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Abstract

The redshift observed in astronomical measurements is explained as an observational
artifact caused by the perspective of the observer, rather than the effect of physical
cosmic expansion. The parsec unit of distance is defined in the observer-centered
perspective, which is the generic term for the geocentric perspective. This perspective
uses taxicab geometry which causes the Earth observer to perceive a longer wavefront
travel distance for the parsec unit without a corresponding increase in wavefront travel
time. This combination creates a velocity artifact av , which, since it is part of each parsec

unit, is cumulative with distance. The velocity artifact manifests to the Earth observer as
an apparent redshift which only becomes significant at the megaparsec level. Predicted
results are very close to expected values. The predicted Hubble constant value is
calculated to be 69.4,70,and 69.3km s Mpc depending on which formula is used. Each

of the three values is within NASA’s limits. The artifact is also shown to generate the
sinusoidal FRW wave functions for recession velocity, redshift and the scale factor. The
artifact predicts a recession velocity of 1 c to equal a redshift of 1.46, which equals the
expected redshift value. The artifact is also demonstrated to be responsible for the
phenomena commonly known as dark energy by causing objects to appear closer than
expected due to shorter redshift-distance.. Riess et al (2004) found the redshift distance to
be shorter by 10 to 15%. Correction of the artifact error causes the FRW redshift
luminosity distance to increase by 14% which can be seen to closely match the intrinsic
luminosity distance of the type 1a supernovae (SNe Ia). . The Pioneer anomaly, which is
the unmodeled negative acceleration of two spacecraft launched in 1972, is also shown to
be the result of the observer-centered perspective. The calculated negative acceleration of
-8.745x10-10km/s/s essentially equals NASA’s value

I. ALIGNMENT OF THE EARTH AND SUN WITH A STAR OR GALAXY

A. Effects of perspective on properties of wavefront

In 1534, Copernicus discovered a new perspective for observation within the solar

system, which is known today as the heliocentric perspective  1 . This perspective is
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generically termed the source-centered perspective when applied to other light sources.

 2 The source-centered perspective measures distance from the origin of the wavefront

of light, such as a star or galaxy. It uses the polar coordinate system, with the radial
coordinate r and the transverse coordinate  and is individually aligned with the light
source.

When r is expressed in the 2 norm metric of this perspective, coordinates y and x

combine to form the defined radial line  2 2r y x  . The distance r also is the total

distance from the star to Earth.  3 The relationship between incremental radial and

transverse distance is given by the formula 2r C    : where r is the incremental

radial distance and C is an incremental change in the Euclidean wavefront

circumference.  4

Prior to Copernicus, observers measured planetary distances in the solar system from the

origin on the Earth with a perspective known today as the as geocentric perspective.  5 .

This perspective is generically termed the observer-centered perspective when applied to

other light sources. It measures distance from the origin of the observer.  6

The perspective uses the Cartesian coordinate system, which aligns the radial coordinate
y and the transverse coordinate x with the origin of the observer. The particular

alignment of the coordinate axes with the wavefront that is perceived by the observer is

applied to all other objects.  7

As expressed in the 1 norm metric of this perspective, coordinates y and x cannot

combine to form a radial line because y is the defined radial distance and x is the defined

transverse distance. In this metric, they can only add to give the total distance  x y

from the Earth to the star.  8 The relationship between incremental radial and transverse

distance is given by the formula tany x    : where y is the incremental radial

distance and x is the incremental change in the taxicab wavefront circumference.  9

 10  11

Table 1 summarizes the properties of each perspective.

Perspective
Name

Coordinate
origin

Coordinate
system

Minkowski
geometry

Incremental
radial distance

Source-centered Star or galaxy Polar Euclidean* 2r C   

Observer-centered Observer Cartesian Taxicab tany x   

Table 1: A summary of the properties of the source-centered and observer-centered
perspectives *As discussed, the polar distance r can be expressed as Euclidean

distance ( 2 2y x ) 12
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B. Example of the source-centered perspective

In the example in FIG.1, the Sun S and the Earth E are aligned so that the wavefront
distance ct from the star is equal for both objects. As mentioned, the source-centered
perspective uses polar coordinates. The radial and transverse directions are defined
spectroscopically, that is by their effect on wavelength as measured by a moving

observer.  13

Spectroscopically, the outward direction from the star along the ray of light is defined as
radial because travel in this direction causes a change in wave travel distance ct which
results in a change in wavelength.

The orthogonal direction to the radial coordinate (r) is the arc s which is the product of
the two coordinates r . The arc, seen between the Sun S and an Earth orbit position E is
defined spectroscopically as transverse because travel in this direction does not result in a
change in wave travel distance ct so there is no observed change in wavelength.

As can be seen, each ray from the Sun S is individually aligned with the transverse
distance. Since only the curved wavefront can be truly transverse to the radial direction,
it follows that a rectilinear “transverse” distance necessarily contains a radial component
and thus would not meet the spectroscopic test of being transverse.

The accepted distance between the Earth and the Sun is the radar-measured chord l ,
which, with a small angle , closely approximates the arc. Since the angle used in this
paper is very small (one arcsecond), the radar magnitude of the chord will be used in
calculations as the magnitude of the arc. The chord, like the arc, generates no net radial

displacement between the Sun and the Earth.  14

l

s

r


r

S
E

Star

FIG.1: The source-centered
perspective, uses the polar
coordinates r and , and has its origin
on the source (star). Equidistance is
measured in wavefront travel
distance r .The Sun S and the Earth E

each has its own individual
alignment with the wavefront.
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C. Example of intermediate step from source-centered to observer-centered perspective.

FIG.2 illustrates the intermediate step between the two perspectives. This step maintains
the coordinate origin on the star and the individual alignment of the radial distance of the
source centered perspective, but replaces the polar coordinate system with the Cartesian
coordinate system.

Since the x distance is rectilinear, it is only truly in the spectroscopic transverse direction
at the tangent point. The arc s can be thought to be composed of a series of infinitesimal

rectilinear distances dl that are each tangential to an individual light ray.  16  17

The geometry remains Euclidean; as can be seen the radial distance from the star is point-
to-point for both the Sun S and the Earth E . In this special case where the limit of the

transverse distance x equals 0 , then the radial distance y is calculated 2 20y  .

D. Observer-centered perspective example

As was seen in FIG. 2, the alignment with the wavefront in the source-centered
perspective was individually determined by each object. Now as seen in FIG. 3(a), the

s

l

Star

x

2y



1y

x
S E

FIG.2: The intermediate stage between the
source-centered and observer-centered
perspective maintains both the origin on the
star and the individual alignment with the
wavefront. However, it uses Cartesian
coordinates. Note that 1y and 2y are both

equal to the wavefront travel distance r seen
in FIG.1. Also note that the x coordinate is
tangential and not completely transverse as is
the curved arc s . Therefore x , because it is
rectilinear, has a radial component.
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alignment for all objects is instead determined by the observer. This difference in
alignment with the wavefront changes the geometry in this perspective from Euclidean
geometry to taxicab geometry, which in turn alters the direction and magnitude of the
radial and transverse distances between the Sun, Earth and star.

In FIG.3 (a), the origin of distance is on the Sun S which is the observer. Note that the

radial distance ( 2y ) from the Earth to the star no longer is equal to r which is a 2 norm

distance ((difference between both x and y coordinates). Instead the radial distance 2y is

now equal to cosr  , which is a 1 norm distance (difference between only one

coordinate). In this case, the one coordinate is y .  18

As can be seen, the Euclidean distances l and r are undefined in terms of radial and
transverse distance. This is because it is the distance y that is defined as radial and the

distance x that is defined as transverse. In this perspective, l and r are a combination of
radial and transverse distances.

In this view, the Sun and the Earth each have different radial distances from the star as
measured by y as the taxicab radial distance. For the Earth to have the same taxicab

radial distance to the star as the Sun, it needs a different orbit position so that the y

coordinate values of the Sun and the Earth are the same. This alignment is seen in FIG.
3(b).

S E

cosr 

s

1y

l



Star

2y

x

r

x

FIG.3 (a): The observer-centered perspective
creates a common alignment with the
wavefront for all objects based on the
observer’s view (which is the Sun S in this
example). The magnitude of Earth E ’s radial
distance ( 2y ) to the star is no longer equal to

the Euclidean distance ( r ), as it was in FIG.
2, instead it is now equal to the taxicab
distance ( cosr  ).
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In FIG. 3 (b), the overlay of the wavefront from the Sun S makes it possible to see both
the polar and Cartesian coordinate systems at the same time.

In taxicab geometry, the y coordinate is the sole component of radial direction. Thus, to

have the Earth and the Sun at the same distance to the star requires the alignment of the
Sun and Earth such that they both have the same y distance to the star. This alignment

had the opposite effect in the Euclidean geometry; instead of being equal distance, the

Earth is now at a greater r distance than the Sun.  19

In the source-centered perspective, where radial distance is measured in terms of r , the x
distance now has a change in wavefront travel distance from the star ct , because, as can
be seen, the Sun and the Earth have different radii.

However, in the observer-centered perspective, where radial distance is measured in
terms of y , the x line has no change in radial distance; the Sun and the Earth have the

same y distance. In this perspective, it is the l distance that has the change in radial

distance ct , because its beginning and end have different y values.  20

FIG. 3(c) is rotated to the familiar observer-centered position where y is vertical. Using

the spectroscopic test, movement along s or l generates no net change in wavelength
while movement along x does cause a net change.. Therefore x is not all transverse, it has

a radial component.  21

2y
S

Es

ct
l



Star

2y r

x

FIG.3 (b): The Earth E and the Sun S now

have the same 1 norm radial distance ( 2y

) to the star. The realignment has caused x
to add a radial component ct in the
source-centered perspective. However, in
the observer-centered perspective, it is l
that appears to have the radial component.



7

The Pythagorean equation 2 2 2( )dx dl cdt  is invalid for use with a point source of light

because it doesn’t follow the spectroscopic definitions of radial and transverse directions.
The Pythagorean equation assumes that it is l that has the radial component. It can be seen
in FIG. 3(c), that this assumption is made because l begins and ends with a different y

coordinate value.  22 However, as has shown in FIG. 3(b), it is x that actually has the

radial component, as measured spectroscopically.

II. REDSHIFT ARTIFACT IS CAUSED BY DIFFERENCE IN
PERSPECTIVES.

A. Definition of the parsec in taxicab geometry

In FIG. 4, the Earth E is aligned to have the same taxicab radial distance y as the Sun S ,

which is required by the parallax equation because it uses the 1 norm metric.

The definition of the parsec ( )pc as the unit of radial distance is an excellent

demonstration of the difference between Euclidean and taxicab geometry. As can be seen
in FIG.4, the Euclidean radial distance r (point to point) from the star to the Earth is
undefined, because the defined radial distance from the star to the Earth is the parsec y

(line to line).

ct

r


s

l

S

2y

x
E

Star

FIG.3 (c): The view is rotated to the normal
Cartesian position. The arc s (approximated
by the sum of the infinitesimal dl ) is the
spectroscopic transverse distance.
Therefore it is x that has the radial
component ct . However, the Pythagorean

equation 2 2 2( )x dl cdt  assumes that it is

dl that has the radial component since l has
a change in its coordinate.



In the observer-centered perspective, the

between transverse and radial distance is defined by the parallax formula

( )
tan

x
pc y

p


where y is the parsec, the magnitude of the baseline

angle p is one arc second. (Note the very small angle (one arc second) that is actually

used in the parsec determination; the larger angles in the diagrams are for ease of
viewing).

Note in FIG.4, that the defined wavefront travel time from the imagina
is the parsec ( )y divided by the speed of light (

wavefront travel time from the imaginary star to the Earth is the radius

speed of light. ( t r c ).

In taxicab geometry, y c

x axis have the same y coordinate wavefront travel distance to the star by definition. In

Euclidean geometry, r c may be called the “proper” time, because each position on the

8

centered perspective, the relationship between incremental change in

between transverse and radial distance is defined by the parallax formula

is the parsec, the magnitude of the baseline x is one AU and the magnitude of

is one arc second. (Note the very small angle (one arc second) that is actually

used in the parsec determination; the larger angles in the diagrams are for ease of

Note in FIG.4, that the defined wavefront travel time from the imaginary star to the Earth
divided by the speed of light ( t y c ). In comparison, the actual

wavefront travel time from the imaginary star to the Earth is the radius

t r c

y c may be called the “coordinate” time because all points on the

y coordinate wavefront travel distance to the star by definition. In

may be called the “proper” time, because each position on the

relationship between incremental change in

between transverse and radial distance is defined by the parallax formula  23  24

(1)

and the magnitude of

is one arc second. (Note the very small angle (one arc second) that is actually

used in the parsec determination; the larger angles in the diagrams are for ease of

ry star to the Earth
). In comparison, the actual

wavefront travel time from the imaginary star to the Earth is the radius r divided by the

may be called the “coordinate” time because all points on the

coordinate wavefront travel distance to the star by definition. In

may be called the “proper” time, because each position on the
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x axis has a unique r wavefront travel distance to the star. The term proper is used in this

case with the definition “belonging to one: own.  25

Note that the physical speed of light in a vacuum is accepted unconditionally in this paper
as a constant in the universe. However, the magnitude of the variable c obviously depends

on the magnitude of the distance unit used in its definition.  26

The artifact velocity av is the difference between c calculated with the parsec distance y

and c calculated using the actual distance to the Earth r . The proper time r c was used

for both calculations because it is the time used by the Earth observer.

a

r y
v

r c r c
  (2)

Dividing through by the denominators, simplifies the equation

av c cy r  (3)

Then the speed of light c can be factored to further simply the equation.

(1 )av c y r  . (4)

As can be seen in FIG. 4, the distance y is the adjacent side of the triangle and r is the

hypotenuse of the triangle, therefore, the ratio y r can be expressed as the cosine

function, when angle p 

(1 cos )av c   . (5)

As will be seen later in FIG.14, this function meets the expected curve shape for Doppler

redshift when the recession velocity is divided by the speed of light ( av c ).

The artifact velocity av is observed by the Earth observer as an apparent increase in the

wavelength with the Doppler formula

( )obs ac v T   . (6)

The wavelength with this artifact velocity is referred to as the observed wavelength. The
same wavelength without the artifact velocity is referred to as the emitted wavelength.

Note that simple movement by the star or the Earth would not explain the fact that the
redshift is observed in all directions. However the velocity artifact, like the current



explanation for the redshift (the cosmi

effect.  28

The tiny difference in radial distance between the two perspectives

only because the parsec is a distance

cumulative. For example, as will be demonstrated, the Hubble constant magnitude of a
70km / s per megaparsec is a result of a virtually undetectable velocity artifact of

57.0 10x  km s per parsec

The cumulative effect of a small error per unit of measure was exemplified in 1999 with

the crash of the Mars Climate Orbiter.

