \varphi_{\alpha}) | \alpha \in I\}$ on $\widetilde{M}(n_1, n_2, \cdots, n_m)$ for an integer $h, h \geq 1$ with conditions following hold.

(1) $\{U_{\alpha}; \alpha \in I\}$ is an open covering of $\widetilde{M}(n_1, n_2, \cdots, n_m)$.

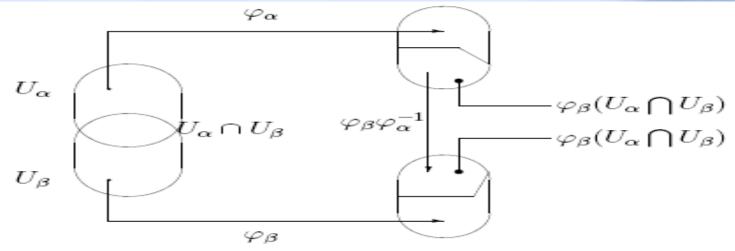
(2) For $\forall \alpha, \beta \in I$, local charts $(U_{\alpha}; \varphi_{\alpha})$ and $(U_{\beta}; \varphi_{\beta})$ are equivalent, i.e., $U_{\alpha} \bigcap U_{\beta} = \emptyset$ or $U_{\alpha} \bigcap U_{\beta} \neq \emptyset$ but the overlap maps

 $\varphi_{\alpha}\varphi_{\beta}^{-1}:\varphi_{\beta}(U_{\alpha}\bigcap U_{\beta})\to\varphi_{\beta}(U_{\beta}) \text{ and } \varphi_{\beta}\varphi_{\alpha}^{-1}:\varphi_{\alpha}(U_{\alpha}\bigcap U_{\beta})\to\varphi_{\alpha}(U_{\alpha})$

are C^h -mappings.

(3) $\widetilde{\mathcal{A}}$ is maximal, i.e., if $(U; \varphi)$ is a local chart of $M(n_1, n_2, \dots, n_m)$ equivalent with one of local charts in $\widetilde{\mathcal{A}}$, then $(U; \varphi) \in \widetilde{\mathcal{A}}$.

Explains for condition (2)



Extence Theorem Let $\widetilde{M}(n_1, n_2, \dots, n_m)$ be a finitely combinatorial manifold and $d, 1 \leq d \leq n_1$ an integer. If $\forall M \in V(G^d[\widetilde{M}(n_1, n_2, \dots, n_m)])$ is C^h -differential and $\forall (M_1, M_2) \in E(G^d[\widetilde{M}(n_1, n_2, \dots, n_m)])$ there exist atlas

$$\mathcal{A}_1 = \{ (V_x; \varphi_x) | \forall x \in M_1 \} \quad \mathcal{A}_2 = \{ (W_y; \psi_y) | \forall y \in M_2 \}$$

such that $\varphi_x|_{V_x \cap W_y} = \psi_y|_{V_x \cap W_y}$ for $\forall x \in M_1, y \in M_2$, then there is a differential structures

$$\widetilde{\mathcal{A}} = \{ (U_p; [\varpi_p]) | \forall p \in \widetilde{M}(n_1, n_2, \cdots, n_m) \}$$

such that $(\widetilde{M}(n_1, n_2, \cdots, n_m); \widetilde{\mathcal{A}})$ is a combinatorial C^h -differential manifold.

3.2 Local Properties of Combinatorial Manifolds

Denote by \mathscr{X}_p all these C^{∞} -functions at a point $p \in \widetilde{M}(n_1, n_2, \cdots, n_m)$.

Definition 3.2 Let $(\widetilde{M}(n_1, n_2, \dots, n_m), \widetilde{\mathcal{A}})$ be a smoothly combinatorial manifold and $p \in \widetilde{M}(n_1, n_2, \dots, n_m)$. A tangent vector \overline{v} at p is a mapping $\overline{v} : \mathscr{X}_p \to \mathbf{R}$ with conditions following hold.

(1) $\forall g, h \in \mathscr{X}_p, \forall \lambda \in \mathbf{R}, \ \overline{v}(h + \lambda h) = \overline{v}(g) + \lambda \overline{v}(h);$ (2) $\forall g, h \in \mathscr{X}_p, \overline{v}(gh) = \overline{v}(g)h(p) + g(p)\overline{v}(h).$

Theorem 3.2 For any point $p \in \widetilde{M}(n_1, n_2, \dots, n_m)$ with a local chart $(U_p; [\varphi_p])$, the dimension of $T_p \widetilde{M}(n_1, n_2, \dots, n_m)$ is

$$\dim T_p \widetilde{M}(n_1, n_2, \cdots, n_m) = \widehat{s}(p) + \sum_{i=1}^{s(p)} (n_i - \widehat{s}(p))$$

=

with a basis matrix

$$\begin{bmatrix} \frac{1}{\partial \overline{x}} \end{bmatrix}_{s(p) \times n_{s(p)}}$$

a

where $x^{il} = x^{jl}$ for $1 \leq i, j \leq s(p), 1 \leq l \leq \widehat{s}(p)$.

