Effect of observer perspective on the per ception of wavelength
Richard K. Love “and Sean R. Love "

®2000 Clara Mae Ct. Springfield IL 62711

®191 East El Camino Real, Mountain View CA 94040
(Dated Jun 3, 2013)

PACS numbers: 03.30. +p 95.30.5f, 98.80.k 5.35+d, 95.38. +x, 95.55.Pe, 98.80.bp, 98.80.es, 98.80.-k, 98.80HW

Electronic address: richlove@scientificdatallc.com
Electronic address: seanlove@scientificdatallc.com

Abstract

The redshift observed in astronomica measurementsis explained as an observational
artifact caused by the perspective of the observer, rather than the effect of physical
cosmic expansion. The parsec unit of distanceis defined in the observer-centered
perspective, which is the generic term for the geocentric perspective. This perspective
uses taxicab geometry which causes the Earth observer to perceive alonger wavefront
travel distance for the parsec unit without a corresponding increase in wavefront travel
time. This combination creates a velocity artifactv, , which, sinceit is part of each parsec

unit, is cumulative with distance. The velocity artifact manifests to the Earth observer as
an apparent redshift which only becomes significant at the megaparsec level. Predicted
results are very close to expected values. The predicted Hubble constant valueis
calculated to be 69.4,70,and 69.3kmy/s/Mpc depending on which formulais used. Each

of the three valuesiswithin NASA’s limits. The artifact is also shown to generate the
sinusoidal FRW wave functions for recession vel ocity, redshift and the scale factor. The
artifact predicts arecession velocity of 1 ¢ to equa aredshift of 1.46, which equals the
expected redshift value. The artifact is also demonstrated to be responsible for the
phenomena commonly known as dark energy by causing objects to appear closer than
expected due to shorter redshift-distance.. Riess et al (2004) found the redshift distance to
be shorter by 10 to 15%. Correction of the artifact error causes the FRW redshift
luminosity distance to increase by 14% which can be seen to closely match the intrinsic
luminosity distance of the type 1a supernovae (SNela). . The Pioneer anomaly, whichis
the unmodel ed negative acceleration of two spacecraft launched in 1972, is also shown to
be the result of the observer-centered perspective. The calculated negative acceleration of
-8.745x10%km/s/s essentially equals NASA’svalue

I. ALIGNMENT OF THE EARTH AND SUN WITH A STAR OR GALAXY
A. Effects of perspective on properties of wavefront

In 1534, Copernicus discovered a new perspective for observation within the solar
system, which is known today as the heliocentric perspective[l] . This perspectiveis



generically termed the source-centered per spective when applied to other light sources.
[2] The source-centered perspective measures distance from the origin of the wavefront

of light, such as a star or galaxy. It uses the polar coordinate system, with the radial
coordinater and the transverse coordinate 6 and is individually aligned with the light
source.

Whenr is expressed in the2—norm metric of this perspective, coordinates y and x
combine to form the defined radial Iine(r =y +x ) The distance r asoisthetotal

distance from the star to Earth. [3] The relationship between incremental radial and

transverse distance is given by the formulaAr = AC/2z : whereAr isthe incremental
radial distance and AC isan incremental changein the Euclidean wavefront
circumference. [4]

Prior to Copernicus, observers measured planetary distances in the solar system from the
origin on the Earth with a perspective known today as the as geocentric perspective. [5] .

This perspective is generically termed the observer-centered per spective when applied to
other light sources. It measures distance from the origin of the observer. [6]

The perspective uses the Cartesian coordinate system, which aigns theradial coordinate
y and the transverse coordinate x with the origin of the observer. The particular

alignment of the coordinate axes with the wavefront that is perceived by the observer is
applied to all other objects. [7]

Asexpressed in the 1— norm metric of this perspective, coordinatesy and x cannot
combineto form aradial line because y is the defined radial distance and xisthe defined

transverse distance. In this metric, they can only add to give the total distance(x+ y)
from the Earth to the star.[8] The relationship between incremental radial and transverse
distance is given by the formulaAy = Ax/tan6 : whereAy is the incremental radial
distance and Axistheincremental change in the taxicab wavefront circumference. [9]

[10][11]

Table 1 summarizes the properties of each perspective.

Perspective Coordinate Coordinate | Minkowski Incremental
Name origin system geometry | radia distance

Source-centered | Star or galaxy Polar Euclidean* Ar =AC/26
Observer-centered Observer Cartesian Taxicab Ay = Ax/tan6

Table 1: A summary of the properties of the source-centered and observer-centered
perspectives * Asdiscussed, the polar distance r can be expressed as Euclidean

distance (/Y +x* )[12]



B. Example of the source-centered perspective

In the examplein FIG.1, the Sun S and the Earth E are aligned so that the wavefront
distance ct from the star is equa for both objects. As mentioned, the source-centered
perspective uses polar coordinates. The radial and transverse directions are defined
spectroscopicaly, that is by their effect on wavelength as measured by a moving

observer. [13]

Spectroscopically, the outward direction from the star along the ray of light is defined as
radial because travel in this direction causes a change in wave travel distance ct which
resultsin a change in wavelength.

The orthogonal direction to the radial coordinate (r) isthe arc swhich isthe product of
the two coordinatesré . The arc, seen between the SunS and an Earth orbit positionEis
defined spectroscopically as transverse because travel in this direction does not result in a
change in wavetravel distance ct so thereis no observed change in wavelength.

As can be seen, each ray from the Sun Sisindividually aligned with the transverse
distance. Since only the curved wavefront can be truly transverse to the radial direction,
it follows that arectilinear “transverse” distance necessarily contains aradia component
and thus would not meet the spectroscopic test of being transverse.

The accepted distance between the Earth and the Sun is the radar-measured chordl
which, with asmall angled, closely approximates the arc. Since the angle used in this
paper isvery small (one arcsecond), the radar magnitude of the chord will be used in
calculations as the magnitude of the arc. The chord, like the arc, generates no net radial

displacement between the Sun and the Earth. [14]

FIG.1: The source-centered
perspective, uses the polar
coordinates r ande, and hasitsorigin
on the source (star). Equidistanceis
measured in wavefront travel
distancer .The Suns and the EarthE
each hasits own individua

alignment with the wavefront.



C. Example of intermediate step from source-centered to observer-centered perspective.

FIG.2 illustrates the intermediate step between the two perspectives. This step maintains
the coordinate origin on the star and the individual alignment of the radial distance of the
source centered perspective, but replaces the polar coordinate system with the Cartesian
coordinate system.

Sincethe xdistanceisrectilinear, it is only truly in the spectroscopic transverse direction
at the tangent point. The arc scan be thought to be composed of a series of infinitesimal

rectilinear distances dl that are each tangential to an individual light ray. [16] [17]

The geometry remains Euclidean; as can be seen the radial distance from the star is point-
to-point for both the Sun' S and the Earth E . In this special case where the limit of the

transverse distance x equals0, then the radial distance yiscalculated\/ y* +0* .

FIG.2: The intermediate stage between the
source-centered and observer-centered
perspective maintains both the origin on the
star and theindividua alignment with the
wavefront. However, it uses Cartesian
coordinates. Note that y, and y, are both

equal to the wavefront travel distancer seen
in FIG.1. Also note that the x coordinateis
tangential and not completely transverse asis
the curved arcs. Therefore x, becauseit is
rectilinear, has aradial component.

D. Observer-centered perspective example

Aswas seenin FIG. 2, the alignment with the wavefront in the source-centered
perspective was individualy determined by each object. Now as seenin FIG. 3(a), the



alignment for all objectsisinstead determined by the observer. Thisdifferencein
alignment with the wavefront changes the geometry in this perspective from Euclidean
geometry to taxicab geometry, which in turn alters the direction and magnitude of the
radial and transverse distances between the Sun, Earth and star.

In FIG.3 (a), the origin of distanceison the Sun S which isthe observer. Note that the
radial distance (y,) from the Earth to the star no longer is equal to r whichisa2—norm
distance ((difference between both xand y coordinates). Instead the radial distancey, is
now equal tor cos@ , which isa 1-norm distance (difference between only one
coordinate). In this case, the one coordinateisy .[18]

As can be seen, the Euclidean distances| and r are undefined in terms of radial and
transverse distance. Thisisbecauseit isthe distance ythat isdefined as radial and the

distance x that is defined as transverse. In this perspective, | and r are a combination of
radial and transverse distances.

In this view, the Sun and the Earth each have different radial distances from the star as
measured by y asthe taxicab radial distance. For the Earth to have the same taxicab
radial distance to the star as the Sun, it needs a different orbit position so that the y

coordinate values of the Sun and the Earth are the same. Thisalignment is seenin FIG.
3(b).

FIG.3 (a): The observer-centered perspective
creates acommon alignment with the
wavefront for all objects based on the
observer'sview (whichisthe Sun S inthis
example). The magnitude of EarthE’sradial
distance (y, ) to the star is no longer equal to
the Euclidean distance (r ), asit wasin FIG.
2, instead it is now equal to the taxicab
distance (r cos@ ).



In FIG. 3 (b), the overlay of the wavefront from the Sun S makes it possible to see both
the polar and Cartesian coordinate systems at the same time.

In taxicab geometry, the y coordinate is the sole component of radial direction. Thus, to

have the Earth and the Sun at the same distance to the star requires the alignment of the
Sun and Earth such that they both have the same y distance to the star. This aignment

had the opposite effect in the Euclidean geometry; instead of being equal distance, the
Earth isnow at a greater r distance than the Sun. [19]

In the source-centered perspective, where radial distanceis measured intermsof r , the x
distance now has a change in wavefront travel distance from the star Act , because, as can
be seen, the Sun and the Earth have different radii.

However, in the observer-centered perspective, where radial distance is measured in
termsof y, the xline has no change in radial distance; the Sun and the Earth have the

same y distance. In this perspective, it isthe | distance that has the changein radial
distance Act , because its beginning and end have different y values.[20]

FIG.3 (b): The Earth Eand the SunS now
have the same 1—norm radial distance (Y,
) to the star. The realignment has caused x
to add aradial component Act inthe
source-centered perspective. However, in
the observer-centered perspective, itis |
that appearsto have the radial component.

FIG. 3(c) isrotated to the familiar observer-centered position where yisvertical. Using

the spectroscopic test, movement along s or | generates no net change in wavelength
while movement along x does cause anet change.. Therefore xisnot all transverse, it has

aradial component. [21]



FIG.3 (c): Theview isrotated to the normal
Cartesian position. The arc s (approximated
by the sum of the infinitessmal dl ) isthe
spectroscopic transverse distance.
Thereforeit is xthat has the radia
component Act . However, the Pythagorean

equation x* = dl® — (cdt)*assumesthat it is
dl that has the radial component sincel has

The Pythagorean equation dx® = dl* — (cdt)® isinvalid for use with a point source of light
because it doesn’t follow the spectroscopic definitions of radial and transverse directions.
The Pythagorean equation assumes that it isl that has the radial component. It can be seen
in FIG. 3(c), that this assumption is made because | begins and ends with a different y
coordinate value. [22]However, as has shown in FIG. 3(b), it is xthat actually hasthe

radial component, as measured spectroscopically.

1. REDSHIFT ARTIFACT IS CAUSED BY DIFFERENCE IN
PERSPECTIVES.

A. Definition of the parsec in taxicab geometry

In FIG. 4, the Earth E isaligned to have the same taxicab radial distance y astheSunS,
which isrequired by the parallax equation because it uses the 1— norm metric.

The definition of the parsec(pc) asthe unit of radial distanceis an excellent

demonstration of the difference between Euclidean and taxicab geometry. As can be seen
in FIG.4, the Euclidean radial distance r (point to point) from the star to the Earthis
undefined, because the defined radial distance from the star to the Earth is the parsec y

(linetoline).



In the observer-centered perspective, the relationship between incremental change in
between transverse and radial distanceis defined by the parallax formula [ 23] [24]

pc(y) = % D)

wherey is the parsec, the magnitude of the baselinexisone AU and the magnitude of
angle p isone arc second. (Note the very small angle (one arc second) that is actually

used in the parsec determination; the larger angles in the diagrams are for ease of
viewing).

Note in FIG.4, that the defined wavefront travel time from the imaginary star to the Earth
isthe parsec (y) divided by the speed of light (t = y/c). In comparison, the actual
wavefront travel time from the imaginary star to the Earth isthe radius r divided by the
speed of light. (t=r/c).

L% Diztant
stars

Parallax angle of
1 arcsecond

The parsec unit in the observer-centered
perspective uses taxicab geometry

(p = xftan& ) to establish the single coordinate
metric. Radial distance » in Euclidean
geometry (point to point) to the Earth is
undefined. The defined radial distancey to
the Earth 1s the parsec unit (line to line).

In taxicab geometry, y/c may be called the “ coordinate” time because all points on the
x axis have the same y coordinate wavefront travel distance to the star by definition. In
Euclidean geometry, r/c may be called the “proper” time, because each position on the



x axis has aunique r wavefront travel distanceto the star. The term proper isused in this
case with the definition “belonging to one: own. [25]

Note that the physica speed of light in avacuum is accepted unconditionally in this paper
as a constant in the universe. However, the magnitude of the variablec obviously depends

on the magnitude of the distance unit used in its definition. [26]

The artifact velocity v, is the difference between c¢ calculated with the parsec distance y

and c calculated using the actua distance to the Earthr . The proper time r/cwas used
for both calculations because it is the time used by the Earth observer.