B Artifact in wavefront circumference is due to different geometries

Figure 5 compares the wavefro
The taxicab wavefront appears to be a diamond; however, it meets the definition of a
circle: a line formed by a locus of points that is everywhere equidistant from one

common point.  32

Just as was seen in FIG. 4 with the determination of the parsec, taxicab distance in this
diagram is measured from line
have the same radial magnitude

as well.

10

explanation for the redshift (the cosmic expansion of space) explains the omnidirectional

The tiny difference in radial distance between the two perspectives ( )r y

only because the parsec is a distance unit, which makes the resulting velocity artifact

cumulative. For example, as will be demonstrated, the Hubble constant magnitude of a
is a result of a virtually undetectable velocity artifact of

being multiplied by a factor of a million 29

The cumulative effect of a small error per unit of measure was exemplified in 1999 with

the crash of the Mars Climate Orbiter.  31

B Artifact in wavefront circumference is due to different geometries

Figure 5 compares the wavefront from a star in both taxicab and Euclidean geometries.
The taxicab wavefront appears to be a diamond; however, it meets the definition of a
circle: a line formed by a locus of points that is everywhere equidistant from one

Just as was seen in FIG. 4 with the determination of the parsec, taxicab distance in this
diagram is measured from line-to-line, so the Sun, the Earth and every point on the
have the same radial magnitude y .This is true in the other three directions from the star

c expansion of space) explains the omnidirectional

( )r y is significant

makes the resulting velocity artifact av

cumulative. For example, as will be demonstrated, the Hubble constant magnitude of a
is a result of a virtually undetectable velocity artifact of

29  30

The cumulative effect of a small error per unit of measure was exemplified in 1999 with

B Artifact in wavefront circumference is due to different geometries

nt from a star in both taxicab and Euclidean geometries.
The taxicab wavefront appears to be a diamond; however, it meets the definition of a
circle: a line formed by a locus of points that is everywhere equidistant from one

Just as was seen in FIG. 4 with the determination of the parsec, taxicab distance in this
line, so the Sun, the Earth and every point on the x line
.This is true in the other three directions from the star
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It can be seen in FIG.5 that the Sun and the Earth perceive different wavefront distances
y and r and therefore perceive different wavelengths. However, it is easier to see that the

Sun S and the Earth E have different wavelengths in FIG.6 where both wavefronts are
Euclidean.

If the frequency  of light from the star is set to1, then for the Sun, the radius Sr equals e

but for the Earth, radius Er equals o . The two radii equal different wavelengths because

they have the same wavefront travel time as set by the parsec.

The increase in circumference between the two wavefront circles can be calculated by the
difference in magnitude between the Euclidean chord l and the taxicab chord x . (

( )C l x   ) The increase in circumference can then be related to an increase in radius

by the equation,

2

C
r




  (7)

o

av t E

ErSr

l

p

FIG.6 shows the two Euclidean wavefronts
with radius r . In this geometry, the x distance
has a radial component, so that the Sun S and
the Earth E each have a different radius. Since
the distance unit is defined in the taxicab
metric, the wavefront travel time for both radii
is the same, causing the Earth observer to

perceive the artifact wavelength 0 , caused by

the artifact velocity av .

Star

x

e

S
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The change in the radius when traversed by light in the same time is explained as an
increase in velocity ( )ac v . The artifact velocity av then causes the artifact wavelength

o .

C. Effect of an incremental increase in circumference on the radius

Astronomers have long believed that the small difference in transverse distance between
x and l was insignificant because of the relatively large magnitude of the parsec. The

effect is called the “skinny isosceles triangle”.  33 However, as the following example

will demonstrate, an incremental change is not affected by the magnitude of the distance
being changed.

A string that fits tightly around the Earth's circumference at the equator has a length of
approximately 132 million feet (25,000 miles x 5,280 ft). If only sixty feet is added to
the string’s 132 million feet length, it provides enough slack to lift the string to a height

of ten feet off the ground all around the world.  34

Type Function Formula Values (ft)

Increased circumference incrC 60origC  132,000,060

Original circumference origC origC 132,000,000

C ( )incr origC C 60

r 2C  10

This relationship of the circumference to the radius is surprising because the radius
increase was expressed numerically as 60 feet rather than in terms of the percentage of

the radius ( 74.76 10x  ) as was expected. Incrementally, every unit increase in

circumference causes an 0.16 (1 2 ) increase in radius.

An incremental increase is not affected by the magnitude of the distance hence,
percentages are not appropriate in the calculation. This incremental effect combined with
the fact that the parsec is a distance unit, means that the small differences in calculating
transverse distance can be significant. This will be now demonstrated using the difference
between the Euclidean circumference and the taxicab circumference as seen in FIG. 6.

The same equation used with the string can be used to determine the increase in radial
distance caused by the difference in C between the two perspectives. As previously
discussed, the magnitude of the chord will be used for C .

Table 2.An incremental increase in circumference of 60 ft.
causes an incremental increase in radius of 10ft. ( 2 6  )
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The difference in the circumference C between the two perspectives is determined by
subtraction of the taxicab chord x from the Euclidean chord l .

2 sin
2

C ct AU


   (8)

This increase in circumference can be used to determine the artifact velocity av with the

following equation

2
a

C
v




 (9)

Where the arcsecond 64.8481368111 10x  radians, 149,597,870.7AU km and
133.08567758100 10ct x km

Perspective Function Formula Values ( /km s )

Source-centered d 2 sin( 2)ct  149,597.870.700440

Observer-centered x AU 149,597,870.700000

C 2 sin( 2)ct AU  0.00440

av 2C  0.000070

The magnitude of av per megaparsec is obtained by multiplying the magnitude of the

artifact velocity value for the parsec by a factor of one million. The recession velocity

artifact av at a one megaparsec level is known as the Hubble constant 0H

0 70H km s Mpc (10)

Edwin Hubble reported in1927 that galaxies showed a redshift in their wavelengths that
was proportional to their distance away from Earth. The quantitative correlation he

developed based on this relationship is known as Hubble’s law.  35

Hubble’s law describes the recession velocity vr as a function of the distance between the
observer and the object.

0rv H D (11)

Table 3.The apparent increase in circumference for one parsec is
0.000440km. Dividing 440 km by 2 gives the apparent recession

velocity av of 57.0 10x km s pc .
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D, measured in mega parsecs (Mpc), is the distance from the object being measured to
the observer. The distance used is the distance between where the observer is at the
moment of observation and where the object was when it emitted its light.

D. Alternate methods to calculate the Hubble constant.

1. Calculation method using calibrated angle

The angle  can be calibrated so that trigonometric functions can read out directly in
velocity. The calibration is based on the fact that the distance of travel in the x axis that
occurs during a light second of travel in the y direction calculates velocity.

As can be seen in FIG. 7, in the time t it takes light to travel the distance from A to B
along the y axis, light travels the same distance ( )ct along the x axis. Since the two equal

distances are orthogonal, the subtended angle , is defined as 4 radians.

4
ct

ct
 

 
  
 

. (12)

Since the time t is a constant, it can be factored out to show the equation in terms of
velocity. In the same time t , an object with velocity v travels the smaller distance vt and
subtends a smaller angle.

4
v

c
 

 
  
 

. (13)

This calibration assumes that velocity is linear with the angle. As can be seen in FIG. 7,

this is not a valid assumption; however, for the very low velocities  11.34km s used in

this paper, it can also be seen that the error is insignificant.  36
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Substituting the calibrated angle for  then provides the difference in distance in terms of
/km s .The distance x can be expressed as v and the distance y can be expressed as c .

2 sin 4 sin 4
2

v v
ct s ct ct

c c
 

      
        

      
(14)

The angle in radians per velocity of 1 km/s is given by:

pi/4 v c θ

(radians) (km/s) (km/s) radians * (km/s)

0.785398163 1 299792.458 2.619806277E-06

ct

B
s

ct



vt

A

FIG. 7: In the time t that it takes light to
travel the distance from A to B along the y

axis, light travels the same distance ( )ct

along the x axis. Since the two equal
distances are orthogonal, the angle is
defined as 4 radians. In the same time t , an

object with velocity v travels the smaller
distance and subtends a smaller angle.

Table 4: Value of angle for a velocity of 1 km/s
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Once the angle is calculated, the recession velocity can be calculated for 1 light second

with the following values from the definition of the parsec:  37

1 /v km s
Angle is from Table 6
Wavefront travel distance 299,792.458ct km (1light second)

Perspective Function Values( km s ls )

Common 2 sin 2ct  0.785398163397224

Individual sinct  0.785398163396550

av 0.0000000000000674

Since the difference is cumulative, to determine the recession velocity at one mega
parsec, this velocity that was calculated for one light second must be multiplied by the
number of light seconds in a mega parsec,

  13 146.74 10 1.03 10av x x . (15)

This calculation yields the artifact velocity per megaparsec

69.4av km s Mpc . (16)

2. Calculation method using redshift

The Hubble constant is the recession velocity expressed per megaparsec and the recession

velocity is the product of the redshift and the speed of light.   37 38 If the parsec (

tanpc AU  ) is considered the distance of the emitted wavelength emit , then the

wavelength actually measured by the Earth observer ( sinpc AU  ) becomes the

observed wavelength obs . In both cases,  one arcsecond and AU is the distance

between the Sun and the Earth.  39

As can be seen in Table 6, the recession velocity artifact av for one parsec is the product

of the redshift z and the speed of light c . A calibration factor of 19.7 is needed for correct
velocity. This same factor is seen in the comparison of recession velocity and redshift in
Section V, where it yields a ratio of 1 c velocity to 1.46 redshift. It is analogous to the

distance modulus.  40

Table 5.The subtraction yield a difference

of 136.74 10av x km s ls
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tanemit AU  sinobs AU  ( )obs emit emitz     av cz 19.68* av

(km) (km) (km/s) (km/s)

30,856,775,814,642.4 30,856,775,815,005.0 1.1752155E-11 3.523E-06 6.93-05

Multiplying the value of the recession velocity for one parsec by a factor of a million
expresses the calibrated artifact velocity per megaparsec, which is the form of the Hubble
constant

69.3av km s Mpc (17)

E. Comparison of results with different methods

On 3 October 2012, it was announced that the Hubble constant value measured by
NASA’s Spitzer Space Telescope was74.3 km/s/Mpc. On 20 December 2012, it was
announced that the Hubble constant value measured by NASA's Wilkinson Microwave
Anisotropy Probe (WMAP) was 70 2 km s Mpc . On 21 March 2013, it was announced

that the Hubble constant value measured by ESA’s Planck Mission was 67.80 ± 0.77

km s Mpc  41

FIG. 8 shows the wide range of values that have this far been determined for the Hubble
constant by different methods at different times. [42]

NASA has studied the results from the various methods and has determined the best

estimate of the Hubble constant based on all information to be 69.3 0.8km s Mpc . In a

quote from an article updated on 21 December 2012 [43], NASA explains how their
value could be derived from a combination of different methods:]

“However, if we do not make an assumption of flatness, we can combine WMAP data
with other cosmological data to get 69.3 km/sec/Mpc (give or take 0.8 km/sec/Mpc), a 1%
solution that combines different kinds of measurements. After noting that independent
observations give consistent results, it is reasonable to combine information to get the
best estimate of parameters”

As a reminder, the three results derived for the velocity artifact av were 70 , 69.4 and 69.3

km s Mpc . Each of these three calculated results is within the error limits set by NASA.

The 69.3km s Mpc value exactly matches NASA’s nominal value.

III .EXPLANATION OF RECESSION AND REDSHIFT VELOCITY ARTIFACTS

A. Recession velocity artifact.

Table 6: The recession velocity artifact av is calculated for a parsec. A calibration

factor of 19.68 is needed for correct velocity.
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FIG. 9 uses trigonometry as a tool to better understand the relationship between
distances in the observer-centered perspective as seen by an observer on Earth. In
taxicab geometry, the distance from the Sun and the Earth to the star is defined as one
parsec. This makes the wavefront travel time t from the star to both objects equal. For
simplicity, the wavelength of the light is set to be one parsec so that time t equals the
time intervalT .

Because the actual wave travel distance is longer to the Earth ( )cT than a parsec, but is

measured with the parsec wave travel time ( cos )T  , the Earth observer measures a

longer wavelength obs than the wavelength emitted from the source emit .

Since light travels at c , the extra distance measured by the Earth observer must be
accounted for. At present, the distance is explained by cosmic expansion of the universe.

However, as can be seen, the distance is actually an artifact of observation ( )av t

Although the Earth observer perceives the longer wavelength as cT , other factors make it
clear that something is wrong. First, the wavelength gets longer with distance (redshift)
and second, the observed wavelengths at the longer distances do not agree with the
wavelengths emitted by the stars, as expected by spectroscopy. [44]

Therefore, the Earth observer defines the observed wavelength cT in terms of the actual

speed of light cosct  plus av T which is the distance believed to be caused by the cosmic

expansion.

cos acT cT v T  . (18)

Dividing both sides of the equation by the time interval T compares the relationship in
terms of velocity instead of distance.

cos ac c v  . (19)

Solving for the artifact velocity

cosav c c   . (20)

The speed of light c can be factored

(1 cos )av c   . (21)

Note: This equation is the same as Equation 6, which was derived directly from the time
and distance factors.

Dividing by c on both sides of the equation
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1 cosav

c
  . (22)

As can be seen, the artifact velocity function av is sinusoidal. When it is simply used in

the Hubble equation, it produces a linear increase in wavelength with distance (recession
velocity) for a relatively short distance (<1c).[45]

B. Redshift velocity artifact

1. Calculation of redshift artifact

When the data is normalized, it causes the radial distance to remain constant while the
angle increases. It is this effect of normalization that causes the sinusoidal shapes that are
observed in the z function.

The redshift velocity artifact az will be demonstrated to be the ratio of the apparent

change in wavelength ( o e  ) due to the difference in frames of reference with the

wavelength observed in the Earth’s frame of reference o . As a ratio, the nanometer units

cancel. As will also be demonstrated, the normalization makes redshift into a function of

the cosine of the angle ( adj hyp ) rather than just a function of the distance ( )adj .

With normalization, the radial difference between the two wavelengths does not increase
with distance. Instead, the radial distance remains constant, it is the transverse distance
(and the angle) that increases.