3.3 Tensor Field

Definition 3.3 Let $\widehat{M}(n_1, n_2, \dots, n_m)$ be a smoothly combinatorial manifold and $p \in \widetilde{M}(n_1, n_2, \dots, n_m)$. A tensor of type (r, s) at the point p on $\widetilde{M}(n_1, n_2, \dots, n_m)$ is an (r + s)-multilinear function τ ,

$$\tau: \underbrace{T_p^* \widetilde{M} \times \cdots \times T_p^* \widetilde{M}}_r \times \underbrace{T_p \widetilde{M} \times \cdots \times T_p \widetilde{M}}_s \to \mathbf{R},$$

where $T_p \widetilde{M} = T_p \widetilde{M}(n_1, n_2, \cdots, n_m)$ and $T_p^* \widetilde{M} = T_p^* \widetilde{M}(n_1, n_2, \cdots, n_m).$

Theorem 3.3 Let $\widetilde{M}(n_1, n_2, \dots, n_m)$ be a smoothly combinatorial manifold and $p \in \widetilde{M}(n_1, n_2, \dots, n_m)$. Then

$$T^r_s(p,\widetilde{M}) = \underbrace{T_p\widetilde{M} \otimes \cdots \otimes T_p\widetilde{M}}_r \otimes \underbrace{T^*_p\widetilde{M} \otimes \cdots \otimes T^*_p\widetilde{M}}_s,$$

where $T_p \widetilde{M} = T_p \widetilde{M}(n_1, n_2, \dots, n_m)$ and $T_p^* \widetilde{M} = T_p^* \widetilde{M}(n_1, n_2, \dots, n_m)$, particularly, $\dim T_s^r(p, \widetilde{M}) = (\widehat{s}(p) + \sum_{i=1}^{s(p)} (n_i - \widehat{s}(p)))^{r+s}.$

3.4 Curvature Tensor

Definition 3.4 Let \widetilde{M} be a smoothly combinatorial manifold. A connection on tensors of \widetilde{M} is a mapping $\widetilde{D} : \mathscr{X}(\widetilde{M}) \times T^r_s \widetilde{M} \to T^r_s \widetilde{M}$ with $\widetilde{D}_X \tau = \widetilde{D}(X, \tau)$ such that for $\forall X, Y \in \mathscr{X}\widetilde{M}, \tau, \pi \in T^r_s(\widetilde{M}), \lambda \in \mathbf{R}$ and $f \in C^{\infty}(\widetilde{M})$,

(1) $\widetilde{D}_{X+fY}\tau = \widetilde{D}_X\tau + f\widetilde{D}_Y\tau$; and $\widetilde{D}_X(\tau + \lambda\pi) = \widetilde{D}_X\tau + \lambda\widetilde{D}_X\pi$; (2) $\widetilde{D}_X(\tau \otimes \pi) = \widetilde{D}_X\tau \otimes \pi + \sigma \otimes \widetilde{D}_X\pi$; (3) for any contraction C on $T^r_s(\widetilde{M})$, $\widetilde{D}_X(C(\tau)) = C(\widetilde{D}_X\tau)$.

A combinatorial connection space is a 2-tuple $(\widetilde{M}, \widetilde{D})$ consisting of a smoothly combinatorial manifold \widetilde{M} with a connection \widetilde{D} on its tensors.

For $\forall X, Y \in \mathscr{X}(\widetilde{M})$, a combinatorial curvature operator

$$\widetilde{\mathcal{R}}(X,Y):\mathscr{X}(\widetilde{M}) o \mathscr{X}(\widetilde{M})$$

is defined by

$$\widetilde{\mathcal{R}}(X,Y)Z = \widetilde{D}_X\widetilde{D}_YZ - \widetilde{D}_Y\widetilde{D}_XZ - \widetilde{D}_{[X,Y]}Z$$

for $\forall Z \in \mathscr{X}(\widetilde{M})$.