-y
“r/c rjc @)

Dividing through by the denominators, simplifies the equation

V, =c—cy/r ©)
Then the speed of light ¢ can be factored to further simply the equation.

v, =c(l-y/r). (4)

Ascan beseen in FIG. 4, the distance vy is the adjacent side of thetriangle and r isthe
hypotenuse of the triangle, therefore, the ratio y/r can be expressed as the cosine
function, when anglep =6

Vv, =c(1-cosb). (5)

Aswill be seen later in FIG.14, this function meets the expected curve shape for Doppler
redshift when the recession velocity is divided by the speed of light (v, /c).

The artifact velocity v, is observed by the Earth observer as an apparent increase in the
wavelength with the Doppler formula

j’obs = (C+ Va)T ' (6)

The wavelength with this artifact velocity is referred to as the observed wavelength. The
same wavel ength without the artifact vel ocity isreferred to as the emitted wavel ength.

Note that ssimple movement by the star or the Earth would not explain the fact that the
redshift is observed in all directions. However the velocity artifact, like the current



explanation for the redshift (the cosmic expansion of space) explains the omnidirectional
effect. [28]

Thetiny differencein radial distance between the two perspectives (r —y) is significant
only because the parsec is a distance unit, which makes the resulting vel ocity artifact v,
cumulative. For example, aswill be demonstrated, the Hubble constant magnitude of a
70km/ s per megaparsec isaresult of avirtually undetectable velocity artifact of
7.0x10°° kmy's per parsec being multiplied by afactor of amillion[29] [30]

The cumulative effect of asmall error per unit of measure was exemplified in 1999 with
the crash of the Mars Climate Orbiter. [31]

B Artifact in wavefront circumference is due to different geometries

Figure 5 compares the wavefront from a star in both taxicab and Euclidean geometries.
The taxicab wavefront appears to be a diamond; however, it meets the definition of a
circle: aline formed by alocus of points that is everywhere equidistant from one

common point. [32]

Just as was seen in FIG. 4 with the determination of the parsec, taxicab distance in this
diagram is measured from line-to-line, so the Sun, the Earth and every point on the xline
have the same radial magnitude y .Thisistruein the other three directions from the star

aswell.

FIG. 5 shows a comparison of Euclidean
(outer) and taxicab (inner) wavefronts. The
radius of the Euclidean circle is 7 and the
radius of the taxicab circle is y . The line x

is the taxicab chord which compares with
the Euclidean chord d .
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It can be seen in FIG.5 that the Sun and the Earth perceive different wavefront distances
yand r and therefore perceive different wavelengths. However, it is easier to see that the

Sun Sand the Earth E have different wavelengths in FIG.6 where both wavefronts are
Euclidean.

If the frequency v of light from the star is set to1, then for the Sun, the radiusrg equals A,
but for the Earth, radius r. equalsA, . The two radii equal different wavel engths because
they have the same wavefront travel time as set by the parsec.

FIG.6 shows the two Euclidean wavefronts
with radiusr . In this geometry, the x distance
has aradial component, so that the Sun Sand
the Earth E each have adifferent radius. Since
the distance unit is defined in the taxicab
metric, the wavefront travel time for both radii
isthe same, causing the Earth observer to
perceive the artifact wavelength 4, , caused by

the artifact velocity v, .

The increase in circumference between the two wavefront circles can be calculated by the
difference in magnitude between the Euclidean chord | and the taxicab chord x .. (
AC = (I —x) ) Theincrease in circumference can then be related to an increase in radius

by the equation,

AC
Ar =— 7
o ()
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The change in the radius when traversed by light in the same time is explained as an
increasein velocity (c+V,) . The artifact velocity v, then causes the artifact wavelength
A -

C. Effect of an incremental increase in circumference on the radius

Astronomers have long believed that the small difference in transverse distance between
xand | wasinsignificant because of the relatively large magnitude of the parsec. The

effect is called the “skinny isosceles triangle”. [33] However, as the following example

will demonstrate, an incremental change is not affected by the magnitude of the distance
being changed.

A string that fits tightly around the Earth's circumference at the equator has alength of
approximately 132 million feet (25,000 miles x 5,280 ft). If only sixty feet is added to
the string’s 132 million feet length, it provides enough slack to lift the string to a height

of ten feet off the ground all around the world.[34]

Type Function Formula Values (ft)
Increased circumference |  C, ., Carig +60 132,000,060
Original circumference Corig Corig 132,000,000

AC | (Crr —Cop) 60
Ar AC/2r 10

Table 2.An incremental increase in circumference of 60 ft.
causes an incremental increase in radius of 10ft. (27 ~ 6)

This relationship of the circumference to the radius is surprising because the radius
increase was expressed numerically as 60 feet rather than in terms of the percentage of
the radius (4.76x10™") as was expected. Incrementally, every unit increasein
circumference causes an 0.16 (1/2z ) increasein radius.

Anincrementa increase is not affected by the magnitude of the distance hence,
percentages are not appropriate in the calculation. Thisincremental effect combined with
the fact that the parsec is a distance unit, means that the small differencesin calculating
transverse distance can be significant. This will be now demonstrated using the difference
between the Euclidean circumference and the taxicab circumference as seen in FIG. 6.

The same equation used with the string can be used to determine the increase in radial

distance caused by the differencein AC between the two perspectives. As previously
discussed, the magnitude of the chord will be used for AC .
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The difference in the circumference AC between the two perspectives is determined by
subtraction of the taxicab chord xfrom the Euclidean chordl .

AC=20tsin%—AU 8
Thisincrease in circumference can be used to determine the artifact velocity v, with the

following equation

AC
V,=—
2

(9)

Where the arcsecond 6 = 4.8481368111x10 ° radians, AU =149,597,870.7km and
ct = 3.08567758100x10"km

Perspective Function Formula Values (km/ s)
Source-centered d 2ctsin(6/2) 149,597.870.700440
Observer-centered X AU 149,597,870.700000
AC 2ctsin(6/2) — AU 0.00440
v, AC/26 0.000070

Table 3.The apparent increase in circumference for one parsecis
0.000440km. Dividing 440 km by 27 gives the apparent recession

velocity v, of 7.0x10™° kny's/ pc .

The magnitude of v, per megaparsec is obtained by multiplying the magnitude of the

artifact velocity value for the parsec by afactor of one million. The recession velocity
artifact v, at aone megaparsec level is known as the Hubble constant H,,

H, = 70kmy/s/Mpc (10)

Edwin Hubble reported in1927 that gal axies showed a redshift in their wavelengths that
was proportional to their distance away from Earth. The quantitative correlation he

devel oped based on this relationship is known as Hubble's law. [35]

Hubble' s law describes the recession velocity v, as afunction of the distance between the
observer and the object.

v, =H,D (11)

r
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D, measured in mega parsecs (Mpc), is the distance from the object being measured to
the observer. The distance used is the distance between where the observer is at the
moment of observation and where the object was when it emitted its light.

D. Alternate methods to calculate the Hubble constant.
1. Calculation method using calibrated angle
Theangle 6 can be calibrated so that trigonometric functions can read out directly in

velocity. The calibration is based on the fact that the distance of travel in the x axisthat
occurs during alight second of travel in the y direction calculates velocity.

Ascanbeseenin FIG. 7, inthetimet it takeslight to travel the distance from AtoB

along the y axis, light travels the same distance (ct) along the xaxis. Since the two equal
distances are orthogonal, the subtended angle@, is defined asr/4 radians.

0= @/4%) (12)

Since the time tisaconstant, it can be factored out to show the equation in terms of
velocity. In the sametimet, an object with velocity v travels the smaller distance vt and
subtends asmaller angle.

0- (n/ﬂ). (13)
Cc

This calibration assumes that velocity is linear with the angle. As can be seenin FIG. 7,
thisis not a valid assumption; however, for the very low velocities(<11.34kmy/s) used in

this paper, it can also be seen that the error isinsignificant. [36]
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FIG. 7: Inthetimet that it takes light to
travel the distance from Ato Baongthe y

axis, light travels the same distance (ct)

along the xaxis. Since the two equal
distances are orthogonal, the anglefis
defined aszz/4radians. In the same timet, an

object with velocity v travels the smaller

Substituting the calibrated angle for 6 then provides the difference in distance in terms of
km/s.Thedistance x can be expressed as vand the distance y can be expressed asc.

ACt/S={2@8"’](7?/4%}}—{CtSin(ﬂ'/4%ji| (14)

The anglein radians per velocity of 1 km/sis given by:

pi/4 \ C 0
(radians) (km/s) (km/s) radians* (km/s)
0.785398163 1 299792.458 | 2.619806277E-06

Table 4: Value of angle for aveocity of 1 km/s
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Oncethe angleis calcul ated, the recession velocity can be calculated for 1 light second
with the following values from the definition of the parsec: [37]

v=1km/s
Angled isfrom Table 6
Wavefront travel distance ct = 299, 792.458km (1light second)

Perspective | Function Values( knmys/ls)

Common | 2¢tsind/2 | 0.785308163397224
Individual ctsind | 0.785398163396550
Va 0.0000000000000674

Table 5.The subtraction yield a difference
of v, =6.74x10 ® kmys/Is

Since the difference is cumulative, to determine the recession velocity at one mega
parsec, this velocity that was calculated for one light second must be multiplied by the
number of light seconds in a mega parsec,

v, =(6.74x10"°)(1.03x10"). (15)
This calculation yields the artifact velocity per megaparsec
v, =69.4km/s/Mpc. (16)
2. Calculation method using redshift

The Hubble constant is the recession velocity expressed per megaparsec and the recession
velocity is the product of the redshift and the speed of light. [37][38] If the parsec (

pc= AU /tan@) is considered the distance of the emitted wavelength 4, , then the
wavelength actually measured by the Earth observer ( pc= AU /sin6 ) becomes the
observed wavelength 4. . In both cases, 6 = one arcsecond and AU isthe distance

between the Sun and the Earth. [39]

As can be seen in Table 6, the recession velocity artifact v, for one parsec is the product

of theredshift zand the speed of lightc. A calibration factor of 19.7 is needed for correct
velocity. This same factor is seen in the comparison of recession velocity and redshift in
Section V, whereit yields aratio of 1 cvelocity to 1.46 redshift. It is analogous to the

distance modulus. [40]

16



I = AU /tan @ Do = AU/SING | 2=l —Au)/ A | Va=CZ | 19.68*V,

(km) (km) (km/s) (km/s)

30,856,775,814,642.4 | 30,856,775,815,005.0 1.1752155E-11 3.523E-06 6.93-05

Table 6: The recession velocity artifact v, is calculated for aparsec. A calibration
factor of 19.68 is needed for correct velocity.

Multiplying the value of the recession velocity for one parsec by afactor of amillion
expresses the calibrated artifact velocity per megaparsec, which is the form of the Hubble
constant

v, = 69.3km/s/Mpc (17)
E. Comparison of results with different methods

On 3 October 2012, it was announced that the Hubble constant value measured by
NASA’s Spitzer Space Telescope was74.3 km/s/Mpc. On 20 December 2012, it was
announced that the Hubble constant value measured by NASA's Wilkinson Microwave
Anisotropy Probe (WMAP) was70+ 2km/s/Mpc. On 21 March 2013, it was announced

that the Hubble constant value measured by ESA’s Planck Mission was 67.80 £ 0.77
kmy's/Mpc [41]

FIG. 8 shows the wide range of values that have this far been determined for the Hubble
constant by different methods at different times. [42]

NASA has studied the results from the various methods and has determined the best
estimate of the Hubble constant based on al information to be69.3+0.8km/s/Mpc. In a

guote from an article updated on 21 December 2012 [43], NASA explains how their
value could be derived from a combination of different methods:]

“However, if we do not make an assumption of flatness, we can combine WMAP data
with other cosmological datato get 69.3 knvsec/Mpc (give or take 0.8 km/sec/Mpc), a1%
solution that combines different kinds of measurements. After noting that independent
observations give consistent results, it is reasonable to combine information to get the
best estimate of parameters’

Asareminder, the three results derived for the velocity artifact v, were70, 69.4 and69.3
kmys/Mpc . Each of these three calculated results is within the error limits set by NASA.
The 69.3km/s/Mpc value exactly matches NASA’s nominal value.

[ .EXPLANATION OF RECESSION AND REDSHIFT VELOCITY ARTIFACTS

A. Recession velocity artifact.
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FIG. 9 uses trigonometry as atool to better understand the relationship between
distances in the observer-centered perspective as seen by an observer on Earth. In
taxicab geometry, the distance from the Sun and the Earth to the star is defined as one
parsec. This makesthe wavefront travel time t from the star to both objects equal. For
simplicity, the wavelength of the light is set to be one parsec so that time t equals the
timeinterval T .