As can be seen in FIG 9, in the source-centered perspective, the radial distance cT to the
Earth is longer than the radial distance to the Sun. The distance from the star to the Earth
is a single wavelength cT . Since the distance to the Sun is shorter, only part of the
wavelength coscT  is seen by an observer there.

In the observer-centered perspective, the radial distance y is the same to both the Sun and

the Earth position. Since the observer-centered perspective is used in astronomy, it must
be explained why the wavelength is observed to be longer when observed on Earth. The
current justification for the longer distance is that it is caused by the expansion of the
universe.

The redshift velocity artifact az is a measure of the observed wavelength increase caused

by the difference in observer perspectives. [46]

o e
a

e

z
 




 [23]
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Redshift is calculated by determining the difference in distance between the wavelength

observed in the Earth’s frame of reference o cT  and the wavelength observed in the

Sun’s frame of reference cose c T  , and then normalizing that difference to the

Earth’s frame of reference by dividing through by cosc T .

cos

cos
a

cT c T
z

c T








The equation can be divided through and separated.

cos

cos cos
a

cT c T
z

c T c T



 
 

The ratio of emitted wavelengths is simplified to 1

1
cos

a

cT
z

c T
 

Star

E

av t

cT

S



coscT 

d
x

FIG.9. Time is measured as the wavelength
intervalT ; the distance to the star is made
one wavelength to help in understanding.
Each point on the x baseline shares the
same time interval T but has a longer
wavefront travel distance cT , causing each
observer on the x axis (except on the Sun)
to observe a redshift. The artifact distance

av T is currently explained by cosmic

expansion of space.

obs

emit
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Adding 1 to both sides puts the result in terms of the ratio of the observed to the emitted
wavelengths

1
cos

a

cT
z

c T
  (24)

cT is factored on the right side of the equation to simplify the result.

1
1

cos
az


  (25)

Subtracting 1 from both sides of the equations gives the result in terms of the redshift
velocity artifact.

1
1

cos
az


  (26)

2. Redshift artifact derived in the special theory of relativity.

As discussed previously, actual redshift requires a positive radial displacement (velocity)
between the light source and the observer. By definition, travel in the transverse direction
(without a change in radius) generates zero radial velocity and cannot cause an actual
redshift.

However, as has been demonstrated in the previous section, a redshift artifact occurs
because of radial displacement contained within the transverse distance in the taxicab
geometry. This redshift component in transverse distance was verified experimentally in
1938 by Herbert E. Ives and G.R. Stilwell. It is commonly known as the Transverse
Doppler Effect (TDE). [47]

This redshift artifact (defined as an increase in wavelength without radial motion) was
first predicted in by Einstein in 1905. [48]As explained within special relativity, the
Lorentz factor is dependent only on the magnitude (speed) of motion and is not affected
by its vector direction. The relativistic correction made to the Doppler Effect equation
therefore includes effects from both radial and transverse motion.

The classical Doppler formula is dependent solely on radial displacement (line-of-sight
movement) to or from the light source. In the full form relativistic Doppler equation, θ is
the angle between the direction of relative motion and the direction of emission in the
observer's frame of reference (an angle of zero is directly away from the observer). [48]

The full form for the relativistic Doppler Effect is:
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2 2

1 cos
1

1

v c
z

v c


 


[27]

In the special case that the light approaches at right angles (θ = 90°) to the direction of 
relative motion in the observer's frame, cos becomes zero so the numerator of the
equation becomes one. This means even though all movement is transverse and therefore
theoretically cannot generate actual radial velocity, a redshift artifact with the equation

2

2

1
1

1

az
v

c

 



. (28)

is observed.. Note: Even when the source is moving towards the observer, if there is a
transverse component to the motion then there is some speed at which the dilation just
cancels the expected blueshift and at higher speed the approaching source will be
redshifted. [49]

The variable in the TDE equation can be converted from velocity to distance to allow a
comparison with the equation derived from the difference between the two perspective
times.

First, since the ratio of 2v to 2c is dimensionless, it can be rewritten in terms of distance
instead of speed by multiplying both the numerator and denominator by time t .

 
 

2

2

1
1

1

z
vt

ct

 



(29)

Next, the magnitude of x can be substituted for vt which is allowed in the usual case of
velocity where t = one second.

 

2

2

1
1

1

z
x

ct

 



(30)

3. Comparison of equations of the two theories for the redshift artifact

The equation for the redshift artifact az which was derived from the difference in

perspectives was seen previously as Equation 17.
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1
1

cos
az


  [31]

The following equation for the redshift artifact az was derived from special relativity

(modified to have the variable as distance instead of velocity)

 

2

2

1
1

1

az
x

ct

 



[32]

A comparison between the two equations can be performed. As was seen previously in
FIG.9, the distance cT can be expressed in terms of x and cosct  by means of the
Pythagorean Theorem.

(  
2 2 2( cos )ct ct x  . (33)

The equation can then put in terms of cosct  by subtracting x from both sides.

(  
22 2( cos )ct ct x   . (34)

The equation can then be normalized to the Earth’s frame of reference by dividing

through both sides of the equation with 2( )ct . This process cancels the equal functions

and creates dimensionless units.

 

 

 

   

2 2 2

2 2 2

cosct ct x

ct ct ct


  (35)

Taking the square root of both sides and simplifying provides the ratio of the wavefront
distances from the two frames of reference.

 

2

2

cos
1

c t x

ct ct


  . (36)

The common term ct on the left side can be canceled,

 

2

2
cos 1

x

ct
   . (37)
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The unit exchange between velocity and position can be done in either direction without
affecting the magnitude since the units cancel in the ratio. For instance, the term cos

can be expressed in terms of velocity instead of position. First, the position 2x is

expressed as velocity times time 2( )vt

 

2

2

( )
cos 1

vt

ct
   (38)

Then the time t can be cancelled in the ratio to present the distance as velocity in order to
directly compare to the apparent redshift equation caused by different perspectives.

2

2
cos 1

v

c
   (39)

Therefore, the following relationship can be made:

2

2

1 1
1

cos
1

az
v

c


  



. (40)

As can be seen, the equation derived for the apparent redshift from the difference
between the observer-centered and source-centered perspectives is equal to the TDE
equation for the redshift artifact. This agreement with the TDE equation gives strong
experimental evidence to support the hypothesis that the observed redshift is an artifact of
observation caused by a difference in perspective of the observer rather caused by
physical cosmic expansion.

IV. EFFECT OF DISTANCE ON THE MAGNITUDE OF THE ARTIFACT

To maintain the magnitude of the parsec distance unit as determined by the equation

tany x  as distance to the star increases, the angle must stay the same. However, by

reducing the angle, distance to nearby stars can be measured using the fact that one arc
second equals one parsec. As an example, when the angle is reduced to one half of an arc
second, the distance is two parsecs.

As can be seen in FIG.10, as the angle decreases, the error per unit also decreases. This
may confuse understanding of cumulative effects of the parsec unit. If the parallax
method were used for all distance measurements, the error would, in deed, diminish with
distance, not accumulate, but the technique has been limited to a relatively short range.
[50]



All longer range techniques, which
are based on the parsec unit with its
11, the error is the identical for each parsec unit and accumulates with increasing
distance. [51]

When the angle  is held at
increase and av will equal 70 /

parsecs according to Hubble’s law. [52]

The increase in the velocity artifact is perceived in two ways as can be seen in FIG.10.
On the left of the figure, the small difference in
a total. . On the right of the figure,
a longer radius and baseline. [53]

The sum of the individual multiple parsecs on the left pro
as the increased scaled distances on the right. The effect is the same as if the distances
had been increased proportionally when setting the parsec’s radial magnitude.
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All longer range techniques, which are included in what is known as the distance ladder,
are based on the parsec unit with its full angle of one arc second. As can be seen in FIG.
11, the error is the identical for each parsec unit and accumulates with increasing

is held at1arc second, then as ct increases to 1 megaparsec,
70 /km s . This linear relationship continues for multiple

parsecs according to Hubble’s law. [52]

The increase in the velocity artifact is perceived in two ways as can be seen in FIG.10.
On the left of the figure, the small difference in r for each individual parsec is added to
a total. . On the right of the figure, r is shown totaled in one similar triangle scaled with
a longer radius and baseline. [53]

The sum of the individual multiple parsecs on the left provide the same apparent velocity
as the increased scaled distances on the right. The effect is the same as if the distances
had been increased proportionally when setting the parsec’s radial magnitude.

are included in what is known as the distance ladder,
angle of one arc second. As can be seen in FIG.

11, the error is the identical for each parsec unit and accumulates with increasing

increases to 1 megaparsec, d will
. This linear relationship continues for multiple

The increase in the velocity artifact is perceived in two ways as can be seen in FIG.10.
for each individual parsec is added to

is shown totaled in one similar triangle scaled with

vide the same apparent velocity
as the increased scaled distances on the right. The effect is the same as if the distances
had been increased proportionally when setting the parsec’s radial magnitude.
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The calculation of redshift normalizes the difference between the observed and emitted
wavelengths to the vector magnitude of the emitted wavelength. In trigonometric terms,
the normalizing process divides the wavelength difference between the observed
wavelength and the emitted wavelength ( cos )cT c T by the emitted wavelength cosc T

. [54]

The cumulative increase in redshift, observed in FIG 12, is non-linear, specifically
sinusoidal. This compares to the cumulative increase in recession velocity which is linear
in FIG.11. There is nothing inherent in the normalization process to cause a sinusoidal
function; it occurs because the factor between the observed and emitted wavelength is
cos . [55]
As will be seen, this prediction is proven by the observed sinusoidal shape of the general
relativity relationship between velocity and redshift.
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The total of the individual parsecs is on the left side with the total av t for the whole

distance on the right side. In this case, the relationship between the two sides is non-
linear with distance.

V. GENERAL RELATVITY MODELS

Both the non-linear relationship between velocity and redshift and the non-linear
relationship between distance and the scale factor are currently explained by the
Friedmann–Robertson–Walker (FRW) metric as due to the physical effects of expansion.
The FRW metric is an ad hoc solution to the extent that the factors of the metric are
selected based on fitting observations of the cosmos. [56]

It will be demonstrated that these non-linear relationships are due to the sinusoidal nature
of the artifact caused by the difference between the source-centered and observer-
centered perspectives.

A. Velocity vs. redshift



FIG. 13 shows the accepted curve shapes for the supposedly linear relationship of
recession velocity divided by
velocity. The special relativity curve is not generally accepted. [57]

Note the wide variation (gray area) in the general relativity models. The actual line

represents the observationally selected FRW model

and asymptotic to velocities of 0c and just over
correlates with a recession velocity of 1

The function that was derived

function has a domain of 

corresponding velocity values for this domain are shown in Table 4.
to fit this FRW model by a factor of 20, as will be seen. [59]

The function for the recession velocity artifact divided by the speed of light is
1 cosav c   . It has the same domain and range as the redshift artifact..

Compare the general relativity curve in FIG. 13 with the

curve matches closely follows the FRW general relativity graph of velocity vs. redshift
after calibration It is sinusoidal and is asymptotic to both
3c . A velocity of 1c gives a redshift of 1.453, which nearly matches the expected redshift
of1.46 . Further adjustments can be made in the multiplication
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FIG. 13 shows the accepted curve shapes for the supposedly linear relationship of
recession velocity divided by c and the FRW general relativity model for redshift
velocity. The special relativity curve is not generally accepted. [57]

Note the wide variation (gray area) in the general relativity models. The actual line

the observationally selected FRW model , (0.3,0.7)M   which sinusoidal

and asymptotic to velocities of 0c and just over 3c . In this model, a redshift value of 1.46
correlates with a recession velocity of 1 c . [58]

The function that was derived for the red shift artifact in this paper is az

2 radians and a range of infinity. The red shift values and

corresponding velocity values for this domain are shown in Table 4. They are calibrated
to fit this FRW model by a factor of 20, as will be seen. [59]

The function for the recession velocity artifact divided by the speed of light is
. It has the same domain and range as the redshift artifact..

Compare the general relativity curve in FIG. 13 with the 1 cos 1  curve in FIG. 14. The

curve matches closely follows the FRW general relativity graph of velocity vs. redshift
after calibration It is sinusoidal and is asymptotic to both zero and just above a velocity of

gives a redshift of 1.453, which nearly matches the expected redshift
. Further adjustments can be made in the multiplication factors if required.

FIG. 13 shows the accepted curve shapes for the supposedly linear relationship of
RW general relativity model for redshift

Note the wide variation (gray area) in the general relativity models. The actual line

, (0.3,0.7) which sinusoidal

. In this model, a redshift value of 1.46

1 cos 1az   . The

radians and a range of infinity. The red shift values and

They are calibrated

The function for the recession velocity artifact divided by the speed of light is
. It has the same domain and range as the redshift artifact..

curve in FIG. 14. The

curve matches closely follows the FRW general relativity graph of velocity vs. redshift
zero and just above a velocity of

gives a redshift of 1.453, which nearly matches the expected redshift
factors if required.



Compare the linear curve in FIG. 13 with the calibrated

figures, the linear curve very closely approximates the FRW curve until the velocity
approaches 1 where the two curves quickly

In Table 7, the first column is the angle
0.02 to close to 2 radians. The second column is the linear velocity numbers which are
simply the value of the angle
approximate the same curve the result of the function with the corresponding angle. The

third column is the redshift

calculation to match the FRW curve in FIG. 11. The fourth column is the

which is also multiplied by a factor of 9.68 to match the observed values.

As seen previously, the factor of 9.68 was also used to calculate the Hubble constant
from redshift. With this factor, the Hubble constant exactly equaled NASA’s value.
The factor is a calibration which is analogous to the distance modulus, which is discussed
in footnote 40.
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Compare the linear curve in FIG. 13 with the calibrated av c curve in FIG.14. In both

figures, the linear curve very closely approximates the FRW curve until the velocity
approaches 1 where the two curves quickly diverge.