Definition 3.5 Let \widetilde{M} be a smoothly combinatorial manifold and $g \in A^2(\widetilde{M}) = \bigcup_{p \in \widetilde{M}} T_2^0(p, \widetilde{M})$. If g is symmetrical and positive, then \widetilde{M} is called a combinatorial Riemannian manifold, denoted by (\widetilde{M}, g) . In this case, if there is a connection \widetilde{D} on (\widetilde{M}, g) with equality following hold

$$Z(g(X,Y)) = g(\widetilde{D}_Z,Y) + g(X,\widetilde{D}_ZY)$$

then \widetilde{M} is called a combinatorial Riemannian geometry, denoted by $(\widetilde{M}, g, \widetilde{D})$.

In this case,
$$\widetilde{R} = \widetilde{R}_{(\sigma\varsigma)(\eta\theta)(\mu\nu)(\kappa\lambda)} dx^{\sigma\varsigma} \otimes dx^{\eta\theta} \otimes dx^{\mu\nu} \otimes dx^{\kappa\lambda}$$
 with

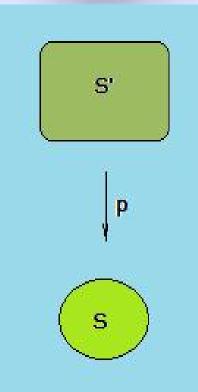
$$\begin{split} \widetilde{R}_{(\sigma\varsigma)(\eta\theta)(\mu\nu)(\kappa\lambda)} &= \frac{1}{2} \left(\frac{\partial^2 g_{(\mu\nu)(\sigma\varsigma)}}{\partial x^{\kappa\lambda} \partial x^{\eta\theta}} + \frac{\partial^2 g_{(\kappa\lambda)(\eta\theta)}}{\partial x^{\mu\nu\nu} \partial x^{\sigma\varsigma}} - \frac{\partial^2 g_{(\mu\nu)(\eta\theta)}}{\partial x^{\kappa\lambda} \partial x^{\sigma\varsigma}} - \frac{\partial^2 g_{(\kappa\lambda)(\sigma\varsigma)}}{\partial x^{\mu\nu} \partial x^{\eta\theta}} \right) \\ &+ \Gamma^{\vartheta\iota}_{(\mu\nu)(\sigma\varsigma)} \Gamma^{\xi o}_{(\kappa\lambda)(\eta\theta)} g_{(\xi o)(\vartheta\iota)} - \Gamma^{\xi o}_{(\mu\nu)(\eta\theta)} \Gamma_{(\kappa\lambda)(\sigma\varsigma)^{\vartheta\iota}} g_{(\xi o)(\vartheta\iota)}, \end{split}$$

where $g_{(\mu\nu)(\kappa\lambda)} = g(\frac{\partial}{\partial x^{\mu\nu}}, \frac{\partial}{\partial x^{\kappa\lambda}}).$

4. What is a Principal Fiber Bundle?

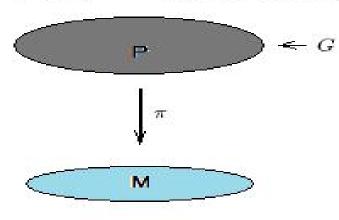
4.1 Covering Space

A covering space S' of S consisting of a space S' with a continuous mapping $p: S' \rightarrow S$ such that each point $x \in S$ has an arcwise connected neighborhood Ux and each arcwise connected component of $p^{-1}(U_x)$ is mapped topologically onto U_x by p. An opened neighborhoods Ux that satisfies the condition just stated is called an elementary neighborhood and p is often called a projection from S' to S.



4.2 Principal Fiber Bundle

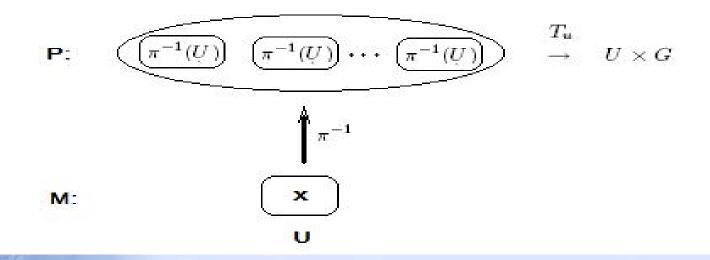
A principal fiber bundle (PFB) consists of a manifold P, a projection $\pi: P \to M$, a base manifold M, and a Lie group G, which is a manifold with group operation $G \times G \to given$ by $(g,h) \to g \circ h$ being C^{∞} map, denoted by (P, M, π, G) such that (1), (2) and (3) following hold.