Because the actua wave travel distanceis longer to the Earth (cT) than aparsec, but is
measured with the parsec wave travel time(T cos@) , the Earth observer measures a
longer wavelength A, than the wavel ength emitted from the source 4,

‘emit "
Sincelight travels at ¢, the extra distance measured by the Earth observer must be

accounted for. At present, the distance is explained by cosmic expansion of the universe.
However, as can be seen, the distanceis actually an artifact of observation (v,t)

Although the Earth observer perceives the longer wavelength ascT , other factors make it
clear that something iswrong. First, the wavelength gets longer with distance (redshift)
and second, the observed wavelengths at the longer distances do not agree with the
wavelengths emitted by the stars, as expected by spectroscopy. [44]

Therefore, the Earth observer defines the observed wavelength cT in terms of the actual
speed of light ctcosé plus v,T which isthe distance believed to be caused by the cosmic

expansion.
cT =cTcosf +v,T . (18)

Dividing both sides of the equation by the time interval T compares the relationship in
terms of velocity instead of distance.

C=CCoSO +V,. (19
Solving for the artifact velocity

V, =C—CCosf . (20)
The speed of light ¢ can be factored

Vv, =c(l-cosb). (21)

Note: This equation is the same as Equation 6, which was derived directly from the time
and distance factors.

Dividing by con both sides of the equation

18



Ya _1-cos6. 22)
C

As can be seen, the artifact velocity function v, is sinusoidal. When it issimply used in

the Hubble equation, it produces a linear increase in wavel ength with distance (recession
velocity) for arelatively short distance (<1c).[45]

B. Redshift velocity artifact
1. Calculation of redshift artifact

When the datais normalized, it causes the radial distance to remain constant while the
angle increases. It is this effect of normalization that causes the sinusoidal shapes that are
observed in the zfunction.

The redshift velocity artifact z, will be demonstrated to be the ratio of the apparent
change in wavelength (4, — 4,) due to the difference in frames of reference with the
wavelength observed in the Earth’s frame of reference 1, . Asaratio, the nanometer units

cancel. Aswill also be demonstrated, the normalization makes redshift into a function of
the cosine of the angled (adj/hyp) rather than just a function of the distance(adj) .

With normalization, the radial difference between the two wavel engths does not increase
with distance. Instead, the radial distance remains constant, it is the transverse distance
(and the angle) that increases.

Ascan beseen in FIG 9, in the source-centered perspective, the radia distance cT to the
Earth islonger than the radial distance to the Sun. The distance from the star to the Earth
isasingle wavelengthcT . Since the distance to the Sun is shorter, only part of the
wavelength cT cosé is seen by an observer there.

In the observer-centered perspective, theradial distance yisthe same to both the Sun and
the Earth position. Since the observer-centered perspective is used in astronomy, it must
be explained why the wavelength is observed to be longer when observed on Earth. The
current justification for the longer distance isthat it is caused by the expansion of the
universe.

The redshift velocity artifact z,is ameasure of the observed wavelength increase caused
by the difference in observer perspectives. [46]

Za — (0] e [23]
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FIG.9. Timeis measured as the wavelength
interval T ; the distance to the star is made
one wavel ength to help in understanding.
Each point on the x baseline shares the
sametimeinterval T but has alonger
wavefront travel distancecT , causing each
observer on the xaxis (except on the Sun)
to observe aredshift. The artifact distance
v, T is currently explained by cosmic

expansion of space.

Redshift is calculated by determining the difference in distance between the wavelength
observed in the Earth’s frame of reference 1, = cT and the wavelength observed in the

Sun’s frame of reference A, = ccosOT , and then normalizing that difference to the
Earth’s frame of reference by dividing through by ccosT .

_ CT —ccosoT
ccosaT

The equation can be divided through and separated.

__CcT  ccosoT
ccosdT ccosOT

z,

Theratio of emitted wavelengthsis ssimplified to 1

_cT
ccosoT
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Adding 1 to both sides puts the result in terms of the ratio of the observed to the emitted
wavelengths

cT
+1= 24
% ccosoT 24)

cT isfactored on the right side of the equation to simplify the result.

ltz,=—— (25)

Subtracting 1 from both sides of the equations gives the result in terms of the redshift
velocity artifact.

1
. 26
%= osd (26)

2. Redshift artifact derived in the special theory of relativity.

As discussed previously, actual redshift requires a positive radial displacement (velocity)
between the light source and the observer. By definition, travel in the transverse direction
(without a change in radius) generates zero radial velocity and cannot cause an actual
redshift.

However, as has been demonstrated in the previous section, aredshift artifact occurs
because of radial displacement contained within the transverse distance in the taxicab
geometry. This redshift component in transverse distance was verified experimentaly in
1938 by Herbert E. Ives and G.R. Stilwell. It is commonly known as the Transverse
Doppler Effect (TDE). [47]

This redshift artifact (defined as an increase in wavelength without radial motion) was
first predicted in by Einstein in 1905. [48]As explained within special relativity, the
Lorentz factor is dependent only on the magnitude (speed) of motion and is not affected
by its vector direction. The relativistic correction made to the Doppler Effect equation
therefore includes effects from both radial and transverse motion.

The classical Doppler formulais dependent solely on radial displacement (line-of-sight
movement) to or from the light source. In the full form relativistic Doppler equation, 9 is
the angle between the direction of relative motion and the direction of emission in the
observer's frame of reference (an angle of zero is directly away from the observer). [48]

The full form for the relativistic Doppler Effect is:
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_1+vcosb/c
J1-V?/c?

In the specia case that the light approaches at right angles (6 = 90°) to the direction of
relative motion in the observer's frame, cos@ becomes zero so the numerator of the
equation becomes one. This means even though all movement is transverse and therefore
theoretically cannot generate actual radial velocity, aredshift artifact with the equation

1+z [27]

1

V
-
c

1+z, = (28)

is observed.. Note: Even when the source is moving towards the observer, if thereisa
transverse component to the motion then there is some speed at which the dilation just
cancels the expected blueshift and at higher speed the approaching source will be
redshifted. [49]

The variable in the TDE equation can be converted from velocity to distance to allow a
comparison with the equation derived from the difference between the two perspective
times.

First, sincetheratio of v? to c®is dimensionless, it can be rewritten in terms of distance
instead of speed by multiplying both the numerator and denominator by timet.

lyze— L (29)

Next, the magnitude of x can be substituted for vt which is alowed in the usua case of
velocity where t = one second.

1+z= 1 (30)

3. Comparison of equations of the two theories for the redshift artifact

The equation for the redshift artifact z, which was derived from the differencein
per spectives was seen previously as Equation 17.
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The following equation for the redshift artifact z, was derived from special relativity
(modified to have the variable as distance instead of velocity)

1+z = [32]

(ct)’

A comparison between the two equations can be performed. As was seen previously in
FIG.9, the distancecT can be expressed in terms of x and ct cosd by means of the
Pythagorean Theorem.

((ct)” = (ctcosf)? +x2. (33)
The equation can then put in terms of ctcos@ by subtracting x from both sides.

((ct cos@)? = (c:t)2 — X, (34)
The equation can then be normalized to the Earth’ s frame of reference by dividing

through both sides of the equation with (ct)?. This process cancels the equal functions
and creates dimensionless units.

(ctcosd)” (ct)” (35)

() (et) ()

Taking the square root of both sides and simplifying provides the ratio of the wavefront
distances from the two frames of reference.

ccosot X2

1- 5 -
ct (ct)

(36)

The common term ct on the left side can be canceled,

cosO = /1—(32)2 . (37
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The unit exchange between velocity and position can be done in either direction without
affecting the magnitude since the units cancel in the ratio. For instance, the term cosé

can be expressed in terms of velocity instead of position. First, the position x*is
expressed as velocity timestime (vt)?

cosf = /1— ((Zt); (38)

Then the time t can be cancelled in the ratio to present the distance as velocity in order to
directly compare to the apparent redshift equation caused by different perspectives.

V2
cos6 = 1—? (39

Therefore, the following relationship can be made:

1

cosO 2
\/1+V

CZ

l+z, =

(40)

As can be seen, the equation derived for the apparent redshift from the difference
between the observer-centered and source-centered perspectivesis equa to the TDE
equation for the redshift artifact. This agreement with the TDE equation gives strong
experimental evidence to support the hypothesis that the observed redshift is an artifact of
observation caused by a difference in perspective of the observer rather caused by
physical cosmic expansion.

IV. EFFECT OF DISTANCE ON THE MAGNITUDE OF THE ARTIFACT

To maintain the magnitude of the parsec distance unit as determined by the equation
y=Xx/tan@ asdistance to the star increases, the angle must stay the same. However, by
reducing the angle, distance to nearby stars can be measured using the fact that one arc
second equals one parsec. As an example, when the angle is reduced to one half of an arc
second, the distance is two parsecs.

As can be seen in FIG. 10, as the angle decreases, the error per unit also decreases. This
may confuse understanding of cumulative effects of the parsec unit. If the parallax
method were used for all distance measurements, the error would, in deed, diminish with
distance, not accumulate, but the technique has been limited to arelatively short range.
[50]
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FIG. 10.The parallax method can used to
determine distance to nearby stars. Note: the
angle reduces as distance increases which
also reduces the error Ar proportionally.

All longer range techniques, which areincluded in what is known as the distance ladder,
are based on the parsec unit with its full angle of one arc second. As can be seenin FIG.
11, the error is the identical for each parsec unit and accumulates with increasing
distance. [51]

When the angle 6 isheld at1arc second, then as ct increases to 1 megaparsec, d will
increase and v, will equal 70km/s. Thislinear relationship continues for multiple

parsecs according to Hubble' s law. [52]

Theincreasein the velocity artifact is perceived in two ways as can be seen in FIG.10.
On the l€eft of the figure, the small differencein Ar for each individual parsec is added to
atotal. . Ontheright of the figure, Arisshown totaled in one similar triangle scaled with
alonger radius and baseline. [53]

The sum of the individual multiple parsecs on the |eft provide the same apparent velocity

as theincreased scaled distances on the right. The effect is the same as if the distances
had been increased proportionally when setting the parsec’ s radial magnitude.
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FIG.11. Cumulative error in source-centered
perspective. Because similar triangles can be
scaled, the sum of v tinindividua multiple

parsec units equals v,t in one large distance.
Therdaationshin islinear hetween the sides.

The calculation of redshift normalizes the difference between the observed and emitted
wavelengths to the vector magnitude of the emitted wavelength. In trigonometric terms,
the normalizing process divides the wavelength difference between the observed
wavelength and the emitted wavelength (cT —ccosdT) by the emitted wavelengthccosT

- [54]

The cumulative increase in redshift, observed in FIG 12, is non-linear, specifically
sinusoidal. This compares to the cumulative increase in recession velocity which islinear
in FIG.11. Thereis nothing inherent in the normalization process to cause a sinusoidal
function; it occurs because the factor between the observed and emitted wavelength is
cos6 . [55]

Aswill be seen, this prediction is proven by the observed sinusoidal shape of the general
relativity relationship between velocity and redshift.
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Thetotal of theindividual parsecsis on the left side with thetotal vt for the whole

distance on theright side. In this case, the relationship between the two sidesis non-
linear with distance.

vt vt
1d 1d
‘ ct
ct =
v t 2val‘ m

2d
ct
vt
2d
= ct
¢ 3yt
vt
3d
ct
vt
ct
v, I
3d

FIG.12. Total redshift velocity (on right) is
normalized to one distance ¢f . Increase in
the difference between y and r is by angle.
Increase in distance y is not linear with
angle increase.

V. GENERAL RELATVITY MODELS

Both the non-linear relationship between velocity and redshift and the non-linear
relationship between distance and the scale factor are currently explained by the
Friedmann—Robertson—Walker (FRW) metric as due to the physical effects of expansion.
The FRW metric is an ad hoc solution to the extent that the factors of the metric are
selected based on fitting observations of the cosmos. [56]

It will be demonstrated that these non-linear rel ationships are due to the sinusoidal nature
of the artifact caused by the difference between the source-centered and observer-
centered perspectives.

A. Velocity vs. redshift
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FIG. 13 shows the accepted curve shapes for the supposedly linear relationship of
recession velocity divided by ¢ and the FRW general relativity model for redshift
velocity. The special relativity curveis not generally accepted. [57]

Note the wide variation (gray ared) in the general relativity models. The actual line
represents the observationally selected FRW model Q,,,<Q2, (0.3,0.7) which sinusoidal

and asymptotic to velocities of Oc and just over 3c. In thismodel, aredshift value of 1.46
correlates with arecession velocity of 1c¢. [58]

The function that was derived for the red shift artifact in this paper isz, =1/cos6 -1 . The

function hasadomain of /2 radians and arange of infinity. The red shift values and

corresponding velocity values for this domain are shown in Table 4. They are calibrated
to fit this FRW model by afactor of 20, aswill be seen. [59]

The function for the recession velocity artifact divided by the speed of light is
v,/c=1-cos0 . It has the same domain and range as the redshift artifact..