In Table 7, the first column is the angle in radians ranging in small increments from
radians. The second column is the linear velocity numbers which are

simply the value of the angle  in radians multiplied by a factor of 2 in order to
approximate the same curve the result of the function with the corresponding angle. The

third column is the redshift az function multiplied by a factor of 9.68 to provide a

calculation to match the FRW curve in FIG. 11. The fourth column is the

which is also multiplied by a factor of 9.68 to match the observed values.

the factor of 9.68 was also used to calculate the Hubble constant
from redshift. With this factor, the Hubble constant exactly equaled NASA’s value.
The factor is a calibration which is analogous to the distance modulus, which is discussed

curve in FIG.14. In both

figures, the linear curve very closely approximates the FRW curve until the velocity

in radians ranging in small increments from
radians. The second column is the linear velocity numbers which are

in radians multiplied by a factor of 2 in order to
approximate the same curve the result of the function with the corresponding angle. The

function multiplied by a factor of 9.68 to provide a

calculation to match the FRW curve in FIG. 11. The fourth column is the av c function

which is also multiplied by a factor of 9.68 to match the observed values.

the factor of 9.68 was also used to calculate the Hubble constant
from redshift. With this factor, the Hubble constant exactly equaled NASA’s value.
The factor is a calibration which is analogous to the distance modulus, which is discussed
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B. Apparent Expansion

The scale factor artifact ( )aa t was derived from the sinusoidal relationship of radial

distance in the source-centered perspective and the observer-centered perspective. Since
radial distance can be represented by ct , radial distance to an object can represent elapsed
time from that object. The scale factor can be interpreted as a measure of expansion.

According to the FRW metric, if at the present time light is received from a distant object
with a redshift of z, then the scale factor at the time the object originally emitted that light
is given by the equation. [60]

1
( )

1
a t

z



[41]

Angle


Velocity

c
Redshift

az
Recession

a
v c

* 2 (1 cos 1)*9.68  (1 cos ) *9.68

Radians km/s km/s

0.02 0.04 0.00 0.002

0.03 0.06 0.00 0.004

0.04 0.08 0.01 0.008

0.05 0.10 0.01 0.012

0.06 0.12 0.02 0.018

0.07 0.14 0.02 0.024

0.09 0.18 0.04 0.040

0.15 0.30 0.11 0.112

0.26 0.51 0.35 0.336

0.35 0.69 0.65 0.606

0.43 0.85 1.00 0.910

0.51 1.00 1.46 1.273

0.60 1.18 2.12 1.747

0.72 1.42 3.33 2.500

0.80 1.58 4.35 3.033

0.90 1.77 6.09 3.784

1.00 1.97 8.51 4.597

1.10 2.17 12.05 5.464

1.20 2.36 17.60 6.376

1.30 2.56 27.38 7.325

1.40 2.76 48.83 8.300

1.48 2.92 100.29 9.093

1.54 3.03 314.77 9.692

1.56 3.07 916.26 9.892

1.57 3.09 12547.66 9.992



It was demonstrated previously that

equation.

( ) cosaa t 

It can be seen in FIG. 15, that the function for the apparent scale factor

domain of 2 radians and a range of infinity. The scale factor values and corresponding

wavelength values for this domain are shown in Table 5. Note:
goes with the scale factor and so is a 45 degree line on this plot. [61]

Just as the curve in FIG. 15 can be changed by different variables in the FRW model to
create the desired fit to velocity, these values can also be changed in this model.
However, because of the great range of the values, no attempt was made in Excel to be
quantitative. This is purely a qualitative comparison of curve shapes and intercepts.

Note that the slope change in FIG. 15 is very acute as compared to the slope change in
FIG. 16. The appearance of the change depends on the scale of the data. In a log
the smaller values are overemphasized compared to the larger values. If the change in
FIG.15 is expanded, a more gradual change will be seen.
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It was demonstrated previously that1 1 cosz   , so the substitution can be made in the

It can be seen in FIG. 15, that the function for the apparent scale factor

radians and a range of infinity. The scale factor values and corresponding

wavelength values for this domain are shown in Table 5. Note: The perturbation mode
goes with the scale factor and so is a 45 degree line on this plot. [61]

n FIG. 15 can be changed by different variables in the FRW model to
create the desired fit to velocity, these values can also be changed in this model.
However, because of the great range of the values, no attempt was made in Excel to be

s is purely a qualitative comparison of curve shapes and intercepts.

Note that the slope change in FIG. 15 is very acute as compared to the slope change in
FIG. 16. The appearance of the change depends on the scale of the data. In a log

ler values are overemphasized compared to the larger values. If the change in
FIG.15 is expanded, a more gradual change will be seen.

, so the substitution can be made in the

[42]

( ) cosaa t  has a

radians and a range of infinity. The scale factor values and corresponding

The perturbation mode

n FIG. 15 can be changed by different variables in the FRW model to
create the desired fit to velocity, these values can also be changed in this model.
However, because of the great range of the values, no attempt was made in Excel to be

s is purely a qualitative comparison of curve shapes and intercepts.

Note that the slope change in FIG. 15 is very acute as compared to the slope change in
FIG. 16. The appearance of the change depends on the scale of the data. In a log-log plot,

ler values are overemphasized compared to the larger values. If the change in



Although the scale factor is equal to
This was because the observer origin was moved from zero to one so that the convention
that the value of the scale factor at the present time is one could be maintained

Angle 1 cos 

0.05 0.001 1.10

0.1 0.005 1.11

0.2 0.020 1.12

0.33 0.054 1.16

0.43 0.091 1.21

0.53 0.137 1.27

0.62 0.186 1.35

0.72 0.248 1.46

0.81 0.311 1.60

0.9 0.378 1.77

1 0.460 2.04

1.1 0.546 2.43

1.2 0.638 3.04

1.3 0.733 4.11

1.4 0.830 6.47

1.47 0.899 10.93

1.5 0.929 15.55
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Although the scale factor is equal to cos , 1 cos was plotted against the wav
This was because the observer origin was moved from zero to one so that the convention
that the value of the scale factor at the present time is one could be maintained
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1.77

2.04

2.43

3.04

4.11
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10.93

15.55

was plotted against the wavelength.
This was because the observer origin was moved from zero to one so that the convention
that the value of the scale factor at the present time is one could be maintained
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1.51 0.939 18.10

1.52 0.949 21.66

1.53 0.959 26.97

1.54 0.969 35.72

As can be seen in FIG. 14, the 1 cos function exhibits the same characteristics as the
Friedmann–Robertson–Walker model of the scale factor showing the effect of inflation in
the Hubble radius expansion.

VI. PROOFS

A. Dark Energy

1. Background

As previously explained in Section II A, the difference between the source-centered
perspective and the observer-centered perspective causes the Earth observer to perceive a
longer parsec having the same wave front travel time as the defined parsec unit. This
combination of longer perceived distance with the same perceived time creates a velocity
artifact that manifests as an apparent redshift that increases with distance.

Since redshift is currently interpreted as the result of actual physical cosmic expansion, it
is logically for astronomers to use redshift to determine distance to stars and galaxies.
The first redshift-distance relationship was the Hubble Law, which used multiples of
recession velocity. [62] Later, a new relationship, known as the Friedman-Robertson-
Walker (FRW) metric, was developed using general relativity with comoving distance to
extend the useful range. [63]

As will be demonstrated, it is the same longer perceived length of the parsec that causes
the redshift artifact, which also causes the redshift distance to be shorter than expected.

As is well-known, but sometimes overlooked, distance is actually measured as a count of
units. Therefore, a longer unit reduces the numerical count of the units which makes the
distance appear shorter. For example, if distance were accidentally measured in meters
instead of yards, each unit would be about 3 inches too long. For every 12 yards
measured with the long (meter-sized) unit, the distance will be shorter by 1 yard
(36 12 3 )in x in , which shows that the error is cumulative with distance.

It is important to note that the error in distance in the example could be corrected if the
sum of the shortfall accumulated-to-date were to be added back to the individual distance

Table 8: The scale factor
function was made to be
1 cos in order to “look
back” from one.
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measurements at a rate of 3inches per yard. As will be seen, this same add-back
correction is also possible with redshift distance.

2. Determination and correction of redshift distance shortfall

Since the longer perceived parsec is both the cause of the redshift and the cause of the
redshift distance shortfall, the magnitude of both effects is identical. Therefore, the extra
distance of the parsec can be added back to the redshift distance for correction. The extra
distance of the parsec is the difference in distance between the source-centered and
observer-centered perspectives, which is given by the equation

2 sin 2 sinr r  . [43]

As was seen in the example with the meter and the yard measurement s, a correction for
the shorter distance can be made by adding the total distance error back to the redshift
artifact. The redshift artifact was defined in Equation 26 as1 cos 1  . Therefore, the

corrected redshift distance is the sum of the original redshift and the shortfall error.

 
1

1 2 sin 2 sin
cos

corrz r r 


 
    
 

[44]

The angle cal used to determine the shortfall error calculation is calibrated to fit the

individual redshift readings with the following calculation.

2cal az  [45]

This concept of correcting the redshift shortfall will be tested by populating the redshift
and distance correction equations with artificial values and then proved by using actual
observed redshift values.

For the test of the concept, table 9 is populated with a linear progression of numbers in
the Angle column. They can be calibrated to represent any linear function. All other
positions in the table are calculated.

Angle Calculated z Cal. angle Shortfall error Corrected z

 1 cos 1az   2cal az  2 sin 2 sincal calr r  corr az z error 

0.200 0.020 0.031948 0.000 0.020

0.300 0.047 0.073437 0.000 0.047

0.400 0.086 0.134624 0.000 0.086

0.500 0.139 0.219117 0.001 0.141

0.600 0.212 0.332425 0.005 0.216

0.723 0.333 0.52372 0.018 0.351

0.800 0.435 0.683806 0.039 0.474
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0.900 0.609 0.956184 0.103 0.712

1.000 0.851 1.336458 0.267 1.117

1.100 1.205 1.892188 0.673 1.878

1.200 1.760 2.764136 1.596 3.356

1.260 2.270 3.565598 2.367 4.637

1.300 2.738 4.301365 2.590 5.328

FIG. 16 shows the redshift function (1 cos 1  ) with its characteristic sinusoid curve

and the corrected redshift with the added shortfall distance function ( 2 sin 2 sinr r  ).

The functions are both populated with data from Table 9.

Note that the individual redshift and corrected redshift values are on the same level on the
graph. The effect of the correction can be seen to be cumulative. It is important to note
that the corrected readings above the redshift value of 4.6 become increasingly non-
linear, even retrograde, then again become linear.

With the test of the concept complete, the next step is to prove the concept with real
redshift data. For this to be possible, the distance shortfall must be discovered. For the
shortfall to be discovered the distance to the star or galaxy has to become large enough to
make the cumulative shortfall measurable and an independent method has be available to
accurate measure the distance for comparison.

Luckily, the type 1a supernovae already provide both of the required factors. They are
very far away and they are standard candles. Again luckily, the redshift shortfall has
already been discovered. Therefore, the proof of the correction on real redshift data can
begin.

Table 9. The table contains the data displayed in FIG.16.



3. Discovery of the redshif

Riess et al in 1998 found that a type of supernovae (SNe 1a) were dimmer than expected
based on their distance. [64] The best explanation was that the supernovae were actually
further away than the FRW redshift
theorized that the extra distance was caused by a speedup in the expansion of the universe
caused by an unrecognized energy, which, because it was undetectable, came to be
known as dark energy. [66]

In a study where the standardiz
34 low redshift Type Ia supernovae were plotted against redshift velocity, Riess et al
(1998) observed that the observed luminosity distance of the low
supernovae met expected valu
was less than expected values.

The observed flux of a SNe type 1a supernova depends on its intrinsic luminosity, its
distance from the observer and the amount of astrophysical absorbing materi
path. (Later experiments would rule out light absorption by dust or other astrophysical
debris as a cause of the dimness. [68] Therefore, an incorrect distance could account for
the lower observed flux of the super novae.

The distance from the observer to the supernovae can be determined in two ways:
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3. Discovery of the redshift distance shortfall

Riess et al in 1998 found that a type of supernovae (SNe 1a) were dimmer than expected
based on their distance. [64] The best explanation was that the supernovae were actually
further away than the FRW redshift-distance calculations had predicted. [65]It was
theorized that the extra distance was caused by a speedup in the expansion of the universe
caused by an unrecognized energy, which, because it was undetectable, came to be
known as dark energy. [66]

the standardized peak magnitudes of a total of sixteen high redshift and
34 low redshift Type Ia supernovae were plotted against redshift velocity, Riess et al
(1998) observed that the observed luminosity distance of the low-redshift Type 1a
supernovae met expected values, but the high-redshift supernovae luminosity distance
was less than expected values. [67]

The observed flux of a SNe type 1a supernova depends on its intrinsic luminosity, its
distance from the observer and the amount of astrophysical absorbing materi

(Later experiments would rule out light absorption by dust or other astrophysical
debris as a cause of the dimness. [68] Therefore, an incorrect distance could account for
the lower observed flux of the super novae.

m the observer to the supernovae can be determined in two ways:

Riess et al in 1998 found that a type of supernovae (SNe 1a) were dimmer than expected
based on their distance. [64] The best explanation was that the supernovae were actually

ad predicted. [65]It was
theorized that the extra distance was caused by a speedup in the expansion of the universe
caused by an unrecognized energy, which, because it was undetectable, came to be

ed peak magnitudes of a total of sixteen high redshift and
34 low redshift Type Ia supernovae were plotted against redshift velocity, Riess et al

redshift Type 1a
luminosity distance

The observed flux of a SNe type 1a supernova depends on its intrinsic luminosity, its
distance from the observer and the amount of astrophysical absorbing material in the light

(Later experiments would rule out light absorption by dust or other astrophysical
debris as a cause of the dimness. [68] Therefore, an incorrect distance could account for

m the observer to the supernovae can be determined in two ways:
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i. Using the FRW redshift-distance method

The luminosity distance LD in the Friedmann-Robertson-Walker cosmologies was

calculated for each redshift with the formula

(46)

where 0H is the Hubble constant, m is the mass density, and  is the cosmological

constant. 1K M     and sin n is sinh for 0K  and sin for 0K  . [69]

ii. Using intrinsic luminosity method

The luminosity distance LD was calculated from SNe Ia light data with the formula,

2

4
L

L
D

F


 

  
 

, (47)

where L and F are the SNe Ia intrinsic luminosity and observed flux, respectively.
[70]

LD for both methods is calibrated in units of megaparsecs. The distance modulus is

calculated by [71]

5log 25p Lu D  . (48)

From the point of view that the problem was distance and not luminosity, the intrinsic
luminosity distances of the high-redshift SNe Ia were calculated to be, on average, 10%
to 15% greater than the FRW redshift distances. [72]

It was decided that the most likely reason that the redshift distances were too short was
because they did not include the acceleration of the cosmic expansion fueled by positive
vacuum energy density. A positive cosmological constant was seen as the most plausible
explanation. [73] However, in what Riess and Turner (2004) later said has been called
the worst embarrassment in all of theoretical physics, the energy density values
associated with quantum vacuum were measured to be a minimum of 55 orders of
magnitude higher than predicted. [74]
With the observationally selected values for the FRW constants plus the ad hoc value of
the cosmological constant, the redshift distance has been made to equal the intrinsic
distance of the supernovae. However, to date, there is no physical explanation for the
source of the dark energy that is claimed to constitute 68% of the universe. [75]

4. Application of the redshift distance correction equation

     
1 221 21

0

0

(1 ) sin 1 1 2
z

L k MD cH z n z z z z





        
 
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As can be seen in the last section, the sole evidence for dark energy is the unexplained
shortfall in redshift distance. As proposed, the shortfall in the redshift distance is instead
due to the effect of the longer parsec magnitude perceived by the Earth observer, which
in turn is caused by the observer-centered perspective as was earlier described.