(1) There is a right freely action of G on P, i.e., for ∀g ∈ G, there is a diffeomorphism R_g: P → P with R_g(p) = p g for ∀p ∈ P such that p(g1g2) = (p g1)g2 for ∀p ∈ P, ∀g1, g2 ∈ G and p e = p for some p ∈ P, e ∈ G if and only if e is the identity element of G.

(2) The map $\pi: P \to M$ is regular onto with $\pi^{-1}(\pi(p)) = \{pg | g \in G\}$.

(3) For $\forall x \in M$ there is an open set U with $x \in U$ and a diffeomorphism T_u : $\pi^{-1}(U) \to U \times G$ of the form $T_u(p) = (\pi(p), s_u(p))$, where s_u : $\pi^{-1}(U) \to G$ has the property $s_u(pg) = s_u(p)g$ for $\forall g \in G, p \in \pi^{-1}(U)$.



Lie Group: A Lie group (G,·) is a smooth manifold M such that (a, b) \rightarrow a·b⁻¹ is C^{∞}-differentiable for any a, b in G.

5. A Question

For a family of k principal fiber bundles P₁(M₁,G₁), P₂(M₂,G₂),..., P_k(M_k, G_k) over manifolds M¹, M², . . . , M^l, how can we construct principal fiber bundles on a smoothly combinatorial manifold consisting of M¹, M², . . . , M^l underlying a connected graph G?

6. Voltage Graph with Its Lifting

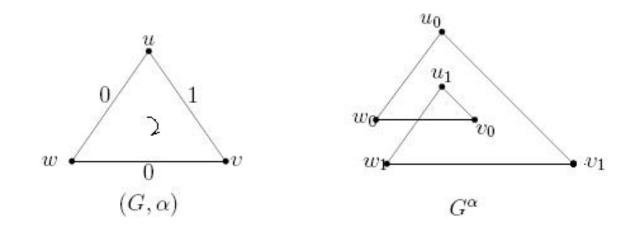
6.1 Voltage Assignment

Let G be a connected graph and (G, o) a group. For each edge $e \in E(G)$, e = uv, an orientation on e is an orientation on e from u to v, denoted by e = (u, v), called plus orientation and its minus orientation, from v to u, denoted by $e^{-1} = (v, u)$. For a given graph G with plus and minus orientation on its edges, a voltage assignment on G is a mapping α from the plus-edges of G into a group (G, o) satisfying $\alpha(e^{-1}) = \alpha^{-1}(e)$, $e \in E(G)$. These elements $\alpha(e)$, $e \in E(G)$ are called voltages, and (G, α) a voltage graph over the group (G, o).

6.2 Lifting of Voltage Graph

For a voltage graph (G, α) , its lifting $G^{\alpha} = (V(G^{\alpha}), E(G^{\alpha}); I(G^{\alpha}))$ is defined by $V(G^{\alpha}) = V(G) \times \Gamma$, $(u, a) \in V(G) \times \Gamma$ abbreviated to u_a ; $E(G^{\alpha}) = \{(u_a, v_{aob}) | e^+ = (u, v) \in E(G), \alpha(e^+) = b\}$ and $I(G^{\alpha}) = \{(u_a, v_{aob}) | I(e) = (u_a, v_{aob}) \text{ if } e = (u_a, v_{aob}) \in E(G^{\alpha})\}.$

For example, let $G = K_3$ and $\Gamma = Z_2$.



6.3 Voltage Vertex-Edge Labeled Graph with Its Lifting

Let G^L be a connected vertex-edge labeled graph with $\theta_L : V(G) \cup E(G) \to L$ of a label set and Γ a finite group. A voltage labeled graph on a vertex-edge labeled graph G^L is a 2-tuple $(G^L; \alpha)$ with a voltage assignments $\alpha : E(G^L) \to \Gamma$ such that

$$\alpha(u,v) = \alpha^{-1}(v,u), \quad \forall (u,v) \in E(G^L).$$

Similar to voltage graphs such as those shown in Example 3.1.3, the importance of voltage labeled graphs lies in their *labeled lifting* $G^{L_{\alpha}}$ defined by

$$V(G^{L_{\alpha}}) = V(G^{L}) \times \Gamma, \ (u,g) \in V(G^{L}) \times \Gamma \text{ abbreviated to } u_{g};$$
$$E(G_{\alpha}^{L}) = \{ (u_{g}, v_{g \circ h}) \mid \text{for } \forall (u,v) \in E(G^{L}) \text{ with } \alpha(u,v) = h \}$$