/ genaral relativity

—

linear -

\ I'Iuril}'

0.1 1 10 108 109
Hedshit

FIG. 13 The general relativity line iz the
cbservationally selectad FRW
model 3, 02, (03,077 which iz currently
belisved to be dus to the mteraction of
matter, energy, and the cosmological
constant. The lmesr line is the recession
wvelocity divided by ¢ . The special relativity
line is not appropriate i this contsxt

Compare the general relativity curvein FIG. 13 with the 1/cos6 -1 curvein FIG. 14. The

curve matches closely follows the FRW general relativity graph of velocity vs. redshift
after calibration It is sinusoida and is asymptotic to both zero and just above avelocity of
3c. A velocity of 1cgivesaredshift of 1.453, which nearly matches the expected redshift
of 1.46. Further adjustments can be made in the multiplication factors if required.
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Compare the linear curvein FIG. 13 with the calibrated v, /c curvein FIG.14. In both

figures, the linear curve very closely approximates the FRW curve until the velocity
approaches 1 where the two curves quickly diverge.

] g
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Red il

FIG.14:Data from Table 4 15 displayed
showing the calibrated functionlfcosd -1 for
redshift velocity 2 and the calibrated funchon
1-cos& for recession velocity divided by the
spead of light.

In Table 7, thefirst column isthe angled in radians ranging in small increments from
0.02 to closeto 2z radians. The second column is the linear vel ocity numbers which are
simply the value of the angle 6 in radians multiplied by afactor of 2 in order to
approximate the same curve the result of the function with the corresponding angle. The
third column is the redshift z, function multiplied by afactor of 9.68 to provide a

calculation to match the FRW curve in FIG. 11. The fourth column isthe v, /cfunction
which is also multiplied by a factor of 9.68 to match the observed values.

As seen previoudly, the factor of 9.68 was aso used to cal cul ate the Hubbl e constant
from redshift. With this factor, the Hubble constant exactly equaled NASA’ s value.

The factor is acalibration which is anal ogous to the distance modulus, which is discussed
in footnote 40.
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Angle | Velocity Redshift Recession V, /c
0 c Z,
0*2 |(1/cos6 —1)*9.68|(1-cos)* 9.68
Radians km/s km/s
0.02 0.04 0.00 0.002
0.03 0.06 0.00 0.004
0.04 0.08 0.01 0.008
0.05 0.10 0.01 0.012
0.06 0.12 0.02 0.018
0.07 0.14 0.02 0.024
0.09 0.18 0.04 0.040
0.15 0.30 0.11 0.112
0.26 0.51 0.35 0.336
0.35 0.69 0.65 0.606
0.43 0.85 1.00 0.910
0.51 1.00 1.46 1.273
0.60 1.18 2.12 1.747
0.72 1.42 3.33 2.500
0.80 1.58 4.35 3.033
0.90 1.77 6.09 3.784
1.00 1.97 8.51 4.597
1.10 2.17 12.05 5.464
1.20 2.36 17.60 6.376
1.30 2.56 27.38 7.325
1.40 2.76 48.83 8.300
1.48 2.92 100.29 9.093
1.54 3.03 314.77 9.692
1.56 3.07 916.26 9.892
1.57 3.09 12547.66 9.992

The scale factor artifact a(t), was derived from the sinusoidal relationship of radial

distance in the source-centered perspective and the observer-centered perspective. Since
radial distance can be represented by ct , radial distance to an object can represent elapsed
time from that object. The scale factor can be interpreted as a measure of expansion.

According to the FRW metric, if at the present time light is received from a distant object

with aredshift of z, then the scale factor at the time the object originally emitted that light
is given by the equation. [60]

a(t)=rlz [41]
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It was demonstrated previously that1+ z=1/cosé, so the substitution can be made in the
equation.

a(t), = cos [42]

It can be seen in FIG. 15, that the function for the apparent scale factor a(t), = cosf hasa

domain of /2 radians and arange of infinity. The scale factor values and corresponding

wavelength values for this domain are shown in Table 5. Note: The perturbation mode
goes with the scale factor and so is a 45 degree line on this plot. [61]

FIG.15. The accepted explanation of f the
Hubble radms expansion mcludes a physical
mflation era of extremely rapid growth. The
expansion is seen in this log-log plet of the
normalized scale factor of the universe vs.
wavelength.

Just asthe curve in FIG. 15 can be changed by different variablesin the FRW model to
create the desired fit to velocity, these values can also be changed in this model.
However, because of the great range of the values, no attempt was made in Excel to be
guantitative. Thisis purely aqualitative comparison of curve shapes and intercepts.

Note that the dope change in FIG. 15 is very acute as compared to the slope changein
FIG. 16. The appearance of the change depends on the scale of the data. In alog-log plot,
the smaller values are overemphasi zed compared to the larger values. If the changein
FIG.15 is expanded, amore gradual change will be seen.
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FIG.16 The log-log graph of data from Table 2
shows that the shape of the function 1-cosé
fits the accepted graph of the expansion of the
Hubble radius, plotting the scale factor vs.
distance. Note the very high slope portion of
the curve which matches the shape of the
inflationary era followed by the slow change in
slope. Also note the intersection with the x
axis. No attempt was made to calibrate the
function; this is a qualitative comparison only.

Although the scale factor isequal tocosO , 1-cosf was plotted against the wavel ength.
This was because the observer origin was moved from zero to one so that the convention
that the value of the scale factor at the present time is one could be maintained

Angled | 1-cos6 AL

0.05 0.001 1.10
0.1 0.005 1.11
0.2 0.020 1.12
0.33 0.054 1.16
0.43 0.091 1.21
0.53 0.137 1.27
0.62 0.186 1.35
0.72 0.248 1.46
0.81 0.311 1.60
0.9 0.378 1.77

1 0.460 2.04
1.1 0.546 2.43
1.2 0.638 3.04
1.3 0.733 4.11
14 0.830 6.47
1.47 0.899 10.93
1.5 0.929 15.55
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1.51 0.939 18.10
1.52 0.949 21.66
1.53 0.959 26.97
1.54 0.969 35.72

Table 8: The scale factor

function was made to be

1-cosOin order to “look
back” from one.

As can be seenin FIG. 14, the 1- cos6 function exhibits the same characteristics as the
Friedmann—Robertson—Walker model of the scale factor showing the effect of inflation in
the Hubble radius expansion.

V1. PROOFS
A. Dark Energy
1. Background

As previously explained in Section Il A, the difference between the source-centered
perspective and the observer-centered perspective causes the Earth observer to perceive a
longer parsec having the same wave front travel time as the defined parsec unit. This
combination of longer perceived distance with the same perceived time creates a velocity
artifact that manifests as an apparent redshift that increases with distance.

Since redshift is currently interpreted as the result of actual physical cosmic expansion, it
islogicaly for astronomers to use redshift to determine distance to stars and galaxies.
The first redshift-distance rel ationship was the Hubble Law, which used multiples of
recession velocity. [62] Later, a new relationship, known as the Friedman-Robertson-
Walker (FRW) metric, was developed using general relativity with comoving distance to
extend the useful range. [63]

Aswill be demonstrated, it isthe same longer perceived length of the parsec that causes
the redshift artifact, which also causes the redshift distance to be shorter than expected.

Asiswell-known, but sometimes overlooked, distanceis actually measured as a count of
units. Therefore, alonger unit reduces the numerical count of the units which makes the
distance appear shorter. For example, if distance were accidentally measured in meters
instead of yards, each unit would be about 3 inchestoo long. For every 12 yards
measured with the long (meter-sized) unit, the distance will be shorter by 1 yard
(36in=12x3in) , which shows that the error is cumul ative with distance.

It isimportant to note that the error in distance in the example could be corrected if the
sum of the shortfall accumul ated-to-date were to be added back to the individual distance
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measurements at arate of 3inches per yard. Aswill be seen, this same add-back
correction is also possible with redshift distance.

2. Determination and correction of redshift distance shortfall

Since the longer perceived parsec is both the cause of the redshift and the cause of the
redshift distance shortfall, the magnitude of both effectsisidentical. Therefore, the extra
distance of the parsec can be added back to the redshift distance for correction. The extra
distance of the parsec is the difference in distance between the source-centered and
observer-centered perspectives, which is given by the equation

2rsinf/2-rsing . [43]

Aswas seen in the example with the meter and the yard measurement s, a correction for
the shorter distance can be made by adding the total distance error back to the redshift
artifact. The redshift artifact was defined in Equation 26 as1/cos6 —1. Therefore, the

corrected redshift distance is the sum of the original redshift and the shortfall error.

1 : .
o - 44
z,. (cose 1j+(2rsm9/2 rsinf) [44]

The angle 6_, used to determine the shortfall error calculation is calibrated to fit the
individual redshift readings with the following cal culation.

O = 2,7/2 [45]

This concept of correcting the redshift shortfall will be tested by populating the redshift
and distance correction equations with artificial values and then proved by using actual
observed redshift vaues.

For the test of the concept, table 9 is popul ated with alinear progression of numbersin
the Angle column. They can be calibrated to represent any linear function. All other
positions in the table are calcul ated.

Angle | Caculatedz | Cd.angle Shortfal error Corrected z
0 z,=1/cos60-1|0, =zn/2|2rsnb, /2—-rsinb,, |z, =z, +eror
0.200 0.020 0.031948 0.000 0.020
0.300 0.047 0.073437 0.000 0.047
0.400 0.086 0.134624 0.000 0.086
0.500 0.139 0.219117 0.001 0.141
0.600 0.212 0.332425 0.005 0.216
0.723 0.333 0.52372 0.018 0.351
0.800 0.435 0.683806 0.039 0.474
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0.900 0.609 0.956184 0.103 0.712
1.000 0.851 1.336458 0.267 1.117
1.100 1.205 1.892188 0.673 1.878
1.200 1.760 2.764136 1.596 3.356
1.260 2.270 3.565598 2.367 4.637
1.300 2.738 4.301365 2.590 5.328

Table 9. The table contains the data displayed in FIG.16.

FIG. 16 shows the redshift function (1/cos6 —1 ) with its characteristic sinusoid curve
and the corrected redshift with the added shortfal distance function (2r sin6/2-rsinf).
The functions are both populated with data from Table 9.

Note that the individual redshift and corrected redshift values are on the same level on the
graph. The effect of the correction can be seen to be cumulative. It isimportant to note
that the corrected readings above the redshift value of 4.6 become increasingly non-
linear, even retrograde, then again become linear.

With the test of the concept complete, the next step is to prove the concept with real
redshift data. For thisto be possible, the distance shortfall must be discovered. For the
shortfall to be discovered the distance to the star or galaxy has to become large enough to
make the cumul ative shortfall measurable and an independent method has be available to
accurate measure the distance for comparison.

Luckily, the type 1a supernovae aready provide both of the required factors. They are
very far away and they are standard candles. Again luckily, the redshift shortfall has
already been discovered. Therefore, the proof of the correction on real redshift data can

begin.

35



FIG.16: The redshift curve 1s the equation (1fcos& —1) and the
corrected redshift curve 15 the same equation plus the equation
(2ranéfd-rsme ). The correction adds back the distance that
the artifact lost, makmg the redshift-distance relationship
accurate up to a redshift of 4.6. The coneept 13 logical and
works well; what s needed i3 proof on real redshift data.

3. Discovery of the redshift distance shortfall

Riess et al in 1998 found that atype of supernovae (SNe 1a) were dimmer than expected
based on their distance. [64] The best explanation was that the supernovae were actually
further away than the FRW redshift-distance cal culations had predicted. [65] It was
theorized that the extra distance was caused by a speedup in the expansion of the universe
caused by an unrecognized energy, which, because it was undetectable, came to be
known as dark energy. [66]

In a study where the standardized peak magnitudes of atotal of sixteen high redshift and
34 low redshift Type la supernovae were plotted against redshift velocity, Riess et al
(1998) observed that the observed luminosity distance of the low-redshift Type 1la
supernovae met expected values, but the high-redshift supernovae luminosity distance
was less than expected values. [67]

The observed flux of a SNe type 1a supernovadepends on itsintrinsic luminosity, its
distance from the observer and the amount of astrophysical absorbing material in the light
path. (Later experiments would rule out light absorption by dust or other astrophysical
debris as a cause of the dimness. [68] Therefore, an incorrect distance could account for
the lower observed flux of the super novae.