To correct for the artifact error, the distance difference between the two perspectives is
determined, then added to the observed redshift distance.

When data is presented in the form of velocity v , as it is the Hubble constant and Pioneer

Anomaly applications, the observed velocity artifact av had to be divided by c to translate

into redshift velocity

4
av

c




  
   
  

(49)

However, the data in this application is provided is in the form of observed redshift

artifact az , not velocity; therefore the formula to determine the angle is modified to

eliminate the division by c . Also, because the domain of the redshift function is 2 , the

angle is changed to 2 .

 
2

az



 

  
 

(50)

The calculation of the distance difference s using the calibrated angle  is as follows:

2 sin sin
2

s r r



 

   
 

(51)

The next step is to calibrate the angle by multiplying it by the observed redshift value.
The calibrated angle is used in the calculation of the source-centered distance d and the
observer-centered distance x . The difference ( )d x is then used as a correction for the

redshift. cz .The corrected redshift cz is shown to be equal to MB, the stretch luminosity-

corrected B-band peak magnitude.

Observed
redshift

az

Calibrated
angle


Source-
centered
distance

(d)

Observer-
centered
distance

(x)

Distance
shortfall

s

Corrected
redshift

cz

az ( 2) az 2 sin 2r  sinr  d x az s 

Table 10: Headings for data tables (not including MB) showing the calculations made
for each heading, starting with the observed redshift reading az .
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5. Data tables

Data from the previously-mentioned published studies are found in Table 11-15.

Explanation:

Col 1:  SN IAU name assigned to SCP supernova (from source)

Col. 2: ( az ) Observer-centered redshift velocity Z of supernova or host galaxy (from source)

Col. 3: ( ) Angle θ - calculated as π/2 * redshift velocity z -Note: z =v/c

Col. 4: ( 2 sin 2r  ) Redshift velocity z based on source-centered distance

Col. 5: ( sinr  ) Redshift velocity z based on observer-centered distance

Col. 6 ( v ) Acceleration correction calculated as source-centered velocity minus observer-
centered velocity

Col. 7 ( cz ) Corrected redshift velocity calculated as redshift velocity plus negative correction

Col. 8 ( Bm ) Stretch luminosity-corrected B-band peak magnitude (from source)

SN

(1)

z

(2)



(3)

2r sin (θ/2)

(4)

r sin θ

(5)

s

(6)

zc

(7)

Bm

(8)
1996E 0.43 0.6754 0.6627 0.6252 0.037 0.467 22.72
1996H 0.62 0.9739 0.9359 0.8271 0.109 0.729 23.31
1996I 0.57 0.8954 0.8657 0.7804 0.085 -.655 23.42
1996J 0.30 0.4712 0.4669 0.4540 0.013 0.313 22.28
1996K 0.38 0.5969 0.5881 0.5621 0.026 0.406 22.80
1996U 0.43 0.6754 0.6627 0.6252 0.037 0.467 22.77
1997ce 0.44 0.6912 0.6775 0.6374 0.040 0.480 22.83
1997cj 0.50 0.7854 0.7654 0.7071 0.058 0.558 23.29
1997ck 0.97 1.5237 1.3805 0.9989 0.382 1.352 24.78
1995K 0.48 0.7540 0.7362 0.6845 0.052 0.532 22.92

SN

(1)

z

(2)



(3)

2r sin (θ/2)

(4)

r sin θ

(5)

s

(6)

zc

(7)

Bm

(8)

1990O 0.030 0.0471239 0.04721195 0.0471065 0.000013 0.030 16.26
1990af 0.050 0.0785398 0.0785196 0.0784591 0.000061 0.050 17.63
1992P 0.026 0.0408407 0.0408379 0.0408294 0.000009 0.026 16.08
1992ae 0.075 0.1178097 0.1177416 0.1175374 0.000204 0.075 18.43
1992ag 0.026 0.0408407 0.0408379 0.0408294 0.000009 0.026 16.28
1992al 0.014 0.0219911 0.0219907 0.0219894 0.000001 0.014 14.47
1992aq 0.101 0.1586504 0.1584841 0.1579857 0.000498 0.101 19.16
1992bc 0.020 0.0314159 0.0314146 0.0314108 0.000004 0.020 15.18
1992bg 0.036 0.0565487 0.0565411 0.0565185 0.000023 0.036 16.66

Table11. Data includes high-redshift and low-redshift supernovae. Source: Riess et al
(1998) p. 1020 [76]
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1992bh 0.045 0.0706858 0.0706711 0.0706270 0.000044 0.045 17.61
1992bl 0.043 0.0675442 0.06753314 0.0674929 0.000039 0.043 17.19
1992bo 0.018 0.0282743 0.0282734 0.0282706 0.000003 0.018 15.61
1992bp 0.079 0.1240929 0.1240133 0.1237747 0.000239 0.079 18.27
1992br 0.088 0.1382301 0.1381201 0.1377903 0.000330 0.088 19.28
1992bs 0.063 0.0989602 0.0989198 0.0987987 0.000121 0.063 18.24
1993B 0.071 0.1115265 0.1114687 0.1112955 0.000173 0.071 18.33
1993O 0.052 0.0816814 0.0816587 0.0815906 0.000068 0.052 17.54
1993ag 17.69 0.0785398 0.0785196 0.0784591 0.000061 0.050 0.050

N

(1)

z

(2)



(3)

2r sin (θ/2)

(4)

r sin θ

(5)

s

(6)

zc

(7)

Bm

(8)
1992bi 0.458 0.7194 0.7040 0.6590 .045 0.503 23.11

1994F 0.354 0.5561 0.5489 0.5278 .021 0.375 22.38

1994G 0.425 0.6676 0.6553 0.6191 .036 0.461 22.13

1994H 0.374 0.5875 0.5791 0.5543 .025 0.399 21.72

1994al 0.420 0.6597 0.6478 0.6129 .035 0.455 22.55

1994am 0.372 0.5843 0.5761 0.5516 .024 0.396 22.26

1994an 0.378 0.5938 0.5851 0.5595 .026 0.404 22.58

1995aq 0.453 0.7116 0.6967 0.6530 .044 0.497 23.17

1995ar 0.465 0.7304 0.7143 0.6672 .047 0.512 23.33

1995as 0.498 0.7823 0.7625 0.7049 .058 0.556 23.71

1995at 0.655 1.0289 0.9841 0.8567 0.127 0.782 23.27

1995aw 0.400 0.6283 0.6180 0.5878 0.030 0.430 22.36

1995ax 0.615 0.9660 0.9289 0.8226 0.106 0.721 23.19

1995ay 0.480 0.7540 0.7362 0.6845 0.052 0.532 22.96

1995az 0.450 0.7069 0.6922 0.6494 0.043 0.493 22.51

1995ba 0.388 0.6095 0.6001 0.5724 0.028 0.416 22.65

1996cf 0.570 0.8954 0.8657 0.7804 0.085 0.655 23.27

1996cg 0.490 0.7697 0.7508 0.6959 0.055 0.545 23.10

1996ci 0.495 0.7775 0.7581 0.7015 0.057 0.552 22.83

1996ck 0.656 1.0304 0.9855 0.8575 0.128 0.784 23.57

1996cl 0.828 1.3006 1.2109 0.9637 0.247 1.075 24.65

1996cm 0.450 0.7069 0.6922 0.6494 0.043 0.493 23.17

1996cn 0.430 0.6754 0.6627 0.6252 0.037 0.467 23.13

1997F 0.580 0.9111 0.8799 0.7902 0.090 0.670 23.46

1997G 0.763 1.1985 1.1281 0.9315 0.197 0.960 24.47

1997H 0.526 0.8262 0.8029 0.7354 0.068 0.594 23.15

1997I 0.172 0.2702 0.2694 0.2669 0.002 0.174 20.17

1997J 0.619 0.9723 0.9345 0.8262 0.108 0.727 23.80

1997K 0.592 0.9299 0.8968 0.8016 0.095 0.687 24.42

1997L 0.550 0.8639 0.8373 0.7604 0.077 0.627 23.51

1997N 0.180 0.2827 0.2818 0.2790 0.003 0.183 20.43

Table 12: Data includes only low-redshift supernovae. Source: Perlmutter et al (1999)
Calan /Tololo SNe Ia. [77]
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1997O 0.374 0.5875 0.5791 0.5543 0.025 0.399 23.52

1997P 0.472 0.7414 0.7246 0.6753 0.049 0.521 23.11

1997Q 0.430 0.6754 0.6627 0.6252 0.037 0.467 22.57

1997R 0.657 1.0320 0.9868 0.8583 0.128 0.785 22.83

1997S 0.612 0.9613 0.9247 0.8200 0.105 0.717 23.69

1997ac 0.320 0.5027 0.4974 0.4818 0.016 0.336 21.86

1997af 0.579 0.9095 0.8785 0.7892 0.089 0.668 23.48

1997ai 0.450 0.7069 0.6922 0.6494 0.043 0.493 22.83

1997aj 0.581 0.9126 0.8813 0.7911 0.090 0.671 23.09

1997am 0.416 0.6535 0.6419 0.6079 0.034 0.450 22.57

1997ap 0.830 1.3038 1.2134 0.9646 0.249 1.079 24.32

SN(1) Bm (2) z(3)  (4) r sin θ5) 2r sin (θ/2)(6) s (7) zc(8)

1997ff 27.00 1.7 2.6704 0.4540 1.9447 -1.491 3.191

SN

(1)

z

(2)



(3)

2r sin (θ/2)

(4)

r sin θ

(5)

s

(6)

zc

(7)

Bm (8)

2002fw 1.3 2.0420352 1.7052803 0.8910065 -0.814274 2.114

2002fx 1.4 2.1991149 1.7820130 0.8090170 -0.972996 2.373

2002hp 1.305 2.0498892 1.7093709 0.8874134 -0.821957 2.127

1.305 2.0498892 1.7093709 0.8874134 -0.821957 2.127

2002hr 0.526 0.8262389 0.8029366 0.7353879 -0.067549 0.594

2002kc 0.216 0.3392920 0.3376669 0.3328195 -0.004847 0.221

2002kd 0.735 1.1545353 1.0914728 0.9146072 -0.176866 0.912

2003ki 1.41 2.2148228 1.7890893 0.7996847 -0.989405 2.399

2003kj 1.307 2.0530308 1.7109997 0.8859609 -0.825039 2.132

2003ak 1.551 2.4363051 1.8769258 0.6482528 -1.228673 2.780

2003az 1.27 1.9949113 1.6801871 0.9114033 -0.768784 2.039

2003bd 0.67 1.0524335 1.0045311 0.8686315 -0.135900 0.806

2003be 0.64 1.0053096 0.9635073 0.8443279 -0.119179 0.759

2003dy 1.34 2.1048671 1.7372630 0.8607420 -0.876521 2.217

2003XX 0.935 1.4686946 1.3402056 0.9947921 -0.345413 1.280

2003cb 0.899 1.4121459 1.2977013 0.9874414 -0.310260 1.209

2003eq 0.839 1.3178981 1.2245726 0.9681913 -0.256381 1.095

2003es 0.954 1.4985397 1.3622087 0.9973906 -0.364818 1.319

Table 13: The data includes high-redshift and low-redshift supernovae. Source: Perlmutter et al
(1999) SCP Data. P. 570 [78]

Table 14: The data includes only the high-redshift supernovae 1997ff. Source: Riess et al
(2001) [79]

Table 15.The data includes 16 Type 1a SNe Ia. Source: Riess et al (2004). Data is

incomplete because the authors of this paper were unable to find the effective Bm or

distance moduli (column 8) for the supernovae in the Riess et al (2004) paper.
Therefore the data is not included in the graphs. However, the corrected redshift
values in column (7) are available for comparison with supernovae data. [80]
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Figure 17 shows the linear graph of the data developed by Perlmutter et al (1999) to
illustrate the differences between distance using different FRW metrics and intrinsic SNe
1a distance. [81]
The graph shows the redshift data plotted against the effectiv
supernovae (stretch luminosity
relationship is non-linear. The data contains what are referred to as high and low redshift
groups of supernovae. Note that the difference betw
supernovae intrinsic distance is resolved by selecting
equation, which changes the curve shape. [82]

ii.
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6. Graphs

i. Linear graph- Perlmutter et al (1999)

Figure 17 shows the linear graph of the data developed by Perlmutter et al (1999) to
illustrate the differences between distance using different FRW metrics and intrinsic SNe

The graph shows the redshift data plotted against the effective magnitude of the type 1a
supernovae (stretch luminosity-corrected B-band peak magnitude). As can be seen, the

linear. The data contains what are referred to as high and low redshift
Note that the difference between the redshift distance and the

supernovae intrinsic distance is resolved by selecting ad hoc constants in the FRW
equation, which changes the curve shape. [82]

ii. New linear graph

Figure 17 shows the linear graph of the data developed by Perlmutter et al (1999) to
illustrate the differences between distance using different FRW metrics and intrinsic SNe

e magnitude of the type 1a
band peak magnitude). As can be seen, the

linear. The data contains what are referred to as high and low redshift
een the redshift distance and the

constants in the FRW



The graph in FIG. 18 displays the same data as the top section of the
(1998) graph shown in FIG. 17, plus data from Riess et al (1998) and one point 1997ff
from Riess et al (2001) which has the highest known redshift of any supernova. [83]

The data is being shown in this format to allow the reader to make a
the corrected redshift data in FIG. 19 and to the calculated data which was seen back in
FIG. 16. As a reminder, FIG. 16 contained both the redshift and corrected redshift curves
in the same graph; this was feasible because the curves

The redshift and corrected redshift graphs in FIG. 18 and FIG. 19 respectively represent
actual data points whose natural variability would overlap the two curves and prevent
distinguishing one from another, thus they are show

Note that the redshift curve shown here in FIG. 18with actual data, closely matches the
redshift curve seen previously in FIG. 16), which was derived from the equation

 1 cos 1az  

FIG19 shows the effect that

the observed redshift data. As can be seen, the farther away a supernova is, the more the
correction adds to the redshift distance.