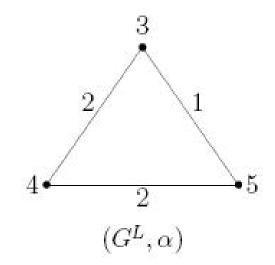
with labels $\Theta_L : G^{L_{\alpha}} \to L$ following:

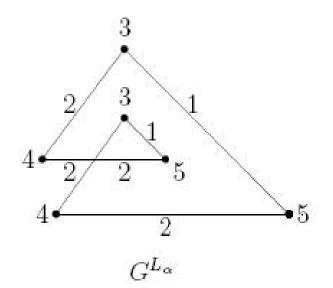
$$\Theta_L(u_g) = \theta_L(u), \text{ and } \Theta_L(u_g, v_{g \circ h}) = \theta_L(u, v)$$

for $u, v \in V(G^L)$, $(u, v) \in E(G^L)$ with $\alpha(u, v) = h$ and $g, h \in \Gamma$.

Example:

Let $G^L = C_3^L$ and $\Gamma = Z_2$.





6.4 Lifting of Automorphism of Graph

A mapping $g : G^L \to G^L$ is acting on a labeled graph G^L with a labeling $\theta_L : G^L \to L$ if $g\theta_L(x) = \theta_L g(x)$ for $\forall x \in V(G^L) \cup E(G^L)$, and a group Γ is acting on a labeled graph G^L if each $g \in \Gamma$ is acting on G^L .

Let A be a group of automorphisms of G^L . A voltage labeled graph (G^L, α) is called *locally A-invariant* at a vertex $u \in V(G^L)$ if for $\forall f \in A$ and $W \in \pi_1(G^L, u)$, we have

$$\alpha(W) = identity \ \Rightarrow \ \alpha(f(W)) = identity$$

and *locally* f-invariant for an automorphism $f \in \operatorname{Aut}G^L$ if it is locally invariant with respect to the group $\langle f \rangle$ in $\operatorname{Aut}G^L$.

Theorem 6.1 Let (G^L, α) be a voltage labeled graph with $\alpha : E(G^L) \to \Gamma$ and $f \in \operatorname{Aut} G^L$. Then f lifts to an automorphism of $G^{L_{\alpha}}$ if and only if (G^L, α) is locally f-invariant.

7. Combinatorial Fiber Bundle

7.1 Definition

Definition 7.1 A combinatorial fiber bundle is a 4-tuple (M^*, M, p, G) consisting of a covering combinatorial manifold \widetilde{M}^* , a group G, a combinatorial manifold \widetilde{M} and a projection mapping $p: \widetilde{M}^* \to \widetilde{M}$ with properties following:

(i) G acts freely on \widetilde{M}^* to the right.

(ii) the mapping $p: \widetilde{M}^* \to \widetilde{M}$ is onto, and for $\forall x \in \widetilde{M}, p^{-1}(p(x)) = \operatorname{fib}_x = \{x_g | \forall g \in \Gamma\} \text{ and } l_x: \operatorname{fib}_x \to \Gamma \text{ is a bijection.}$

(iii) for $\forall x \in M$ with its a open neighborhood U_x , there is an open set U_x and a mapping $T_x : p^{-1}(U_x) \to \widetilde{U}_x \times \Gamma$ of the form $T_x(y) = (p(y), s_x(y))$, where $s_x : p^{-1}(U_x) \to \Gamma$ has the property that $s_x(yg) = s_x(y)g$ for $\forall g \in G$ and $y \in p^{-1}(U_x)$.

7.2 Theorem

Theorem 7.1 Let \widetilde{M} be a finite combinatorial manifold and $(G^{L}([\widetilde{M}]), \alpha)$ a voltage labeled graph with $\alpha : E(G^{L}([\widetilde{M}]) \to \Gamma$. Then $(\widetilde{M}^{*}, \widetilde{M}, p^{*}, \Gamma)$ is a combinatorial fiber bundle, where \widetilde{M}^{*} is the combinatorial manifold correspondent to the lifting $G^{L_{\alpha}}([\widetilde{M}], p^{*} : \widetilde{M}^{*} \to \widetilde{M}$ a natural projection determined by $p^{*} = h_{s} \circ \varsigma_{M}^{-1} p_{\varsigma_{M}}$ with $h_{s} : M \to M$ a self-homeomorphism of \widetilde{M} and $\varsigma_{M} : x \to M$ a mapping defined by $\varsigma_{M}(x) = M$ for $\forall x \in M$.

Can we introduce differential structure on combinatorial Principal fiber bundles? The answer is YES!