The distance from the observer to the supernovae can be determined in two ways:
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i. Using the FRW redshift-distance method

The luminosity distance D, in the Friedmann-Robertson-Walker cosmologies was
calculated for each redshift with the formula

D, = cHg'(1+ z)Qk“sjnn< [[(@+2) (@+0y,2)-2(2+ Z)QAT/2>
° (46)

where H,isthe Hubble constant, Q_isthe mass density, and Q, isthe cosmological

constant. O, =1-Q,, —Q, and sinnis sinh for Q, >0and sinforQ, <0.[69]

ii. Using intrinsic luminosity method

The luminosity distance D, was calculated from SNe lalight data with the formula,

L -2
D, =(ﬁj , (47)

where L and F are the SNe laintrinsic luminosity and observed flux, respectively.
[70]

D, for both methods is calibrated in units of megaparsecs. The distance modulusis
calculated by [71]

u, =5logD, +25. (48)
p L

From the point of view that the problem was distance and not luminosity, the intrinsic
luminosity distances of the high-redshift SNe la were calculated to be, on average, 10%
to 15% greater than the FRW redshift distances. [72]

It was decided that the most likely reason that the redshift distances were too short was
because they did not include the accel eration of the cosmic expansion fueled by positive
vacuum energy density. A positive cosmological constant was seen as the most plausible
explanation. [73] However, in what Riess and Turner (2004) later said has been called
the worst embarrassment in all of theoretical physics, the energy density values
associated with quantum vacuum were measured to be a minimum of 55 orders of
magnitude higher than predicted. [74]

With the observationally selected values for the FRW constants plus the ad hoc va ue of
the cosmological constant, the redshift distance has been made to equal the intrinsic
distance of the supernovae. However, to date, there is no physical explanation for the
source of the dark energy that is claimed to constitute 68% of the universe. [75]

4. Application of the redshift distance correction equation
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As can be seen in the last section, the sole evidence for dark energy is the unexplained
shortfall in redshift distance. As proposed, the shortfall in the redshift distance isinstead
due to the effect of the longer parsec magnitude perceived by the Earth observer, which
inturn is caused by the observer-centered perspective as was earlier described.

To correct for the artifact error, the distance difference between the two perspectivesis
determined, then added to the observed redshift distance.

When datais presented in the form of velocity v, asit is the Hubble constant and Pioneer
Anomaly applications, the observed velocity artifact v, had to be divided by cto translate
into redshift velocity

)2

However, the datain this application is provided isin the form of observed redshift
artifact z,, not velocity; therefore the formulato determine the angle is modified to

eliminate the division by c. Also, because the domain of the redshift functionisz/2, the
angleischanged tor/2.

0=(5 ) 50)

The calculation of the distance difference Asusing the calibrated angle 6 isasfollows:

AS:ZrSin(%j—rsinQ (51)

The next step isto calibrate the angle by multiplying it by the observed redshift value.
The calibrated angle is used in the calcul ation of the source-centered distance d and the
observer-centered distance x . The difference (d — x) is then used as a correction for the

redshift. z,.The corrected redshift z is shown to be equal to MB, the stretch luminosity-
corrected B-band peak magnitude.

Observed | Calibrated | S°Urce Observer- Distance | Corrected
redshift | angle | Contered centered shortfall | redshift
z. 0 distance distance AS z

(d) )
z, (7/2)z, 2rsing/2 rsiné d-x zZ,+As

Table 10: Headings for data tables (not including MB) showing the cal cul ations made

for each heading, starting with the observed redshift reading z, .
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Data from the previously-mentioned published studies are found in Table 11-15.

Explanation:

5. Data tables

Col 1: (SN ) IAU name assigned to SCP supernova (from source)

Coal. 2. (Z,) Observer-centered redshift velocity Z of supernovaor host galaxy (from source)

Col.3: (6)Angled - calculated as /2 * redshift velocity z -Note: z =v/c

Col.4: (2r sinf/2) Redshift velocity z based on source-centered distance

Col. 5. (rsin@) Redshift velocity z based on observer-centered distance

Col.6 (AV) Acceleration correction cal culated as source-centered velocity minus observer-
centered velocity

Col. 7 (Z,) Corrected redshift velocity calculated as redshift velocity plus negative correction

Col.8 (IMy) Stretch luminosity-corrected B-band peak magnitude (from source)

SN z 2] 2r sin (0/2) rsin 0 AS ZC m,
@ @ €) 4 ®) ©®) ™ ®)
1996E 0.43 0.6754 0.6627 0.6252 0.037 0.467 22.72
1996H 0.62 0.9739 0.9359 0.8271 0.109 0.729 23.31
1996l 0.57 0.8954 0.8657 0.7804 0.085 -.655 2342
1996J 0.30 0.4712 0.4669 0.4540 0.013 0.313 22.28
1996K 0.38 0.5969 0.5881 0.5621 0.026 0.406 22.80
1996U 0.43 0.6754 0.6627 0.6252 0.037 0.467 22.77
1997ce 0.44 0.6912 0.6775 0.6374 0.040 0.480 22.83
1997¢j 0.50 0.7854 0.7654 0.7071 0.058 0.558 23.29
1997ck 0.97 1.5237 1.3805 0.9989 0.382 1.352 24.78
1995K 0.48 0.7540 0.7362 0.6845 0.052 0.532 22.92

Tablell. Dataincludes high-redshift and low-redshift supernovae. Source: Riess et a

(1998) p. 1020[76]

SN z 0 2r sin (6/2) rsin 0 AS zc my
) (2 3 (4 (5) (®) @) ®
19900 0.030 0.0471239 | 0.04721195 | 0.0471065 | 0.000013 0.030 16.26
1990af 0.050 0.0785398 | 0.0785196 | 0.0784591 | 0.000061 0.050 17.63
1992P 0.026 0.0408407 | 0.0408379 | 0.0408294 | 0.000009 0.026 16.08
1992ae 0.075 0.1178097 | 0.1177416 | 0.1175374 | 0.000204 0.075 18.43
1992ag 0.026 0.0408407 | 0.0408379 | 0.0408294 | 0.000009 0.026 16.28
19924l 0.014 0.0219911 | 0.0219907 | 0.0219894 | 0.000001 0.014 14.47
1992aq 0.101 0.1586504 | 0.1584841 | 0.1579857 | 0.000498 0.101 19.16
1992bc 0.020 0.0314159 | 0.0314146 | 0.0314108 | 0.000004 0.020 15.18
1992hg 0.036 0.0565487 | 0.0565411 | 0.0565185 | 0.000023 0.036 16.66
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1992bh 0.045 0.0706858 | 0.0706711 | 0.0706270 | 0.000044 0.045 17.61
1992hl 0.043 0.0675442 | 0.06753314 | 0.0674929 | 0.000039 0.043 17.19
1992bo 0.018 0.0282743 | 0.0282734 | 0.0282706 | 0.000003 0.018 15.61
1992bp 0.079 0.1240929 | 0.1240133 | 0.1237747 | 0.000239 0.079 18.27
1992br 0.088 0.1382301 | 0.1381201 | 0.1377903 | 0.000330 0.088 19.28
1992bs 0.063 0.0989602 | 0.0989198 | 0.0987987 | 0.000121 0.063 18.24
1993B 0.071 0.1115265 | 0.1114687 | 0.1112955 | 0.000173 0.071 18.33
19930 0.052 0.0816814 | 0.0816587 | 0.0815906 | 0.000068 0.052 17.54
1993ag 17.69 0.0785398 | 0.0785196 | 0.0784591 | 0.000061 0.050 0.050

Table 12: Dataincludes only low-redshift supernovae. Source: Perlmutter et al (1999)
Cdan/Tololo SNela [77]

N z 0 2r sin (0/2) rsin 0 AS zc m,
&) @ &) @ 5) ©) () ©
1992bi 0.458 0.7194 0.7040 0.6590 .045 0.503 2311
1994F 0.354 0.5561 0.5489 0.5278 .021 0.375 22.38
1994G 0.425 0.6676 0.6553 0.6191 .036 0.461 2213
1994H 0.374 0.5875 0.5791 0.5543 .025 0.399 21.72
19944 0.420 0.6597 0.6478 0.6129 .035 0.455 22.55
1994am 0.372 0.5843 0.5761 0.5516 .024 0.396 22.26
1994an 0.378 0.5938 0.5851 0.5595 .026 0.404 22.58
1995aq 0.453 0.7116 0.6967 0.6530 .044 0.497 23.17
1995ar 0.465 0.7304 0.7143 0.6672 .047 0.512 23.33
1995as 0.498 0.7823 0.7625 0.7049 .058 0.556 23.71
1995at 0.655 1.0289 0.9841 0.8567 0.127 0.782 23.27
1995aw 0.400 0.6283 0.6180 0.5878 0.030 0.430 22.36
1995ax 0.615 0.9660 0.9289 0.8226 0.106 0.721 23.19
1995ay 0.480 0.7540 0.7362 0.6845 0.052 0.532 22.96
1995az 0.450 0.7069 0.6922 0.6494 0.043 0.493 2251
1995ba 0.388 0.6095 0.6001 0.5724 0.028 0.416 22.65
1996¢f 0.570 0.8954 0.8657 0.7804 0.085 0.655 23.27
1996cg 0.490 0.7697 0.7508 0.6959 0.055 0.545 23.10
1996ci 0.495 0.7775 0.7581 0.7015 0.057 0.552 22.83
1996¢ck 0.656 1.0304 0.9855 0.8575 0.128 0.784 23.57
1996cl 0.828 1.3006 1.2109 0.9637 0.247 1.075 24.65
1996cm 0.450 0.7069 0.6922 0.6494 0.043 0.493 23.17
1996¢cn 0.430 0.6754 0.6627 0.6252 0.037 0.467 23.13
1997F 0.580 0.9111 0.8799 0.7902 0.090 0.670 23.46
1997G 0.763 1.1985 1.1281 0.9315 0.197 0.960 24.47
1997H 0.526 0.8262 0.8029 0.7354 0.068 0.594 23.15
19971 0.172 0.2702 0.2694 0.2669 0.002 0.174 20.17
1997J 0.619 0.9723 0.9345 0.8262 0.108 0.727 23.80
1997K 0.592 0.9299 0.8968 0.8016 0.095 0.687 24.42
1997L 0.550 0.8639 0.8373 0.7604 0.077 0.627 2351
1997N 0.180 0.2827 0.2818 0.2790 0.003 0.183 20.43
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19970 0.374 0.5875 0.5791 0.5543 0.025 0.399 23.52
1997P 0.472 0.7414 0.7246 0.6753 0.049 0.521 2311
1997Q 0.430 0.6754 0.6627 0.6252 0.037 0.467 22.57
1997R 0.657 1.0320 0.9868 0.8583 0.128 0.785 22.83
1997S 0.612 0.9613 0.9247 0.8200 0.105 0.717 23.69
1997ac 0.320 0.5027 0.4974 0.4818 0.016 0.336 21.86
19974&f 0.579 0.9095 0.8785 0.7892 0.089 0.668 23.48
1997ai 0.450 0.7069 0.6922 0.649%4 0.043 0.493 22.83
19974 0.581 0.9126 0.8813 0.7911 0.090 0.671 23.09
1997am 0.416 0.6535 0.6419 0.6079 0.034 0.450 22.57
1997ap 0.830 1.3038 1.2134 0.9646 0.249 1.079 24.32

Table 13: The dataincludes high-redshift and low-redshift supernovae. Source: Perlmutter et al
(1999) SCP Data. P.570[78]

SN(1) mg (2) 2(3) 0 (4) rsin05) | 2rsin (6/2)(6) | AS(7) zc(8)

1997ff 27.00 17 2.6704 0.4540 1.9447 -1.491 3.191

Table 14: The dataincludes only the high-redshift supernovae 1997ff. Source: Riess et a
(2001) [79]

SN z 0 2r sin (6/2) rsin 0 AS ZC m, (8)
(1) (2 3 (4) (5 (6) (7
2002fw 1.3 2.0420352| 1.7052803 [0.8910065| -0.814274| 2.114
2002fx 1.4 2.1991149| 1.7820130 [(0.8090170| -0.972996| 2.373
2002hp 1.305 2.0498892| 1.7093709 [0.8874134| -0.821957| 2.127

1.305 2.0498892 | 1.7093709 (0.8874134| -0.821957| 2.127
2002hr 0.526 0.8262389 | 0.8029366 |0.7353879| -0.067549| 0.594
2002kc 0.216 0.3392920| 0.3376669 [0.3328195| -0.004847| 0.221
2002kd 0.735 1.1545353 | 1.0914728 |0.9146072| -0.176866] 0.912
2003Ki 1.41 2.2148228 | 1.7890893 [0.7996847 | -0.989405/ 2.399
2003K;j 1.307 2.0530308 | 1.7109997 |0.8859609 | -0.825039 2.132
2003ak 1.551 2.4363051| 1.8769258 |0.6482528 | -1.228673| 2.780
2003az 1.27 1.9949113| 1.6801871 |0.9114033| -0.768784| 2.039
2003bd 0.67 1.0524335| 1.0045311 |0.8686315| -0.135900 0.806
2003be 0.64 1.0053096 | 0.9635073 |0.8443279| -0.119179| 0.759
2003dy 1.34 2.1048671| 1.7372630 [0.8607420| -0.876521| 2.217
2003XX 0.935 1.4686946 | 1.3402056 |0.9947921| -0.345413| 1.280
2003ch 0.899 1.4121459 | 1.2977013 |0.9874414| -0.310260 1.209
2003eq 0.839 1.3178981 | 1.2245726 |0.9681913| -0.256381| 1.095
2003es 0.954 1.4985397 | 1.3622087 |0.9973906 | -0.364818| 1.319

Table 15. The dataincludes 16 Type 1laSNela. Source: Riesset a (2004). Datais
incompl ete because the authors of this paper were unable to find the effective m, or

distance moduli (column 8) for the supernovae in the Riess et a (2004) paper.
Therefore the datais not included in the graphs. However, the corrected redshift
valuesin column (7) are available for comparison with supernovae data. [80]
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6. Graphs
i.  Linear graph- Perlmutter et al (1999)

Figure 17 shows the linear graph of the data developed by Perlmutter et al (1999) to
illustrate the differences between distance using different FRW metrics and intrinsic SNe
ladistance. [81]

The graph shows the redshift data plotted against the effective magnitude of the type 1a
supernovae (stretch luminosity-corrected B-band peak magnitude). As can be seen, the
relationship is non-linear. The data contains what are referred to as high and low redshift
groups of supernovae. Note that the difference between the redshift distance and the
supernovae intrinsic distance is resolved by selecting ad hoc constants in the FRW

equation, which changes the curve shape. [82]
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FIG 17: Petlmutter 2t al (1999) lmear graph of supemovae showmg
the redshift distance shortfall 2s compared to supemovae mtrmsic
datz. The shortfall iz only cbservable m the high redshift
supemovae. It 15 explamed as due to an acceleration of the cosmic
expansion which was not predicted m the FRW metric.

ii.  New linear graph
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The graph in FIG. 18 displays the same data as the top section of the Perlmutter et al
(1998) graph shown in FIG. 17, plus datafrom Riess et a (1998) and one point 1997ff
from Riess et a (2001) which has the highest known redshift of any supernova. [83]

The datais being shown in this format to allow the reader to make an easy comparison to
the corrected redshift datain FIG. 19 and to the cal culated data which was seen back in
FIG. 16. As areminder, FIG. 16 contained both the redshift and corrected redshift curves
in the same graph,; this was feasible because the curves were derived from equations.