The correction is accurate within expected limits. The
between the average of the redshift
supernovae. . Riess et al (1998) reported that the average increase between the redshift
distance and the intrinsic distance was 10% to 15% for the same high
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The graph in FIG. 18 displays the same data as the top section of the Perlmutter et al
(1998) graph shown in FIG. 17, plus data from Riess et al (1998) and one point 1997ff
from Riess et al (2001) which has the highest known redshift of any supernova. [83]

The data is being shown in this format to allow the reader to make an easy comparison to
the corrected redshift data in FIG. 19 and to the calculated data which was seen back in
FIG. 16. As a reminder, FIG. 16 contained both the redshift and corrected redshift curves
in the same graph; this was feasible because the curves were derived from equations.

The redshift and corrected redshift graphs in FIG. 18 and FIG. 19 respectively represent
actual data points whose natural variability would overlap the two curves and prevent
distinguishing one from another, thus they are shown separately.

Note that the redshift curve shown here in FIG. 18with actual data, closely matches the
redshift curve seen previously in FIG. 16), which was derived from the equation

FIG19 shows the effect that  2 sin 2 sinr r  had when it was added as a correction to

the observed redshift data. As can be seen, the farther away a supernova is, the more the
correction adds to the redshift distance.

The correction is accurate within expected limits. The correction caused a
average of the redshift and corrected redshift values for the high

. . Riess et al (1998) reported that the average increase between the redshift
distance and the intrinsic distance was 10% to 15% for the same high z

Perlmutter et al
(1998) graph shown in FIG. 17, plus data from Riess et al (1998) and one point 1997ff
from Riess et al (2001) which has the highest known redshift of any supernova. [83]

n easy comparison to
the corrected redshift data in FIG. 19 and to the calculated data which was seen back in
FIG. 16. As a reminder, FIG. 16 contained both the redshift and corrected redshift curves

were derived from equations.

The redshift and corrected redshift graphs in FIG. 18 and FIG. 19 respectively represent
actual data points whose natural variability would overlap the two curves and prevent

Note that the redshift curve shown here in FIG. 18with actual data, closely matches the
redshift curve seen previously in FIG. 16), which was derived from the equation

had when it was added as a correction to

the observed redshift data. As can be seen, the farther away a supernova is, the more the

correction caused a14 % increase
for the high z

. . Riess et al (1998) reported that the average increase between the redshift
z supernovae. [84]



As can be seen, the effect of correction on the redshift dis
19 as it was in Fig. 16 with the calculated function (

correction is the same on observed redshift as it was on the redshift derived from the
function, it is reasonable to i
same function.

iii.

FIG. 20 shows the Hubble diagram for 18
samples in a logarithmic plot
the relationship between the supernovae data and the redshift to be linear, so that the
difference between them can be more easily seen.

As can be seen, there is a definite slope difference between the
compared to the low redshift supernovae. Dark energy can be described as the solution
for the problem of this slope difference.

According to the theory put forth by Riess et al (1998) and Riess and Turner (2004), the
graph shows a time history of the Big Bang expansion. The change in slope represents the
change from a matter-dominated era, where matter slowed the expansion, to an energy
dominated era which accelerates the expansion. The larger the redshift, the older the
supernova, so we are currently in an accelerated expansion era. [86]

It can be seen that different values for matter, energy and the cosmological constant are
entered into the FRW metric to find a linear fit. Currently in order to make the process
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As can be seen, the effect of correction on the redshift distance is the same here in FIG.
19 as it was in Fig. 16 with the calculated function (1 cos 1  ). Since the effect of the

correction is the same on observed redshift as it was on the redshift derived from the
function, it is reasonable to infer that the observed redshift data is also derived from the

iii. Logarithmic graph- Perlmutter et al (1999)

Hubble diagram for 18 low-redshift and 64 high-redshift SNe Ia
in a logarithmic plot with SNe 1a distances. [85] The logarithmic graph causes

the relationship between the supernovae data and the redshift to be linear, so that the
difference between them can be more easily seen.

As can be seen, there is a definite slope difference between the high redshift supernovae
compared to the low redshift supernovae. Dark energy can be described as the solution
for the problem of this slope difference.

According to the theory put forth by Riess et al (1998) and Riess and Turner (2004), the
a time history of the Big Bang expansion. The change in slope represents the

dominated era, where matter slowed the expansion, to an energy
dominated era which accelerates the expansion. The larger the redshift, the older the

, so we are currently in an accelerated expansion era. [86]

It can be seen that different values for matter, energy and the cosmological constant are
entered into the FRW metric to find a linear fit. Currently in order to make the process

tance is the same here in FIG.
). Since the effect of the

correction is the same on observed redshift as it was on the redshift derived from the
nfer that the observed redshift data is also derived from the

Perlmutter et al (1999)

redshift SNe Ia
SNe 1a distances. [85] The logarithmic graph causes

the relationship between the supernovae data and the redshift to be linear, so that the

high redshift supernovae
compared to the low redshift supernovae. Dark energy can be described as the solution

According to the theory put forth by Riess et al (1998) and Riess and Turner (2004), the
a time history of the Big Bang expansion. The change in slope represents the

dominated era, where matter slowed the expansion, to an energy-
dominated era which accelerates the expansion. The larger the redshift, the older the

It can be seen that different values for matter, energy and the cosmological constant are
entered into the FRW metric to find a linear fit. Currently in order to make the process



work, the cosmological constant, developed by Einstein, must be included. It has a
“reverse gravity effect; the further away a star, the greater the repulsive force. [87]

iv.

This graph contains the same data as the Perlmutter et al (1999) graph in the top
of FIG. 20 (but also includes 1997ff). The same difference in slope between the high and
low supernovae can be seen. However, the explanation for the difference in slope is very
different. [88]

The sinusoidal shape of the curve is explained by t

1 cos 1  . Since redshift is result of observer perspective, not cosmic expansion, the

curve represents only distance, not a change in the universe with time. The log function
has linearized the curve.

The change in slope of the high redshift supernovae is explained by an untoward effect
that occurs when the redshift artifact is used to predict distance. As previously explained,
the large perceived parsec causes a shortfall in distance because its la
unit count for a given distance. the effect is cumulative, so the redshift distance appears
to get smaller with distance away from the observer.
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logical constant, developed by Einstein, must be included. It has a
“reverse gravity effect; the further away a star, the greater the repulsive force. [87]

iv. New log graph

This graph contains the same data as the Perlmutter et al (1999) graph in the top
of FIG. 20 (but also includes 1997ff). The same difference in slope between the high and
low supernovae can be seen. However, the explanation for the difference in slope is very

The sinusoidal shape of the curve is explained by the equation for the redshift artifact.

. Since redshift is result of observer perspective, not cosmic expansion, the

curve represents only distance, not a change in the universe with time. The log function

The change in slope of the high redshift supernovae is explained by an untoward effect
that occurs when the redshift artifact is used to predict distance. As previously explained,
the large perceived parsec causes a shortfall in distance because its large size reduces the
unit count for a given distance. the effect is cumulative, so the redshift distance appears
to get smaller with distance away from the observer.

logical constant, developed by Einstein, must be included. It has a
“reverse gravity effect; the further away a star, the greater the repulsive force. [87]

This graph contains the same data as the Perlmutter et al (1999) graph in the top section
of FIG. 20 (but also includes 1997ff). The same difference in slope between the high and
low supernovae can be seen. However, the explanation for the difference in slope is very

he equation for the redshift artifact.

. Since redshift is result of observer perspective, not cosmic expansion, the

curve represents only distance, not a change in the universe with time. The log function

The change in slope of the high redshift supernovae is explained by an untoward effect
that occurs when the redshift artifact is used to predict distance. As previously explained,

rge size reduces the
unit count for a given distance. the effect is cumulative, so the redshift distance appears



When the redshift distance is compared with accurate distance, as seen here with the
intrinsic data from the supernovae, the slope of the line increases with distance indicating
the short redshift distance, which is on the
supernovae appear to have a positive slope, actually all
the shortage.

As can be seen in the logarithmic graph in FIG.22, the straight
that the addition of equation (

values has corrected the distance shortfall. The high and low redshift groups now have
the same slope and there is no evidence of any acceleration that requires the explanation
of dark energy.
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When the redshift distance is compared with accurate distance, as seen here with the
insic data from the supernovae, the slope of the line increases with distance indicating

the short redshift distance, which is on the x -axis. Although only the high redshift
supernovae appear to have a positive slope, actually all values of redshift are affected by

As can be seen in the logarithmic graph in FIG.22, the straight-line correlation is proof
that the addition of equation ( 2 sin 2 sinr r  ) values to the real observed redshift

ted the distance shortfall. The high and low redshift groups now have
the same slope and there is no evidence of any acceleration that requires the explanation

When the redshift distance is compared with accurate distance, as seen here with the
insic data from the supernovae, the slope of the line increases with distance indicating

axis. Although only the high redshift
values of redshift are affected by

line correlation is proof
) values to the real observed redshift

ted the distance shortfall. The high and low redshift groups now have
the same slope and there is no evidence of any acceleration that requires the explanation



8 Redshift transition point

Riess et al (2004) interpre
a transition from a constant deceleration caused by dark matter to a constant acceleration
caused by dark energy as the universe changed from an era of being matter
an era of being energy-dominated. [89]

The bottom half of FIG. 22 shows this explanation in a graphical form. The jerk point
caused by the transition between the two eras was measured by
1.46 0.13 [90]
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Redshift transition point and deceleration

Riess et al (2004) interpreted the sinusoidal redshift artifact function in
a transition from a constant deceleration caused by dark matter to a constant acceleration

as the universe changed from an era of being matter
dominated. [89]

The bottom half of FIG. 22 shows this explanation in a graphical form. The jerk point
caused by the transition between the two eras was measured by Riess et al (2004)

ted the sinusoidal redshift artifact function in physical terms as
a transition from a constant deceleration caused by dark matter to a constant acceleration

as the universe changed from an era of being matter-dominated to

The bottom half of FIG. 22 shows this explanation in a graphical form. The jerk point
Riess et al (2004) to be



Since it has been demonstrated that the redshift curve is the result of a function of the
redshift artifact, the graph in FIG.23 interprets the curve and straight line interaction
geometrically.

In this view, the redshift transition point is explained as the artifact redshift value at
which the gap between the sinusoidal error function

the lower redshift data first becomes observable.
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n demonstrated that the redshift curve is the result of a function of the
redshift artifact, the graph in FIG.23 interprets the curve and straight line interaction

In this view, the redshift transition point is explained as the artifact redshift value at
which the gap between the sinusoidal error function (1 cos 1)  and the best fit secant of

the lower redshift data first becomes observable.

n demonstrated that the redshift curve is the result of a function of the
redshift artifact, the graph in FIG.23 interprets the curve and straight line interaction

In this view, the redshift transition point is explained as the artifact redshift value at
and the best fit secant of



In the early 1970’s NASA launched two spacecraft, the Pioneer 10 and 11, into deep
space. In order to develop escape velocity from the solar system, the craft used close fly
bys of Jupiter and Saturn as a part of their tra
tracking the trajectory of Pioneer 11 that both spacecraft were affected by an unmodeled
negative acceleration. The velocity of both the Pioneer 10 and 11 continued to decrease
as the spacecraft left the solar system;

NASA did not publicize the existence of the error until the early 1990’s, believing it was

most likely spacecraft-related.
deceleration, NASA, working with JPL,
table that is known as the Error Budge

The first area is referred to as
such as energy loss and gas leakage. The second
Systematics. [94] This area
made, including mismodeling, calculation drift and periodic terms.
Systematics Generated External to the
environmental forces as solar effects, gravitational attractions and space dust
new physics
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C. Pioneer anomaly

1. Background

In the early 1970’s NASA launched two spacecraft, the Pioneer 10 and 11, into deep
space. In order to develop escape velocity from the solar system, the craft used close fly
bys of Jupiter and Saturn as a part of their trajectory. [91] It was discovered while
tracking the trajectory of Pioneer 11 that both spacecraft were affected by an unmodeled
negative acceleration. The velocity of both the Pioneer 10 and 11 continued to decrease
as the spacecraft left the solar system; then became relatively stable. [92]

NASA did not publicize the existence of the error until the early 1990’s, believing it was

related. 17 In their effort to determine the cause of the
, working with JPL, outlined three general areas of possible error in a

Error Budget. [93]

The first area is referred to as On-board Generated Systematics. This includes effects
such as energy loss and gas leakage. The second area is called Computational

. [94] This area includes other possible causes of the anomaly that are man
mismodeling, calculation drift and periodic terms. The third area is

xternal to the Spacecraft area. This category includes such
environmental forces as solar effects, gravitational attractions and space dust

In the early 1970’s NASA launched two spacecraft, the Pioneer 10 and 11, into deep
space. In order to develop escape velocity from the solar system, the craft used close fly-

jectory. [91] It was discovered while
tracking the trajectory of Pioneer 11 that both spacecraft were affected by an unmodeled
negative acceleration. The velocity of both the Pioneer 10 and 11 continued to decrease

then became relatively stable. [92]

NASA did not publicize the existence of the error until the early 1990’s, believing it was

In their effort to determine the cause of the anomalous
outlined three general areas of possible error in a

. This includes effects
area is called Computational

the anomaly that are man-
The third area is

This category includes such
environmental forces as solar effects, gravitational attractions and space dust, and also
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Most of NASA’s and JPL’s research into the origin of the deceleration has concentrated
on the first two areas. As an example, a recent paper from JPL and NASA scientists
(Turyshev et al 2011) [95] attributed the anomaly due to the effect of the on-board
nuclear heat source.

However, neither the nuclear heat source nor any other function in the On-board
Generated Systematics category can explain the time and place of the origin of the
anomalous negative acceleration or the mechanism for its increase and decrease during
the time spent the in the solar system.

2. Correlation with radial velocity

The Pioneer 11 data taken during the spacecraft’s travel in the solar system shows a
strong correlation between the anomaly and the radial velocity of the spacecraft. The
radial velocity, which in this case is defined as the displacement per time from the
tracking stations on Earth, is affected by both the spacecraft’s speed and direction.

The spacecraft’s planned interaction with the planets within the solar system caused
drastic changes in its direction. The Pioneer 10 and 11 received well recognized scalar
speed increases with the “slingshot “effect of their planet encounters followed by slow
decreases. Although less well recognized, the spacecrafts’ direction was also changed by
these encounters, which modified the ratio of transverse and radial components of their
total velocity. Curved motion, which includes a transverse element, for example, lowers
the radial component of total velocity significantly.