8. Principal Fiber Bundle(PFB)8.1 Lie Multi-Group

A Lie multi-group \mathscr{L}_G is a smoothly combinatorial manifold \widetilde{M} endowed with a multi-group $(\widetilde{\mathscr{A}}(\mathscr{L}_G); \mathscr{O}(\mathscr{L}_G))$, where $\widetilde{\mathscr{A}}(\mathscr{L}_G) = \bigcup_{i=1}^m \mathscr{H}_i$ and $\mathscr{O}(\mathscr{L}_G) = \bigcup_{i=1}^m \{\circ_i\}$ such that

(i)
$$(\mathscr{H}_{i}; \circ_{i})$$
 is a group for each integer $i, 1 \leq i \leq m$;
(ii) $G^{L}[\widetilde{M}] = G$;
(iii) the mapping $(a, b) \to a \circ_{i} b^{-1}$ is C^{∞} -differentiable for any integer $i, 1 \leq i \leq m$ and $\forall a, b \in \mathscr{H}_{i}$.

8.2 Principal Fiber Bundle (PFB)

Let \widetilde{P} , \widetilde{M} be a differentiably combinatorial manifolds and \mathscr{L}_G a Lie multi-group $(\widetilde{\mathscr{A}}(\mathscr{L}_G); \mathscr{O}(\mathscr{L}_G))$ with

$$\widetilde{P} = \bigcup_{i=1}^{m} P_i, \ \widetilde{M} = \bigcup_{i=1}^{s} M_i, \ \widetilde{\mathscr{A}}(\mathscr{L}_G) = \bigcup_{i=1}^{m} \mathscr{H}_{\circ_i}, \ \mathscr{O}(\mathscr{L}_G) = \bigcup_{i=1}^{m} \{\circ_i\}.$$

A differentiable principal fiber bundle over \widetilde{M} with group \mathscr{L}_G consists of a differentiably combinatorial manifold \widetilde{P} , an action of \mathscr{L}_G on \widetilde{P} satisfying following conditions PFB1-PFB3:

PFB1. For any integer $i, 1 \leq i \leq m, \mathcal{H}_{o_i}$ acts differentiably on P_i to the right without fixed point, i.e.,

 $(x,g) \in P_i \times \mathscr{H}_{\circ_i} \to x \circ_i g \in P_i \text{ and } x \circ_i g = x \text{ implies that } g = 1_{\circ_i};$

PFB2. For any integer $i, 1 \leq i \leq m, M_{\circ_i}$ is the quotient space of a covering manifold $P \in \Pi^{-1}(M_{\circ_i})$ by the equivalence relation R induced by \mathscr{H}_{\circ_i} :

$$R_i = \{ (x, y) \in P_{\circ_i} \times P_{\circ_i} | \exists g \in \mathscr{H}_{\circ_i} \Rightarrow x \circ_i g = y \},\$$

written by $M_{\circ_i} = P_{\circ_i}/\mathscr{H}_{\circ_i}$, i.e., an orbit space of P_{\circ_i} under the action of \mathscr{H}_{\circ_i} . These is a canonical projection $\Pi : \widetilde{P} \to \widetilde{M}$ such that $\Pi_i = \Pi|_{P_{\circ_i}} : P_{\circ_i} \to M_{\circ_i}$ is differentiable and each fiber $\Pi_i^{-1}(x) = \{p \circ_i g | g \in \mathscr{H}_{\circ_i}, \Pi_i(p) = x\}$ is a closed

PFB3. For any integer $i, 1 \leq i \leq m, P \in \Pi^{-1}(M_{\circ_i})$ is locally trivial over M_{\circ_i} , i.e., any $x \in M_{\circ_i}$ has a neighborhood U_x and a diffeomorphism $T : \Pi^{-1}(U_x) \to U_x \times \mathscr{L}_G$ with

 $T|_{\Pi_i^{-1}(U_x)} = T_i^x : \Pi_i^{-1}(U_x) \to U_x \times \mathscr{H}_{\circ_i}; \ x \to \ T_i^x(x) = (\Pi_i(x), \epsilon(x)),$

called a local trivialization (abbreviated to LT) such that $\epsilon(x \circ_i g) = \epsilon(x) \circ_i g$ for $\forall g \in \mathscr{H}_{\circ_i}, \ \epsilon(x) \in \mathscr{H}_{\circ_i}.$

8.3 Construction by Voltage Assignment

For a family of principal fiber bundles over manifolds M_1, M_2, \dots, M_l , such as those shown in Fig. 8.1,