The redshift and corrected redshift graphsin FIG. 18 and FIG. 19 respectively represent
actual data points whose natural variability would overlap the two curves and prevent
distinguishing one from another, thus they are shown separately.

Note that the redshift curve shown herein FIG. 18with actual data, closely matchesthe
redshift curve seen previoudly in FIG. 16), which was derived from the equation

(z,=1/cos6 1)
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FIG.18. Hubble diagram for Type la supemovae from redshift dats m Tables 11-
15 showmg shortfall when compared to supemovae data

FIG19 shows the effect that (2r sing/2—r sind) had when it was added as a correction to

the observed redshift data. As can be seen, the farther away a supernovais, the more the
correction adds to the redshift distance.

The correction is accurate within expected limits. The correction caused al4% increase
between the average of the redshift and corrected redshift values for the high z
supernovae. . Riess et a (1998) reported that the average increase between the redshift
distance and the intrinsic distance was 10% to 15% for the same high z supernovae. [84]
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As can be seen, the effect of correction on the redshift distance is the same herein FIG.
19 asit wasin Fig. 16 with the calculated function (1/cos6 —1). Since the effect of the
correction is the same on observed redshift as it was on the redshift derived from the
function, it isreasonable to infer that the observed redshift datais also derived from the
same function.

Brrective

Corrected redshift
FIG.19 Hubble diagram for Typela supemovas from correctad redshift data m
Tables 11-14

iii.  Logarithmic graph- Perlmutter et a (1999)

FIG. 20 shows the Hubble diagram for 18 low-redshift and 64 high-redshift SNe la
samplesin alogarithmic plot with SNe ladistances. [85] The logarithmic graph causes
the relationship between the supernovae data and the redshift to be linear, so that the
difference between them can be more easily seen.

As can be seen, thereis a definite slope difference between the high redshift supernovae
compared to the low redshift supernovae. Dark energy can be described as the solution
for the problem of this slope difference.

According to the theory put forth by Riess et a (1998) and Riess and Turner (2004), the
graph shows a time history of the Big Bang expansion. The change in slope represents the
change from a matter-dominated era, where matter slowed the expansion, to an energy-
dominated era which accelerates the expansion. The larger the redshift, the older the
supernova, so we are currently in an accelerated expansion era. [86]

It can be seen that different values for matter, energy and the cosmological constant are
entered into the FRW metric to find alinear fit. Currently in order to make the process



work, the cosmologica constant, developed by Einstein, must be included. It has a
“reverse gravity effect; the further away a star, the greater the repulsive force. [87]
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FIG .20 This figure shows 18 low redshift and 64 high
redshift supemovae m 2 logarithmic graph. Current theory
holds that the slope of the high redshift supemovas lme is
positive due slowmg of £ their expansion m the matter-

dominated era.
iv.  New log graph

This graph contains the same data as the Perlmutter et a (1999) graph in the top section
of FIG. 20 (but aso includes 1997ff). The same difference in slope between the high and
low supernovae can be seen. However, the explanation for the differencein slopeisvery

different. [88]

The sinusoidal shape of the curveis explained by the equation for the redshift artifact.
1/ cos@ -1 . Sinceredshift isresult of observer perspective, not cosmic expansion, the
curve represents only distance, not a change in the universe with time. The log function
has linearized the curve.

The change in slope of the high redshift supernovae is explained by an untoward effect
that occurs when the redshift artifact is used to predict distance. As previously explained,
the large perceived parsec causes a shortfall in distance because its large size reduces the
unit count for a given distance. the effect is cumulative, so the redshift distance appears
to get smaller with distance away from the observer.
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When the redshift distance is compared with accurate distance, as seen here with the
intrinsic data from the supernovae, the slope of the line increases with distance indicating
the short redshift distance, which ison the x-axis. Although only the high redshift
supernovae appear to have a positive slope, actually all values of redshift are affected by
the shortage.

Brractlive MEB
\
4

Lo Redkshrt
FIG. 21 Log graph of the supemovae data. The shortfzll m the redshift-distance
relationship accumulates neon-lmezrly so that it becomes larger with distance.
Although all the supemovae are affected. only the high redshift show a noticeable
change i slope with distance.

As can be seen in the logarithmic graph in FIG.22, the straight-line correlation is proof
that the addition of equation (2r sin6/2—rsin6) valuesto the real observed redshift
values has corrected the distance shortfall. The high and low redshift groups now have
the same slope and there is no evidence of any acceleration that requires the explanation
of dark energy.
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FIG .22 The straight-lme correlation of observed redshift data m this log plot proves
that the corraction factor(Zr sind/2 —rsing) does elimmate the redshift distance.
shortfall for actual supemovae. The redshift distance shortfall observed m
supemovae is the primary justification for the theory of dark energy.

8 Redshift transition point and deceleration

Riess et a (2004) interpreted the sinusoidal redshift artifact function in physical terms as
atransition from a constant deceleration caused by dark matter to a constant acceleration
caused by dark energy as the universe changed from an era of being matter-dominated to
an era of being energy-dominated. [89]

The bottom half of FIG. 22 shows this explanation in a graphica form. The jerk point
caused by the transition between the two eras was measured by Riess et a (2004) to be

1.46+0.13 [90]
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FIG 23 Bottom helf of figure shows the redshift transition point at 2 redshaft
of 1 46+0.13 setby Riess et 2l {2004). This change m slope iz mterpretad
in physical terms as the transition from a constant deceleration caused by
datk matter to 2 constant zceeleration caused by dark energy.

Since it has been demonstrated that the redshift curveis the result of a function of the
redshift artifact, the graph in FIG.23 interprets the curve and straight line interaction
geometrically.

In this view, the redshift transition point is explained as the artifact redshift value at
which the gap between the sinusoidal error function (1/cos6 —1) and the best fit secant of
the lower redshift data first becomes observable.
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FIG.24 Theredshift transzition pomt at 1.41 13 explained as where the
secant line approximating a linear I of the lower redshifi data
separates from the rest of the smusoidal redshift artifact function. The
gecant can be difficult to see if the graph is condensed. The redshift
value of the separation pomt 1. 46+0.13 was seen as a jerk point n
the cosmic expanszion by Fiess et al (2004).

C. Pioneer anomaly
1. Background

In the early 1970's NASA launched two spacecraft, the Pioneer 10 and 11, into deep
space. In order to develop escape velocity from the solar system, the craft used close fly-
bys of Jupiter and Saturn as a part of their trajectory. [91] It was discovered while
tracking the trajectory of Pioneer 11 that both spacecraft were affected by an unmodeled
negative acceleration. The velocity of both the Pioneer 10 and 11 continued to decrease
as the spacecraft | eft the solar system; then became relatively stable. [92]

NASA did not publicize the existence of the error until the early 1990's, believing it was
most likely spacecraft-related.” In their effort to determine the cause of the anomalous
deceleration, NASA, working with JPL, outlined three general areas of possible error in a
table that is known as the Error Budget. [93]

Thefirst areais referred to as On-board Generated Systematics. This includes effects
such as energy loss and gas leakage. The second areais called Computational
Systematics. [94] This area includes other possible causes of the anomaly that are man-
made, including mismodeling, calculation drift and periodic terms. Thethird areais
Systematics Generated Externd to the Spacecraft area. This category includes such
environmental forces as solar effects, gravitational attractions and space dust, and also
new physics
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Most of NASA’s and JPL’ s research into the origin of the decel eration has concentrated
on thefirst two areas. Asan example, arecent paper from JPL and NASA scientists
(Turyshev et a 2011) [95] attributed the anomaly due to the effect of the on-board
nuclear heat source.

However, neither the nuclear heat source nor any other function in the On-board
Generated Systematics category can explain the time and place of the origin of the
anomalous negative acceleration or the mechanism for itsincrease and decrease during
the time spent the in the solar system.

2. Correlation with radial velocity

The Pioneer 11 data taken during the spacecraft’ s travel in the solar system shows a
strong correlation between the anomaly and the radia velocity of the spacecraft. The
radial velocity, which in this case is defined as the displacement per time from the
tracking stations on Earth, is affected by both the spacecraft’ s speed and direction.

The spacecraft’ s planned interaction with the planets within the solar system caused
drastic changesinitsdirection. The Pioneer 10 and 11 received well recognized scalar
speed increases with the “slingshot “effect of their planet encounters followed by slow
decreases. Although less well recognized, the spacecrafts’ direction was a so changed by
these encounters, which modified the ratio of transverse and radial components of their
total velocity. Curved motion, which includes atransverse e ement, for example, lowers
the radial component of total velocity significantly.

Radial velocity figures coinciding with anomaly measurements for the spacecraft were
not included in the publications reviewed, so values were calculated from the
displacement and dates that were supplied. From this data, shown in Table 1, the radial
velocity for different distances were calculated. These distances are then matched with
the anomaly valuesin Table 16 from information in Nieto and Anderson (2005). [96]

Displacement | Displacement X 108 Date Interval Interval Radial
AU 1.00x10 8 km 1.00x10°8 Decimal years seconds | Velocity
km km/s
5.8 8.70 N/A 77.739726603 N/A N/A N/A
9.39 141 5.39 80.18082192 | 2.44109589 | 76982400 7.00
12.16 1.82 4.16 82.52054795 | 2.339726027 | 73785600 5.63
14.00 2.10 2.76 83.43561644 | 0.915068493 | 28857600 9.56
16.83 252 4.25 84.69589041 | 1.260273973 | 39744400 | 10.68
18.90 2.84 3.11 85.567123292 | 0.871232877 | 2745200 11.30

Table 16: Calculation of Radial Ve ocity

The calculated radial velocities for various distances of Pioneer 11’ sjourney through the
solar system can be matched with the published values of the anomaly at those same
distances. [97] The advantage of the independent calculation of radia velocity is that

thereisatimeline for the sequence of anomaly values.
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Thedatain Table 17 details the relationship between the radial velocity and the anomaly.
Thereisavery high correlation (0.9) between the anomaly a, and radial velocity v, -

Distance | y dial a, Gy
5.8 * 0.69 | 1.48
9.38 6.2 *% *%
9.39 1.4 156 | 6.85
12.16 10.5 6.28 | 1.77
14.00 9.6 805 | 216
16.83 10.7 815 | 0.75
18.9 11.3 903 | 041

Table 17.The correlation

coefficient (r?) between the v
radia Nd @, valuesis 0.90.

Two eventsin the travel of the Pioneer 11 spacecraft in the solar system are especially
important in further proving the correlation of radial velocity and the anomaly. The
correlation of the anomaly with radia velocity explains both occurrences:

1. Theanomaly, even at itslowest level of 1.48, did not appear until 5.8 AU, the
distance at which Pioneer 11 intersected Jupiter. [98]

AsFigure 24 illustrates, the trgjectory of the spacecraft was changed by its meeting
with Jupiter. Up to Jovian encounter the Pioneer 11 spacecraft was traveling slowly
and maintaining afairly constant radius about Earth’ s orbit; producing a very small
radial velocity relative to NASA’ stracking stations.

After Jupiter, The spacecraft’s trajectory straightened, which caused its radial
direction to increase significantly and hold steady until intersection with Saturn plus
its velocity increased to 48km/s, which at the time was the fastest known relative
velocity. The combination increased the spacecraft’ sradial velocity significantly.
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Fipure 24: Trajectories of the Pioneer 10
and 11 spacecraft at the Jupiter flyby.
Note the mcrease m radial distance m the
two planes of Pioneer 11°3 trajectory. Its
velocity of 48lon's was, at the time, the
fastest kmown.