Radial velocity figures coinciding with anomaly measurements for the spacecraft were
not included in the publications reviewed, so values were calculated from the
displacement and dates that were supplied. From this data, shown in Table 1, the radial
velocity for different distances were calculated. These distances are then matched with
the anomaly values in Table 16 from information in Nieto and Anderson (2005). [96]

Displacement
AU

Displacement

1.00x10
8

km

X 108

1.00x10
8

km

Date
Decimal

Interval
years

Interval
seconds

Radial
Velocity

km/s

5.8 8.70 N/A 77.739726603 N/A N/A N/A
9.39 1.41 5.39 80.18082192 2.44109589 76982400 7.00

12.16 1.82 4.16 82.52054795 2.339726027 73785600 5.63
14.00 2.10 2.76 83.43561644 0.915068493 28857600 9.56
16.83 2.52 4.25 84.69589041 1.260273973 39744400 10.68
18.90 2.84 3.11 85.567123292 0.871232877 2745200 11.30

Table 16: Calculation of Radial Velocity

The calculated radial velocities for various distances of Pioneer 11’s journey through the
solar system can be matched with the published values of the anomaly at those same
distances. [97]The advantage of the independent calculation of radial velocity is that
there is a time line for the sequence of anomaly values.
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The data in Table 17 details the relationship between the radial velocity and the anomaly.

There is a very high correlation  0.9 between the anomaly pa and radial velocity radialv .

Distance v radial a p σ p

5.8 * 0.69 1.48
9.38 6.2 ** **
9.39 1.4 1.56 6.85
12.16 10.5 6.28 1.77
14.00 9.6 8.05 2.16
16.83 10.7 8.15 0.75
18.9 11.3 9.03 0.41

Two events in the travel of the Pioneer 11 spacecraft in the solar system are especially
important in further proving the correlation of radial velocity and the anomaly. The
correlation of the anomaly with radial velocity explains both occurrences:

1. The anomaly, even at its lowest level of 1.48, did not appear until 5.8 AU, the
distance at which Pioneer 11 intersected Jupiter. [98]

As Figure 24 illustrates, the trajectory of the spacecraft was changed by its meeting
with Jupiter. Up to Jovian encounter the Pioneer 11 spacecraft was traveling slowly
and maintaining a fairly constant radius about Earth’s orbit; producing a very small
radial velocity relative to NASA’s tracking stations.

After Jupiter, The spacecraft’s trajectory straightened, which caused its radial
direction to increase significantly and hold steady until intersection with Saturn plus
its velocity increased to 48km/s, which at the time was the fastest known relative
velocity. The combination increased the spacecraft’s radial velocity significantly.

Table 17.The correlation

coefficient ( 2r ) between the v

radial and a p values is 0.90.



As can be seen in FIG. 24, the flyby changed Pioneer 11’s travel direction away from
Earth in two planes. The change increased the radius both along the same plane as
measured from the Earth and also almost 90 degrees away from the pl
26 for additional clarity) [99]

Data is not available to quantitate the actual radial velocity at this point as can be seen in
Table 12. However, with the demonstrated correlation between radial velocity and the
anomaly, the increase in radial direction plus the increase in scalar speed reasonably
explains why the anomaly would reach an observable level at the Jovian flyby.

2. The increase in the anomaly between Jupiter and Saturn was recorded as an error.

Figure 25 shows the graph of the early anomaly measurements compared to distance
traveled (AU). [100] The seco
included data from both before and after the Saturn encounter.
that what was interpreted as an error was, in fact, actual
with low readings in that data window

It will be shown that the anomaly started
increased to a high value as the radial velocity increased.
as the spacecraft rounded Saturn.
position where Pioneer’s radial velocity goes almost instantly from an average of 6 km/s
to less than zero. (See the large view in FIG 2

Nieto and Anderson in 2005
Pioneer 11 data point was stated to have been taken before (or at) Saturn encounter at
9.39 AU. But since Saturn encounter was at 9.3
was a round-off in the distance quoted or the data overlap

52

As can be seen in FIG. 24, the flyby changed Pioneer 11’s travel direction away from
Earth in two planes. The change increased the radius both along the same plane as
measured from the Earth and also almost 90 degrees away from the plane. (Also see FIG.
26 for additional clarity) [99]

Data is not available to quantitate the actual radial velocity at this point as can be seen in
Table 12. However, with the demonstrated correlation between radial velocity and the

in radial direction plus the increase in scalar speed reasonably
explains why the anomaly would reach an observable level at the Jovian flyby.

The increase in the anomaly between Jupiter and Saturn was recorded as an error.

e graph of the early anomaly measurements compared to distance
he second Pioneer 11 point is the result of a data window

included data from both before and after the Saturn encounter. [10]. This paper proposes
ed as an error was, in fact, actual high reading that were include

in that data window.

he anomaly started at a low value at the Jupiter flyby, then
value as the radial velocity increased. Then it dropped precipitously

the spacecraft rounded Saturn. The timing of the error at 9.39 AU corresponds to the
position where Pioneer’s radial velocity goes almost instantly from an average of 6 km/s
to less than zero. (See the large view in FIG 24 and the expansion detail in FIG. 26

Nieto and Anderson in 2005 commented about the error in a foot note:
Pioneer 11 data point was stated to have been taken before (or at) Saturn encounter at
9.39 AU. But since Saturn encounter was at 9.38 AU, which would mean there either

off in the distance quoted or the data overlapped the encounter. Either way,

As can be seen in FIG. 24, the flyby changed Pioneer 11’s travel direction away from
Earth in two planes. The change increased the radius both along the same plane as

ane. (Also see FIG.

Data is not available to quantitate the actual radial velocity at this point as can be seen in
Table 12. However, with the demonstrated correlation between radial velocity and the

in radial direction plus the increase in scalar speed reasonably
explains why the anomaly would reach an observable level at the Jovian flyby.

The increase in the anomaly between Jupiter and Saturn was recorded as an error.

e graph of the early anomaly measurements compared to distance
nd Pioneer 11 point is the result of a data window that

This paper proposes
ng that were include

lyby, then
Then it dropped precipitously

The timing of the error at 9.39 AU corresponds to the
position where Pioneer’s radial velocity goes almost instantly from an average of 6 km/s

4 and the expansion detail in FIG. 26)

“The second
Pioneer 11 data point was stated to have been taken before (or at) Saturn encounter at

8 AU, which would mean there either
ped the encounter. Either way,
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the huge error in this point is anomalous and (sic) therefore it is of great interest to
reanalyze this region”. [101]

It was natural for NASA to assume that the anomaly fitted a steady curve and that any
high readings found in a data point that was between two low data points would be the
result of an error. Upon reanalysis, what was mistakenly called an error was, in reality,
valid high readings included in the data point. At a distance of 9.39 AU, which
correlates with the Saturn flyby, the anomaly was high, and then fell sharply. The data
window included both the high and low readings of the anomaly.

As can be seen in Figure 26, Pioneer 11’s path and velocity were changed by the Saturn
flyby. It shows clearly that the abrupt change in radial velocity occurred very close to the
9.39 AU point. This corresponds to location of the large recorded error in the second
reading. [102]

As can also be seen in FIG.26, after the Jupiter flyby, the Pioneer 11 spacecraft had
picked up significant scalar speed and radial direction. This would have caused a large
anomaly value for the second data point. However, at Saturn, the spacecraft traveled in a
trajectory that roughly paralleled a circular orbit of the sun, with a radius close to
Saturn’s semi-major axis.

This trajectory caused it to lose most of its radial direction which made the radial velocity
drop quickly at the time (9.38 AU) that the second data point was still being collected.
Since the data point was collected over a time period, it included both the high and low



velocities. Because the resulting high anomaly value didn’t fit the curve, NASA
considered it an outlier, which explains the very large error in the second data point.

Figure 27shows this path in detail.
negative at about 300 days
Eventually, the spacecraft’s speed (solar escape velocity) was too great to m
circular trajectory and it pulled away after about 200 days of orbital travel. (at about day
420 in Figure 25). After leaving orbit, the spacecraft’s radial velocity increased slowly
because of its oblique angle of trajectory relative to Earth.

54

velocities. Because the resulting high anomaly value didn’t fit the curve, NASA
outlier, which explains the very large error in the second data point.

Figure 27shows this path in detail. As can be seen, the radial velocity actually went
at about 300 days as the spacecraft followed this path. [103]

raft’s speed (solar escape velocity) was too great to m
and it pulled away after about 200 days of orbital travel. (at about day

). After leaving orbit, the spacecraft’s radial velocity increased slowly
se of its oblique angle of trajectory relative to Earth.

velocities. Because the resulting high anomaly value didn’t fit the curve, NASA
outlier, which explains the very large error in the second data point.

, the radial velocity actually went

raft’s speed (solar escape velocity) was too great to maintain the
and it pulled away after about 200 days of orbital travel. (at about day

). After leaving orbit, the spacecraft’s radial velocity increased slowly



In summary, the decay of a nuclear heat source cannot explain the reason for the
particular beginning point for the anomaly, nor can it explain the reason for the extreme
error in the second data point. As will be seen, the application of the same equation used
to predict the Hubble constant and to correct the redshift
the Pioneer anomaly almost perfectly.

2. Calculation

The anomaly is based on a comparison with

measurement included travel both to and from th

measured by Doppler radar must be divided by a factor of two in the equation:

   mod 0obs elt t      

mod

mod 0

2
1el

v t
 

 
  

 

obs is the frequency of the retransmitted signal received by the tracking station (an active

return signal, not a passive “bounce” was sent by the spacecraft when the transmitted
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In summary, the decay of a nuclear heat source cannot explain the reason for the
particular beginning point for the anomaly, nor can it explain the reason for the extreme

ta point. As will be seen, the application of the same equation used
to predict the Hubble constant and to correct the redshift-distance equation also predicts
the Pioneer anomaly almost perfectly.

Calculation

based on a comparison with a calculated model. [104] The radar

measurement included travel both to and from the spacecraft; hence the error (

measured by Doppler radar must be divided by a factor of two in the equation:

mod 0

2 p

DSN

a t
t t

c
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is the frequency of the retransmitted signal received by the tracking station (an active

return signal, not a passive “bounce” was sent by the spacecraft when the transmitted

In summary, the decay of a nuclear heat source cannot explain the reason for the
particular beginning point for the anomaly, nor can it explain the reason for the extreme

ta point. As will be seen, the application of the same equation used
distance equation also predicts

The radar

e spacecraft; hence the error ( pa ) as

measured by Doppler radar must be divided by a factor of two in the equation:

(52)

(53)

is the frequency of the retransmitted signal received by the tracking station (an active

return signal, not a passive “bounce” was sent by the spacecraft when the transmitted
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signal was received). model is the frequency predicted by NASA based on expected

variable values. 0 is the reference frequency. DSNE is an acronym for Deep Space

Network. [105]

The anomaly causes an increase in the wavelength of the radar signals as the distance
from Earth increases. The resulting redshift causes the spacecraft to exhibit negative
acceleration when compared to the mathematical model used by NASA.

The same equation that was used to calculate the Hubble constant is used to calculate the
Pioneer anomaly. The values differ between the two applications for the velocity, angle
and radius. The result for the Hubble constant was based on v per a velocity of 1km/s
per a radius of 1Mpc. The result for the Pioneer anomaly is based on the velocity of the
spacecraft v .

2 sin 4 sin 4
2

v v
v r r

c c
 

      
        

      
. (54)

The velocity v of an object moving relative to the observer can be determined by the
Doppler Effect on the frequency of the radar signal. The following equation multiplies
the speed of light by the percent of frequency change [106]

 obs emit

emit

f f
v c

f


 (55)

The calculated speed of light has the v

 
emit

f
v c v

f


   (56)

The v manifests as a negative acceleration of the moving object.

emit

f
v v c

f


  (57)

The error becomes negative.

- 2 sin 4 sin 4
2

v v
v r r

c c
 

      
        

      
. (58)
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First, the angle is calculated for the velocity of each spacecraft and the results are shown
in the following two tables. [107]

pi/4 v c θ

(radians) (km/s) (km/s) radians * (km/s/km/s)

0.785398163 10.45 299792.458 2.737697560E-05

pi/4 v c θ

(radians) (km/s) (km/s) radians* (km/s/km/s)

0.785398163 11.33 299792.458 2.968240512E-05

The next step is to use the appropriate calculated angle with a radius of one light second
expressed in km, to calculate the v per kilometer per second per second by subtracting

the Cartesian velocity ( sinr  ) from the polar velocity ( 2 sin 2r  ):

Avg. Velocity
(km/s) Function v values (km/s/s/)

10.45 2 sin 2r  8.207410807247

sinr  8.207410806478

Difference 0.000000000769

Velocity (km/s) Function v values (km/s/s)

11.33 2 sin 2r  8.898561119066

sinr  8.898561118986

Difference 0.000000000980

The average v for both spacecraft is displayed in Table 18.

Spacecraft v values (km/s/s)

Pioneer 10 v 0.000000000769

Pioneer 11 v 0.000000000980

Average v 0.0000000008745

Table 19: Angle  at a radial velocity of 10.45 km/s for
Pioneer 10

Table 20: Angle  at a radial velocity of 11.33 / /km s s
for Pioneer 11

Table 21: Calculation of v for Pioneer 10

spacecraft is 107.69 10 / /x km s s .

Table 22: Calculation of v for Pioneer

11spacecraft is 109.80 10 / /x km s s .
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As covered in the section on the effect of v on radar, the v makes it appear that an
object moving away from the observer has a small blue shift on top of the expected red
shift. This blue shift manifests as a negative acceleration.

emit

f
v v c

f


  (59)

v = 8.745 1010x km/s/s which manifests as negative acceleration of Pioneer spacecraft

NASA’s value for the Pioneer anomaly is -8.74 x 10-10km/s/s. (Anderson et al 1995). The
error accelerated the speed of the radar light signal used to measure the radial velocity of
the Pioneer spacecraft. The increase in light speed is seen as a negative acceleration in the
velocity of the spacecraft [108]

NASA developed an error budget by totaling all of the possible sources of experimental
error. The total allowance for error as determined by this budget is ±1.33 x 10 -10, which
equals ±15% of the average value. The predictions are all well within this limit. [109]

VII. DISCUSSION

A. Proofs of the theory

Proofs of this theory include both direct and indirect forms. For direct proof, the basic
concept, which was derived from first principles, accomplished the following:

1. Derived the Hubble Constant
2. Developed the curves for recession velocity, redshift and the scale factor
3. Corrected the redshift distance shortfall that was the raison d’être for dark energy
4. Predicted the Pioneer anomaly.