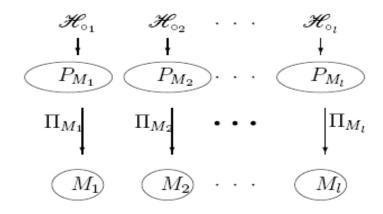


Fig. 8.1

where \mathscr{H}_{\circ_i} is a Lie group acting on P_{M_i} for $1 \leq i \leq l$ satisfying conditions PFB1-PFB3, let \widetilde{M} be a differentiably combinatorial manifold consisting of M_i , $1 \leq i \leq l$ and $(G^L[\widetilde{M}], \alpha)$ a voltage graph with a voltage assignment $\alpha : G^L[\widetilde{M}] \to \mathfrak{G}$ over a finite group \mathfrak{G} , which naturally induced a projection $\pi : G^L[\widetilde{P}] \to G^L[\widetilde{M}]$. For $\forall M \in V(G^L[\widetilde{M}])$, if $\pi(P_M) = M$, place P_M on each lifting vertex $M^{L_{\alpha}}$ in the fiber $\pi^{-1}(M)$ of $G^{L_{\alpha}}[\widetilde{M}]$, such as those shown in Fig. 8.2.

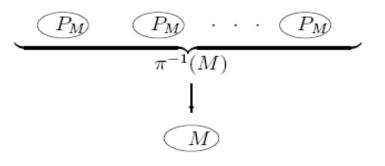
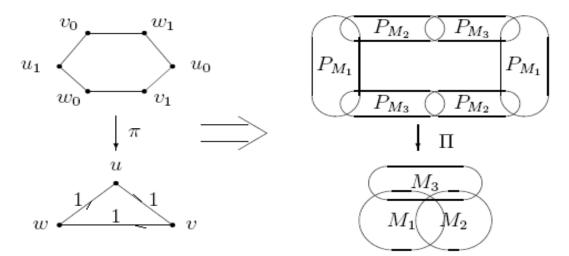


Fig. 8.2

Let $\Pi = \pi \Pi_M \pi^{-1}$ for $\forall M \in V(G^L[\widetilde{M}])$. Then $\widetilde{P} = \bigcup_{\substack{M \in V(G^L[\widetilde{M}])\\M \in V(G^L[\widetilde{M}])}} P_M$ is a smoothly combinatorial manifold and $\mathscr{L}_G = \bigcup_{\substack{M \in V(G^L[\widetilde{M}])\\M \in V(G^L[\widetilde{M}])}} \mathscr{H}_M$ a Lie multi-group by definition.

Such a constructed combinatorial fiber bundle is denoted by $\widetilde{P}^{L_{\alpha}}(\widetilde{M}, \mathscr{L}_{G})$.



8.4 Results

Theorem 8.1 A combinatorial fiber bundle $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_{G})$ is a principal fiber bundle if and only if for $\forall (M', M'') \in E(G^{L}[\widetilde{M}])$ and $(P_{M'}, P_{M''}) = (M', M'')^{L_{\alpha}} \in E(G^{L}[\widetilde{P}]), \Pi_{M'}|_{P_{M'} \cap P_{M''}} = \Pi_{M''}|_{P_{M'} \cap P_{M''}}$.

Theorem 8.2 Let $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_G)$ be a principal fiber bundle. Then

 $\operatorname{Aut}\widetilde{P}^{\alpha}(\widetilde{M},\mathscr{L}_G) \geq \langle \mathfrak{L} \rangle,$

where $\mathfrak{L} = \{ \widehat{h}\omega_i \mid \widehat{h} : P_{M_i} \to P_{M_i} \text{ is } 1_{P_{M_i}} \text{ determined by } h((M_i)_g) = (M_i)_{g \circ_i h} \text{ for } h \in \mathfrak{G} \text{ and } g_i \in \operatorname{Aut} P_{M_i}(M_i, \mathscr{H}_{\circ_i}), \ 1 \leq i \leq l \}.$

A principal fiber bundle $\widetilde{P}(\widetilde{M}, \mathscr{L}_G)$ is called to be *normal* if for $\forall u, v \in \widetilde{P}$, there exists an $\omega \in \operatorname{Aut}\widetilde{P}(\widetilde{M}, \mathscr{L}_G)$ such that $\omega(u) = v$. We get the necessary and sufficient conditions of normally principal fiber bundles $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_G)$ following.