Ascan be seenin FIG. 24, the flyby changed Pioneer 11’ stravel direction away from
Earth in two planes. The change increased the radius both along the same plane as
measured from the Earth and aso amost 90 degrees away from the plane. (Also see FIG.
26 for additional clarity) [99]

Datais not available to quantitate the actual radial velocity at this point as can be seenin
Table 12. However, with the demonstrated correl ation between radial velocity and the
anomaly, the increasein radial direction plus the increase in scalar speed reasonably
explains why the anomaly would reach an observable level at the Jovian flyby.

2. Theincrease in the anomaly between Jupiter and Saturn was recorded as an error.

Figure 25 shows the graph of the early anomaly measurements compared to distance
traveled (AU). [100] The second Pioneer 11 point is the result of a data window that
included data from both before and after the Saturn encounter. [10]. This paper proposes
that what was interpreted as an error was, in fact, actual high reading that were include
with low readingsin that data window.

It will be shown that the anomaly started at alow value at the Jupiter flyby, then
increased to a high value as theradia velocity increased. Then it dropped precipitously
as the spacecraft rounded Saturn. The timing of the error at 9.39 AU corresponds to the
position where Pioneer’ sradia velocity goes ailmost instantly from an average of 6 km/s
to less than zero. (Seethe large view in FIG 24 and the expansion detail in FIG. 26)

Nieto and Anderson in 2005 commented about the error in afoot note: “The second
Pioneer 11 data point was stated to have been taken before (or at) Saturn encounter at
9.39 AU. But since Saturn encounter was at 9.38 AU, which would mean there either
was a round-off in the distance quoted or the data overlapped the encounter. Either way,
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the huge error in this point is anomalous and (sic) therefore it is of great interest to
reanalyze thisregion”. [101]
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It was natural for NASA to assume that the anomaly fitted a steady curve and that any
high readings found in a data point that was between two low data points would be the
result of an error. Upon reanalysis, what was mistakenly called an error was, in redlity,
valid high readings included in the data point. At adistance of 9.39 AU, which
correlates with the Saturn flyby, the anomaly was high, and then fell sharply. The data
window included both the high and low readings of the anomaly.

As can be seen in Figure 26, Pioneer 11’ s path and velocity were changed by the Saturn
flyby. It shows clearly that the abrupt changein radia velocity occurred very close to the
9.39 AU point. This corresponds to location of the large recorded error in the second
reading. [102]

Ascan aso be seenin FIG.26, after the Jupiter flyby, the Pioneer 11 spacecraft had
picked up significant scalar speed and radial direction. Thiswould have caused alarge
anomaly value for the second data point. However, at Saturn, the spacecraft traveled in a
trajectory that roughly paralleled a circular orbit of the sun, with aradius closeto
Saturn’s semi-mgjor axis.

Thistrgjectory caused it to lose most of its radial direction which made the radial velocity

drop quickly at the time (9.38 AU) that the second data point was still being collected.
Since the data point was collected over atime period, it included both the high and low
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velocities. Because the resulting high anomaly value didn’t fit the curve, NASA
considered it an outlier, which explains the very large error in the second data point.
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Figure 27shows this path in detail. Ascan be seen, the radial velocity actually went
negative at about 300 days as the spacecraft followed this path. [103]

Eventually, the spacecraft’s speed (solar escape velocity) was too great to maintain the
circular trgjectory and it pulled away after about 200 days of orbita travel. (at about day
420 in Figure 25). After leaving orbit, the spacecraft’s radial velocity increased slowly
because of its oblique angle of trgjectory relative to Earth.
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In summary, the decay of a nuclear heat source cannot explain the reason for the
particular beginning point for the anomaly, nor can it explain the reason for the extreme
error in the second data point. As will be seen, the application of the same equation used
to predict the Hubble constant and to correct the redshift-distance equation also predicts
the Pioneer anomaly amost perfectly.

2. Calculation

The anomaly is based on a comparison with a calculated model. [104] The radar
measurement included travel both to and from the spacecraft; hence the error (a,) as

measured by Doppler radar must be divided by afactor of two in the equation:

2at
I:Vobs (t) ~Vmode (t)]DSN =Y c (52)
Vinode = Vo |:1_ M} (53)

Vs IS the frequency of the retransmitted signal received by the tracking station (an active
return signal, not a passive “bounce” was sent by the spacecraft when the transmitted
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signa wasreceived). v, 4 isthe frequency predicted by NASA based on expected
variable values. v, isthe reference frequency. DSNE is an acronym for Deep Space
Network. [105]

The anomaly causes an increase in the wavelength of the radar signals as the distance
from Earth increases. The resulting redshift causes the spacecraft to exhibit negative
acceleration when compared to the mathematical model used by NASA.

The same equation that was used to cal culate the Hubble constant is used to cal culate the
Pioneer anomaly. The values differ between the two applications for the velocity, angle
and radius. The result for the Hubble constant was based on Av per a velocity of 1km/s

per aradius of 1IMpc. The result for the Pioneer anomaly is based on the velocity of the
spacecraftv.

Av={ZrQn(n/4§%j}—[rén(ﬂ/4%j}. (54)

The velocity v of an object moving relative to the observer can be determined by the
Doppler Effect on the frequency of the radar signal. The following equation multiplies
the speed of light by the percent of frequency change [106]

v o o fos = fet) (55)

The calculated speed of light hasthe Av

Af

v=[c+Av] (56)

emit
The Avmanifests as a negative acceleration of the moving object.

Af
V-AvV=C

(57)

emit

The error becomes negative.

-Av:{2rsin(n/42lcﬂ—[rsin(n/4%ﬂ. (58)

56



First, the angleis calculated for the velocity of each spacecraft and the results are shown
in the following two tables. [107]

pi/4 \Y C 0
(radians) (km/s) (km/s) radians* (km/s'’km/s)
0.785398163 10.45 299792.458 | 2.737697560E-05
Table19: Angle 0 at aradial velocity of 10.45 km/sfor
Pioneer 10
pi/4 % c 0
(radians) (km/s) (km/s) radians* (km/s/km/s)
0.785398163 11.33 299792.458 | 2.968240512E-05
Table20: Angle ¢ at aradial velocity of 11.33km/s/s
for Pioneer 11

The next step is to use the appropriate cal culated angle with aradius of one light second
expressed in km, to cal culate the Av per kilometer per second per second by subtracting
the Cartesian velocity (r sin@) from the polar velocity (2r sin6/2):

Avg. Velocity
(km/s) Function | AV vaues (km/s/)
10.45 2r sing/2 8.207410807247
rsing 8.207410806478
Difference | 0.000000000769

Table 21: Calculation of Avfor Pioneer 10
spacecraft is—7.69x10 °km/ s/ s.

Velocity (km/s) | Function AV values (km/s/s)
11.33 2r sing/2 8.898561119066
rsing 8.898561118986
Difference | 0.000000000980

Table 22: Calculation of Av for Pioneer
11spacecraft is—9.80x10 °km/ s/ s.

The average Av for both spacecraft is displayed in Table 18.

Spacecraft AV values (km/s/s)
Pioneer 10 Av 0.000000000769
Pioneer 11 AV 0.000000000980
Average AV 0.0000000008745
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Table 23: The average Av for both Pioneer
10 and 11is-8.745x10 °’km/s/ s

As covered in the section on the effect of Av on radar, the Av makesit appear that an
object moving away from the observer has a small blue shift on top of the expected red
shift. This blue shift manifests as a negative acceleration.

Af

V—Av=C (59)

emit
Av = 8.745 x10"° km/s/s which manifests as negative accel eration of Pioneer spacecraft

NASA’s value for the Pioneer anomaly is -8.74 x 10 °%km/s/s. (Anderson et al 1995). The
error accelerated the speed of the radar light signal used to measure the radial velocity of
the Pioneer spacecraft. Theincreasein light speed is seen as a negative acceleration in the
velocity of the spacecraft [108]

NASA developed an error budget by totaling al of the possible sources of experimental
error. Thetotal allowance for error as determined by this budget is +1.33 x 10 *°, which
equals £15% of the average value. The predictions are all well within thislimit. [109]

VII. DISCUSSION
A. Proofs of the theory

Proofs of this theory include both direct and indirect forms. For direct proof, the basic
concept, which was derived from first principles, accomplished the following:

Derived the Hubble Constant

Developed the curves for recession velocity, redshift and the scale factor
Corrected the redshift distance shortfall that was the raison d’ étre for dark energy
Predicted the Pioneer anomaly.

PR

Each of these applications was demonstrated to be within experimental limits when tested
on data.

The construction of a complex ad hoc equation to fit asingle set of data may be
explained by curve fitting; however, deriving a simple equation that very precisely fits
several different data setsis unlikely to be a coincidence. Further, the logic and
mathematics of thefit is clear and straightforward, with no requirement for unseen or
dark forces.

Asindirect proof. the theory was shown to be in agreement with several predictions of
the special and general theories of relativity
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1. Thetheory predicts the presence of aradial component in transverse distance,
which was confirmed by the Transverse Doppler Effect (TDE).
2. Thetheory predicts that the redshift equation is1+ z=1/cos6 ; which was

confirmed by the special theory of relativity equation1+ z = ]/\ll—vz/c2 ,

when it was demonstrated that cos6 = /1-Vv?/c?

3. Thetheory qualitatively predicts the sinusoidal shape of the FRW curves for
redshift, v/c, and the scale factor, which are confirmed by comparing to
observation.

4. Thetheory derives the space-timeinterval and the relationship between
coordinate time and proper time from the difference between Euclidean and
taxicab geometries.

Finally, the fact that the theory almost exactly matches most nominal valuesin the
applications is doubly reassuring. When the value derived from first principlesis so
closaly confirmed by experimental results, it means that both methods are very reliable.

B. Implications of the theory

1. Theuse of the observer-centric perspective, with Cartesian coordinates and 1— norm
Minkowski distance, causes an error in the Pythagorean Theorem when measuring
distance or velocity in reference to a point source of energy or force.

This is because the Pythagorean equation di® = x° + (cdt)® was derived in taxicab
geometry and therefore doesn’t follow the spectroscopic definitions of radial and
transverse directions. This equation assumes that it isl that has the radial component;
because distance | begins and ends with a different y coordinate value. However,

spectroscopicaly, it is xthat has the radial component because it begins and ends with a
different r coordinate.

The spectroscopic definition of distance in Euclidean geometry requires a different form
of the Pythagorean equation so that dl* = x> — (cdt)?. This form shows it isx that has the
radial component. However, it only provides valid distances when tis negative so that
dl? = x* — (—cdt)®which returns todl > = x* + (cdt)?

This has implications to Euler’ s formula which states that, for any real number X,

€” = cosx+isinx, where eisthe base of the natural logarithm, i isthe imaginary unit,
with the argument x given in radians. Since the trigonometric functions are derived from
the Pythagorean Theorem, Euler’sformulaisin taxicab geometry. It could be translated
into Euclidean geometry for better understanding.

2. There are strong indications in this paper that the function of the specia theory of

relativity isto convert distance from taxicab to Euclidean geometry. When timeis
defined by light traveling from a point source, the 1-norm function, which measures time
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with the y coordinate, fits the definition of coordinate time and the 2-norm function,
which measures time with the r coordinate, fits the definition of proper time.

In terms of four-dimensional spacetime, proper timeis defined asthe arc length s
between two eventsE; 1 and E, in three-dimensional (Euclidean) space. By contrast,

coordinatetime At isthetime between E, and E, events as measured by an observer at
E, in hisor her frame of reference.

The function 1/cosd was shown to equal the relativistic gammay = ]/ 1-Vv?/c? . Serious

treatment of this subject is far beyond the scope of this paper, but a paper that explains
the predictions of the specia theory of relativity in geometric rather than physical terms
is planned.

3. With redshift demonstrated to be the result of a perspective artifact, the main evidence
for cosmic expansion has been lost. Cosmic expansion is, in turn, the main evidence for
the Big Bang theory. Although thereis other evidence supporting it, the Big Bang theory
does not appear viable without cosmic expansion.

Similarly, with the shape of the derived scale factor curve showing an inflation-like
increase, inflation the result of a physical phenomenon or isit a product of geometry?

4. With the difference in luminosity distances explained by an artifact caused by the
difference in perspectives, the need for the existence of dark energy would seem to have
been eliminated.

VIIl. CONCLUSIONS

1. The recession velocity discovered by Edwin Hubble is an artifact of observation
caused by the measurement of light emitted from a point source using the observer-
centered perspective with taxicab geometry.

2. Redshift is the observable result of the velocity artifact.

3. The FRW curves can be explained by the sinusoidal functions derived from the
difference in perspectives, rather than arecord of the physical expansion of the
cosmos shaped by matter, energy and the cosmologica constant

4. The shortfal of the luminosity distance cal culated using the FRW redshift-distance
method compared to SNe typelaintrinsic luminosity distance is the result of the
Earth observer’s use of alonger perceived parsec unit. A longer unit makes the
number of units per distance less and the error accumul ates with distance. the
shortfall is corrected by the addition of the perspective difference in distance.
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5. The Pythagorean Theorem is not applicable when measuring light from a point
source.