Theorem 8.3 $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_{G})$ is normal if and only if $P_{M_{i}}(M_{i}, \mathscr{H}_{\circ_{i}})$ is normal, $(\mathscr{H}_{\circ_{i}}; \circ_{i}) = (\mathscr{H}; \circ)$ for $1 \leq i \leq l$ and $G^{L_{\alpha}}[\widetilde{M}]$ is transitive by diffeomorphic automorphisms in $\operatorname{Aut} G^{L_{\alpha}}[\widetilde{M}]$.

9. Connection on PFB

A local connection on a principal fiber bundle $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_{G})$ is a linear mapping ${}^{i}\Gamma_{u}: T_{x}(\widetilde{M}) \to T_{u}(\widetilde{P})$ for an integer $i, 1 \leq i \leq l$ and $u \in \Pi_{i}^{-1}(x) = {}^{i}F_{x}, x \in M_{i}$, enjoys the following properties:

- (i) $(d\Pi_i)^i \Gamma_u$ = identity mapping on $T_x(\widetilde{M})$;
- (*ii*) ${}^{i}\Gamma_{iR_{g}\circ_{i}u} = d {}^{i}R_{g}\circ_{i}{}^{i}\Gamma_{u}$, where ${}^{i}R_{g}$ denotes the right translation on $P_{M_{i}}$;
- (*iii*) the mapping $u \to {}^{i}\Gamma_{u}$ is C^{∞} .

Similarly, a global connection on a principal fiber bundle $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_{G})$ is a linear mapping $\Gamma_{u} : T_{x}(\widetilde{M}) \to T_{u}(\widetilde{P})$ for a $u \in \Pi^{-1}(x) = F_{x}, x \in \widetilde{M}$ with conditions following hold:

(i) $(d\Pi)\Gamma_u$ = identity mapping on $T_x(\widetilde{M})$;

(*ii*) $\Gamma_{R_g \circ u} = dR_g \circ \Gamma_u$ for $\forall g \in \mathscr{L}_G$ and $\forall \circ \in \mathscr{O}(\mathscr{L}_G)$, where R_g denotes the right translation on \widetilde{P} ;

(*iii*) the mapping $u \to \Gamma_u$ is C^{∞} .

Theorem 9.1 There are always exist global connections on a normally principal fiber bundle $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_G)$. **Theorem 9.2** (E.Cartan) Let ${}^{i}\omega$, $1 \leq i \leq l$ and ω be local or global connection forms on a principal fiber bundle $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_{G})$. Then

$$(d^{i}\omega)(X,Y) = -[^{i}\omega(X),^{i}\omega(Y)] + {^{i}\Omega(X,Y)}$$

and

$$d\omega(X,Y) = -[\omega(X),\omega(Y)] + \Omega(X,Y)$$

for vector fields $X, Y \in \mathscr{X}(P_{M_i})$ or $\mathscr{X}(\widetilde{P})$.

Theorem 9.3 (Bianchi) Let ${}^{i}\omega$, $1 \leq i \leq l$ and ω be local or global connection forms on a principal fiber bundle $\widetilde{P}^{\alpha}(\widetilde{M}, \mathscr{L}_{G})$. Then

 $(d \ ^i\Omega)h = 0$, and $(d\Omega)h = 0$.

10. Applications to Gauge Field

A gauge field is such a mathematical model with local or global symmetries under a group, a finite-dimensional Lie group in most cases action on its gauge basis at an individual point in space and time, together with a set of techniques for making physical predictions consistent with the symmetries of the model, which is a generalization of Einstein's principle of covariance to that of internal field.

Gauge Invariant Principle A gauge field equation, particularly, the Lagrange density of a gauge field is invariant under gauge transformations on this field.

Combinatorial Gauge Field. A globally or locally combinatorial gauge field is a combinatorial field \widetilde{M} under a gauge transformation $\tau_{\widetilde{M}} : \widetilde{M} \to \widetilde{M}$ independent or dependent on the field variable \overline{x} .

If a combinatorial gauge field \widetilde{M} is consisting of gauge fields M_1, M_2, \dots, M_m , we can easily find that \widetilde{M} is a globally combinatorial gauge field only if each gauge field is global.

Whence, we can find infinite combinatorial gauge fields by application of principal fiber bundle.

Background:

 (2005) Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press.
 (2005) Formally presented CC Conjecture:

A mathematical science can be reconstructed from or made by combinatorialization.

3. (2006) Smarandache Multi-Space Theory, Hexis, Phoenix, American. (Reviewer: An algebraic geometry book) 4.(2006)Selected Papers on Mathematical Combinatorics, World Academic Union. 5.(2007)Sponsored journal: International J. Mathematical Combinatorics, USA. 6.(2009)Combinatorial Geometry with Application to Field Theory, USA.