6. The Pioneer anomaly isthe result of the longer parsec unit (which convertsto a
longer kilometer). The longer unit makes the number of units per distance less and the
error accumulates with distance. As the distance appears to shorten, the spacecraft
appears to decelerate.
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X. FOOTNOTES

1. Rabin, Sheila, "Nicolaus Copernicus’, The Sanford Encyclopedia of Philosophy (Fall
2010 Edition), Edward N. Zalta (ed.),
http://plato.stanford.edu/archives/fall 2010/entries/copernicus/>.

2. The source-centered distance d, between objects at any instant is defined as the

difference between their polar radial and angular magnitudes as measured from the light
source’ s origin which is unchanging relative to the objects.

3. For area number p > 1, the p-norm or LP-norm of adistance x is defined by.

Ix°] = (|xf| + %] +D]]D+||xn||p)]/p .The 2-norm corresponds to Euclidean distance. (The 1-

norm is the norm that corresponds to the Manhattan distance). With asimple path, the
distance traveled by the object is the square root of the sum of the x-component distance

squared and the y-component distance squared. The vector norm is Euclidean or L* norm

(pa)=y2 (Rr=q)"

mathworld.wolfram.com/Distance.html

4. Anincremental change in radius caused by an incremental change in circumferenceis
not affected by the magnitude of either the radiusr or the circumference C.
www.nhewton.dep.anl .gov/askasci/math99/math99160.htm

5. Lecture 4 -- Geocentric and Heliocentric Systems
www?2.astro.psu.edu/users/rbe/al/lecan.html

6. The observer-centered distance d isthe difference between an object’s Cartesian

radial y and transverse x magnitudes as measured from the observer’s origin.

Definition of observer-centered
www.merriam-webster.com/dictionary/observer-centered -
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7. As can be seen, when A, as the observer, sees B in the same x-y coordinate system
(heavy lines), then B’ s relationship with R isthen not the same as A’s. If A and B have
independent relationships (light lines) with R, then they both have the same relationship
with R.

Re

8. The norm in this caseis rectilinear (taxicab) or L, norm: dl(p,q)=2|pi —qi|. In the
i=1

observer-centered perspective, the radial distance (r =y + % ) is still a possible path,

but it has no definition in terms of radial or transverse. In this geometry, radial distanceis
defined asy and the transverse distance is defined asx. Thetota path from the star to

the 1- normEarth position isthe L -shaped path formed by the addition of the y and thex
coordinate distances(x+ y)
Eugene F. Krause (1987). Taxicab Geometry, Dover. ISBN 0-486-25202-7

9. A circleisdefined as a set of points with afixed radial distance r from a center point.
In taxicab geometry, circles are squares with sides oriented at a 45° angle to the
coordinate axes. In the Euclidean metric, each side of the square would have length V2r,
while in taxicab geometry, itslength is 2r. Thus, a taxicab circle's circumferenceis 8r,
which makes 4 the value of a geometric analog to 7 in this geometry
jwilson.coe.uga.edu/M ATH7200/Taxicab/Taxi Cab.html

10. The following figure shows a comparison of the Euclidean and taxicab wave fronts of
astar. Theradius of the Euclidean circleis r and the radius of the taxicab circleisy. The
diamond-shaped line is the taxicab circumference which compares with the Euclidean
circumference which is the normally expected circular shape.

The circumference of thetaxicab circleinthefigureisC=2+2+2+2=8.The

definition of n isthe ratio of the circumference of acircle to twiceits radius. As can be
seen in the figure, that definition gives the value of = in taxicab geometry of
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7w, =8/2*1=4.

The formula for the circumference of ataxicab circleis c=8r or using the taxicab r,
value, it becomes C = 27,1 which has the same form as the Euclidean formulafor a
Euclidean circle:

taxicabgeometry.net/geometry/circles

11. Euler, Russell and Jawad Sadek. The zs Go Full Circle, Mathematics Magazine, Vol.
72, No. 1 (Feb 1999), pp. 59-63.

12. Aswill beseenin FIG. 2, theradiusr , which isapolar coordinate, can be represented
by /Yy’ + x* in the Cartesian system, when xisinfinitesimal. In this case, as x approaches

0, then\/? =y.Thismakesy=r so that both represent the polar radial distance. The

sum of the infinitesimal xrectilinear distances approximates a curved polar arcré , so
that the transverse distances are also equal.

13. Theradial direction is defined as that direction relative to alight source in which
travel causes the observer to perceive a change in wavelength. The transverse direction is
defined as that direction relative to alight source in which travel does not cause the
observer to perceive a change in wavelength. Note that atangential direction does not
maintain a constant radial distance from the light source and therefore movement in this
direction has both atransverse and aradial component and will cause the perception of a
change in wavelength.

14. All distances measured by radar are rectilinear. Thus, the formulathat matches the
distance of one AU isthe chord 2r sin6/2, not thearc r@ . Since, the arc and the chord

begin and end at the same radial distance, thereisno net radial change with either
distance.

15. www.newton.dep.anl.gov/askasci/math99/math99160.htm
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16. cims.nyu.edu/~kiryl/Calculus/Section_7.4--Arc.../Arc_Length.pdf

17. Theradiusr , which is apolar coordinate, can be represented by / y* + x* in the

Cartesian system, when xisinfinitesimal. In this case, as x approachesO, then\/? =y
.Thismakesy =r so that both represent the polar radial distance. The sum of the

infinitesimal x rectilinear distances approximates a curved polar arcré , so that the
transverse distances are also equal.

18. The original radial distancey, from FIG.2 is measured in Euclidean geometry equals
r . The new radia distancey, , measured in taxicab geometry, equals r/cosé .

19. When the Sun and Earth are on the same plane as the star, the alignment can be
changed ssimply by taking the measurements at a different point in Earth’s orbit around
the Sun. For the sameradial distancer to the star, the Earth will be in the quadrant of the
orbit nearest the star; for the same radial distance y to the star, the Earth will be on aline
with the Sun that is orthogonal to the line from the star. When the Sun and the Earth are
not on the same plane as the star, the alignment must be virtual, that is, a mathematical
adjustment in distance must be made in order to change the alignment.

20. In terms of Euclidean geometry, the Cartesian x distance begins and ends with a
different radial distance (r) from the star. In terms of the taxicab geometry, the x
distance begins and ends with the same radial distance ( y) from the star. The oppositeis
true for the | distance. In Euclidean geometry, it begins and ends with the same radial
distance (r) from the star, but in taxicab geometry, it begins and ends with a different

radial distance (y) from the star.

21. The spectroscopic test determines whether adirection has aradia component by
moving in that direction and checking for a change in wavelength. If achangein
wavelength occurs, then the radia distance from the light source must have changed
during movement and therefore, there isaradia component. If the wavelength does not
change, then thereis no radial component and the direction is al transverse. As
mentioned previously, the only all transverse distance is an arc segment of the wavefront
circumference of the light source.

22. When theradial distanceis defined ascdt , because cis a constant, the variable in the

radia distanceinterval isthetimeinterval dt*. Because the transverse distance dl has no
radial distance, it has no time component. However, the interval dx has both aradia and
atransverse component, so it fits the definition of the space-time interval (

dx® = dI* — (cdt)?). However, thereis acomplication. In order for the Pythagorean
Theorem to match the spectroscopic definitions of radial and transverse distances, the

time component dt> must be acomponent of x, not of | . Therefore, the
spectroscopically-correct equation is
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dx? = dI2 + (cdt)?.

As can be seen, thisequation is still not valid since the dl distance is actually larger than
thex distance, not smaller as shown in the equation. In order for this equation to fit the

observed distance magnitudes, the functiondt® must be negative. dx* = di* + (c(—dt))>.

In this form, the equation fits the spectroscopic definitions of radial and transverse
direction and agrees with the observed distance magnitudes. dx® = —(cdt)® +dI?.

However, because cdt?®is negative, the square root of the function isimaginary.
23. www.merriam-webster.com/dictionary/parallax

24. 1t might seem that the parsec unit should have been defined in Euclidean geometry
using the equation pc(r) = x/sing .

However, if this equation were used to define the parsec, the magnitude of radial distance
would change between the Sun and the Earth, even though they are on the same x
baseline, which makes no sense in taxicab geometry. In addition, this equation would
leave the Cartesian y axis magnitude largely undefined in terms of radia distance since

the yaxisonly equals r whenx=0.
scienceworld.wol fram.com/astronomy/Parsec.html

25. With the angle p = 6, and the wavefront travel distance r to the Earth asct , then the
wavefront travel distancey to the Sun can be expressed asct cosd . Thus, by dividing by
both distances by c, the relationship of proper timeto coordinate timeis a factor of
ct/c=ctcosd/c.

The relationship between r and y can be expressed in terms of the x distance, using the
Pythagorean Theorem ((ct)2 = (ctcosh) + x°.

The equation isfirst normalized to the Earth’s frame of reference by dividing through
both sides of the equation with (ct)?, which creates dimensionless units whose magnitude
ismade relativeto ct.

(ctecosd)” (ct)”

(ct) ()’ (at)

The equal function is canceled to make unity.

65



(ct cosze)2 1 x22
(ct) (ct)

Taking the square root of both sides and simplifying provides the ratio of the wavefront
distances from the two frames of reference.

t NG
ccoso _h

ot (ct)

The common term ct on the left side can be canceled,

2
coso = 1—X—2.
(ct)

. Next, the position x*is expressed as velocity times time (vt)?

(\t)°

(ct)’

Dividing by t givestheratio in terms of velocity

2
coso :,/1—\/—2
C

Since proper timeis t and coordinated timeis tcosé , the conversion factor is 1/cosé
which, as can be seen, is equal to the relativistic gamma y = ]/«/1— V2/c?

cosf = |1-

26. www.merriam-webster.com/dictionary/proper

27. Artifact definition: any perceived distortion or other data error caused by the
instrument of observation.
www.websters-online-dictionary.org/definition/artifact

28. The current scientific method does contain a procedure for excluding data with
systematic errors; for instance, it does not require the observer’s frame of reference be
aligned with the force or energy source. It only deals with excluding observations with
random errors, since it requires reproducibility

29. The calculation of Hubbl€e' s constant is shown in Equation 11.
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30._Hubble, Edwin, "A Relation between Distance and Radia Velocity among Extra-
Galactic Nebulae" (1929) Proceedings of the National Academy of Sciences of the United
Sates of America, Volume 15, March 15, 1929: Issue 3, pp. 168—-173, communicated
January 17, 1929

31. The cumulative effect of asmall error per unit was exemplified in 1999 with the
crash of the Mars Climate Orbiter. The cause was traced to an unrecognized substitution
between metric and English force units. The differencein force between a single English

pound of force unit (Ib. =1b_[g,) and asingle metric Newton unit (N = kgim/s”) istoo

small to have a significant effect on the path of the space craft, however, the
accumulation of the error from many units caused the Orbiter computer to direct the
space craft to enter the Mars atmosphere at too low an altitude causing the craft’s
disintegration.

en.wikipedia.org/wiki/Mars_Climate_

32. A circleisdefined as a set of points with afixed radial distance r from a center point.
In taxicab geometry, circles are squares with sides oriented at a 45° angle to the
coordinate axes. In the Euclidean metric, each side of the square would have length V2r,
while in taxicab geometry, itslength is 2r. Thus, acircle's circumferenceis 8r, which
makes 4 the value of a geometric analog to 7 in this geometry
jwilson.coe.uga.edu/MATH7200/TaxiCab/TaxiCab.html

33. en.wikipedia.org/wiki/Skinny_triangle

34. www.newton.dep.anl.gov/askasci/math99/math99160.htm

35. Hubble, Edwin, "A Relation between Distance and Radial Velocity among Extra-
Galactic Nebulag" (1929) Proceedings of the National Academy of Sciences of the United
Sates of America, Volume 15, March 15, 1929: Issue 3, pp. 168173, communicated
January 17, 1929

36. Itiswell understood that Galilean relativity works well at low speeds. The velocities
used in this paper are less than 12km/s and thus are non-relativistic.
physics.ucr.edu/~wudka/Physics7/Notes www/node47.html

37. scienceworld.wolfram.com/astronomy/Parsec

38. www.astro.cornell.edu/academics/courses/astro201/hubbles [aw

39. scienceworld.wolfram.com/astronomy/Parsec

40. The distance modulus is calibrated in units of megaparsecs based on the relationship
between the flux of two different stars with their apparent magnitudes
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F,F, are the individual flux from each star one and m, m,are their individual apparent
magnitudes

i =100 m/5)
F,

However, for astronomy use, thisratio between two stars is modified to work with one
star at two different distances. In thismodification, F istheflux of the star at agiven
distance and F,,istheflux of the same star at 10 parsecs further away and the difference

in magnitude is the difference between the absol ute magnitude and the apparent
magnitude of the one star.

Fio _g0qmms)
F

This equation is calibrated in distancer (in parsecs) by the relationship between flux F
and luminosity L :

L
F =
Arr?

When this function is substituted for flux in the ratio, luminosity is canceled (luminosity
isanintrinsic property of the star and does not depend on distance).

2
(Lj —100™M)/5
10

Rearranged, thisis seen as the distance modulus
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