Each of these applications was demonstrated to be within experimental limits when tested
on data.

The construction of a complex ad hoc equation to fit a single set of data may be
explained by curve fitting; however, deriving a simple equation that very precisely fits
several different data sets is unlikely to be a coincidence. Further, the logic and
mathematics of the fit is clear and straightforward, with no requirement for unseen or
dark forces.

As indirect proof. the theory was shown to be in agreement with several predictions of
the special and general theories of relativity

Table 23: The average v for both Pioneer

10 and 11 is 108.745 10 / /x km s s
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1. The theory predicts the presence of a radial component in transverse distance,
which was confirmed by the Transverse Doppler Effect (TDE).

2. The theory predicts that the redshift equation is1 1 cosz   ; which was

confirmed by the special theory of relativity equation 2 21 1 1z v c   ,

when it was demonstrated that 2 2cos 1 v c  

3. The theory qualitatively predicts the sinusoidal shape of the FRW curves for

redshift, v c , and the scale factor, which are confirmed by comparing to

observation.
4. The theory derives the space-time interval and the relationship between

coordinate time and proper time from the difference between Euclidean and
taxicab geometries.

Finally, the fact that the theory almost exactly matches most nominal values in the
applications is doubly reassuring. When the value derived from first principles is so
closely confirmed by experimental results, it means that both methods are very reliable.

B. Implications of the theory

1. The use of the observer-centric perspective, with Cartesian coordinates and 1 norm
Minkowski distance, causes an error in the Pythagorean Theorem when measuring
distance or velocity in reference to a point source of energy or force.

This is because the Pythagorean equation 2 2 2( )dl x cdt  was derived in taxicab

geometry and therefore doesn’t follow the spectroscopic definitions of radial and
transverse directions. This equation assumes that it is l that has the radial component;
because distance l begins and ends with a different y coordinate value. However,

spectroscopically, it is x that has the radial component because it begins and ends with a
different r coordinate.

The spectroscopic definition of distance in Euclidean geometry requires a different form

of the Pythagorean equation so that 2 2 2( )dl x cdt  . This form shows it is x that has the

radial component. However, it only provides valid distances when t is negative so that
2 2 2( )dl x cdt   which returns to 2 2 2( )dl x cdt 

This has implications to Euler’s formula which states that, for any real number x,

cos sinixe x i x  , where e is the base of the natural logarithm, i is the imaginary unit,
with the argument x given in radians. Since the trigonometric functions are derived from
the Pythagorean Theorem, Euler’s formula is in taxicab geometry. It could be translated
into Euclidean geometry for better understanding.

2. There are strong indications in this paper that the function of the special theory of
relativity is to convert distance from taxicab to Euclidean geometry. When time is
defined by light traveling from a point source, the 1-norm function, which measures time
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with the y coordinate, fits the definition of coordinate time and the 2-norm function,
which measures time with the r coordinate, fits the definition of proper time.

In terms of four-dimensional spacetime, proper time is defined as the arc length s

between two events 1E 1 and 2E in three-dimensional (Euclidean) space. By contrast,

coordinate time t is the time between 1E and 2E events as measured by an observer at

1E in his or her frame of reference.

The function 1 cos was shown to equal the relativistic gamma 2 21 1 v c   . Serious

treatment of this subject is far beyond the scope of this paper, but a paper that explains
the predictions of the special theory of relativity in geometric rather than physical terms
is planned.

3. With redshift demonstrated to be the result of a perspective artifact, the main evidence
for cosmic expansion has been lost. Cosmic expansion is, in turn, the main evidence for
the Big Bang theory. Although there is other evidence supporting it, the Big Bang theory
does not appear viable without cosmic expansion.

Similarly, with the shape of the derived scale factor curve showing an inflation-like
increase, inflation the result of a physical phenomenon or is it a product of geometry?

4. With the difference in luminosity distances explained by an artifact caused by the
difference in perspectives, the need for the existence of dark energy would seem to have
been eliminated.

VIII. CONCLUSIONS

1. The recession velocity discovered by Edwin Hubble is an artifact of observation
caused by the measurement of light emitted from a point source using the observer-
centered perspective with taxicab geometry.

2. Redshift is the observable result of the velocity artifact.

3. The FRW curves can be explained by the sinusoidal functions derived from the
difference in perspectives, rather than a record of the physical expansion of the
cosmos shaped by matter, energy and the cosmological constant

4. The shortfall of the luminosity distance calculated using the FRW redshift-distance
method compared to SNe type1a intrinsic luminosity distance is the result of the
Earth observer’s use of a longer perceived parsec unit. A longer unit makes the
number of units per distance less and the error accumulates with distance. the
shortfall is corrected by the addition of the perspective difference in distance.
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5. The Pythagorean Theorem is not applicable when measuring light from a point
source.

6. The Pioneer anomaly is the result of the longer parsec unit (which converts to a
longer kilometer). The longer unit makes the number of units per distance less and the
error accumulates with distance. As the distance appears to shorten, the spacecraft
appears to decelerate.
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X. FOOTNOTES

1. Rabin, Sheila, "Nicolaus Copernicus", The Stanford Encyclopedia of Philosophy (Fall
2010 Edition), Edward N. Zalta (ed.),
http://plato.stanford.edu/archives/fall2010/entries/copernicus/>.

2. The source-centered distance hd between objects at any instant is defined as the

difference between their polar radial and angular magnitudes as measured from the light
source’s origin which is unchanging relative to the objects.

3. For a real number p ≥ 1, the p-norm or Lp-norm of a distance x is defined by.

 
1

1 2

ppp p p
nx x x x    .The 2-norm corresponds to Euclidean distance. (The 1-

norm is the norm that corresponds to the Manhattan distance). With a simple path, the
distance traveled by the object is the square root of the sum of the x-component distance

squared and the y-component distance squared. The vector norm is Euclidean or 2L norm

   
2

1
,

n

i ii
p q p q


  .

mathworld.wolfram.com/Distance.html

4. An incremental change in radius caused by an incremental change in circumference is
not affected by the magnitude of either the radius r or the circumference C.
www.newton.dep.anl.gov/askasci/math99/math99160.htm

5. Lecture 4 -- Geocentric and Heliocentric Systems
www2.astro.psu.edu/users/rbc/a1/lec4n.html

6. The observer-centered distance gd is the difference between an object’s Cartesian

radial y and transverse x magnitudes as measured from the observer’s origin.

Definition of observer-centered
www.merriam-webster.com/dictionary/observer-centered -



7. As can be seen, when A, as the observer, sees B in the same x
(heavy lines), then B’s relati
independent relationships (light lines) with R, then they both have the same relationship
with R.

8. The norm in this case is rectilinear (taxicab) or

observer-centered perspective, the radial distance

but it has no definition in terms of radial or transverse. In this geometry, radial distance is
defined as y and the transverse distance is defined as

the 1 norm Earth position is the

coordinate distances ( )x y

Eugene F. Krause (1987).

9. A circle is defined as a set of points with a fixed radial distance r from a center point.
.In taxicab geometry, circles are
coordinate axes. In the Euclidean metric
while in taxicab geometry, its length is 2
which makes 4 the value of a geometric analog to
jwilson.coe.uga.edu/MATH7200/

10. The following figure shows a comparison of the Euclidean and taxicab wave fronts of
a star. The radius of the Euclidean circle is

diamond-shaped line is the ta
circumference which is the normally expected circular shape.

The circumference of the taxicab circle in the figure
definition of π is the ratio of the circumferen
seen in the figure, that definition gives
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7. As can be seen, when A, as the observer, sees B in the same x-y coordinate system
(heavy lines), then B’s relationship with R is then not the same as A’s. If A and B have
independent relationships (light lines) with R, then they both have the same relationship

8. The norm in this case is rectilinear (taxicab) or 1L norm: 1 ( , ) .
i

d p q p q 

centered perspective, the radial distance  2 2r y x  is still a possible path,

but it has no definition in terms of radial or transverse. In this geometry, radial distance is
and the transverse distance is defined as x . The total path from the star to

Earth position is the L -shaped path formed by the addition of the

( )x y

Eugene F. Krause (1987). Taxicab Geometry, Dover. ISBN 0-486-25202

is defined as a set of points with a fixed radial distance r from a center point.
.In taxicab geometry, circles are squares with sides oriented at a 45° angle to the

Euclidean metric, each side of the square would have len
while in taxicab geometry, its length is 2r. Thus, a taxicab circle's circumference is 8
which makes 4 the value of a geometric analog to in this geometry
jwilson.coe.uga.edu/MATH7200/Taxicab/TaxiCab.html

The following figure shows a comparison of the Euclidean and taxicab wave fronts of
a star. The radius of the Euclidean circle is r and the radius of the taxicab circle is

shaped line is the taxicab circumference which compares with the Euclidean
circumference which is the normally expected circular shape.

taxicab circle in the figure is C = 2 + 2 + 2 + 2 = 8.
the ratio of the circumference of a circle to twice its radius. As can be

definition gives the value of π in taxicab geometry of

y coordinate system
onship with R is then not the same as A’s. If A and B have

independent relationships (light lines) with R, then they both have the same relationship

1

( , ) .
n

i i
i

d p q p q


  In the

is still a possible path,

but it has no definition in terms of radial or transverse. In this geometry, radial distance is
. The total path from the star to

shaped path formed by the addition of the y and the x

25202-7

is defined as a set of points with a fixed radial distance r from a center point.
with sides oriented at a 45° angle to the
, each side of the square would have length √2r,
. Thus, a taxicab circle's circumference is 8r,

The following figure shows a comparison of the Euclidean and taxicab wave fronts of
and the radius of the taxicab circle is y . The

xicab circumference which compares with the Euclidean

= 2 + 2 + 2 + 2 = 8. The
ircle to twice its radius. As can be

lue of π in taxicab geometry of
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8 2*1 4t   .

The formula for the circumference of a taxicab circle is 8c r or using the taxicab t

value, it becomes 2 tC r which has the same form as the Euclidean formula for a

Euclidean circle:

taxicabgeometry.net/geometry/circles

11. Euler, Russell and Jawad Sadek. The πs Go Full Circle, Mathematics Magazine, Vol.
72, No. 1 (Feb 1999), pp. 59-63.

12. As will be seen in FIG. 2, the radius r , which is a polar coordinate, can be represented

by 2 2y x in the Cartesian system, when x is infinitesimal. In this case, as x approaches

0 , then 2y y .This makes y r so that both represent the polar radial distance. The

sum of the infinitesimal x rectilinear distances approximates a curved polar arc r , so
that the transverse distances are also equal.

13. The radial direction is defined as that direction relative to a light source in which
travel causes the observer to perceive a change in wavelength. The transverse direction is
defined as that direction relative to a light source in which travel does not cause the
observer to perceive a change in wavelength. Note that a tangential direction does not
maintain a constant radial distance from the light source and therefore movement in this
direction has both a transverse and a radial component and will cause the perception of a
change in wavelength.

14. All distances measured by radar are rectilinear. Thus, the formula that matches the

distance of one AU is the chord 2 sin 2r  , not the arc r . Since, the arc and the chord

begin and end at the same radial distance, there is no net radial change with either
distance.

15. www.newton.dep.anl.gov/askasci/math99/math99160.htm

r

y

Sta
r 
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16. cims.nyu.edu/~kiryl/Calculus/Section_7.4--Arc.../Arc_Length.pdf

17. The radius r , which is a polar coordinate, can be represented by 2 2y x in the

Cartesian system, when x is infinitesimal. In this case, as x approaches 0 , then 2y y

.This makes y r so that both represent the polar radial distance. The sum of the

infinitesimal x rectilinear distances approximates a curved polar arc r , so that the
transverse distances are also equal.

18. The original radial distance 2y from FIG.2 is measured in Euclidean geometry equals

r . The new radial distance 2y , measured in taxicab geometry, equals cosr  .

19. When the Sun and Earth are on the same plane as the star, the alignment can be
changed simply by taking the measurements at a different point in Earth’s orbit around
the Sun. For the same radial distance r to the star, the Earth will be in the quadrant of the
orbit nearest the star; for the same radial distance y to the star, the Earth will be on a line

with the Sun that is orthogonal to the line from the star. When the Sun and the Earth are
not on the same plane as the star, the alignment must be virtual, that is, a mathematical
adjustment in distance must be made in order to change the alignment.

20. In terms of Euclidean geometry, the Cartesian x distance begins and ends with a
different radial distance ( r ) from the star. In terms of the taxicab geometry, the x
distance begins and ends with the same radial distance ( y ) from the star. The opposite is

true for the l distance. In Euclidean geometry, it begins and ends with the same radial
distance ( )r from the star, but in taxicab geometry, it begins and ends with a different

radial distance ( )y from the star.

21. The spectroscopic test determines whether a direction has a radial component by
moving in that direction and checking for a change in wavelength. If a change in
wavelength occurs, then the radial distance from the light source must have changed
during movement and therefore, there is a radial component. If the wavelength does not
change, then there is no radial component and the direction is all transverse. As
mentioned previously, the only all transverse distance is an arc segment of the wavefront
circumference of the light source.

22. When the radial distance is defined as cdt , because c is a constant, the variable in the

radial distance interval is the time interval 2dt . Because the transverse distance dl has no
radial distance, it has no time component. However, the interval dx has both a radial and
a transverse component, so it fits the definition of the space-time interval (

2 2 2( )dx dl cdt  ). However, there is a complication. In order for the Pythagorean

Theorem to match the spectroscopic definitions of radial and transverse distances, the

time component 2dt must be a component of x , not of l . Therefore, the
spectroscopically-correct equation is
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2 2 2( )dx dl cdt  .

As can be seen, this equation is still not valid since the dl distance is actually larger than
the x distance, not smaller as shown in the equation. In order for this equation to fit the

observed distance magnitudes, the function 2dt must be negative. 2 2 2( ( ))dx dl c dt   .

In this form, the equation fits the spectroscopic definitions of radial and transverse

direction and agrees with the observed distance magnitudes. 2 2 2( )dx cdt dl   .

However, because 2cdt is negative, the square root of the function is imaginary.

23. www.merriam-webster.com/dictionary/parallax

24. It might seem that the parsec unit should have been defined in Euclidean geometry

using the equation ( ) sinpc r x  .

However, if this equation were used to define the parsec, the magnitude of radial distance
would change between the Sun and the Earth, even though they are on the same x
baseline, which makes no sense in taxicab geometry. In addition, this equation would
leave the Cartesian y axis magnitude largely undefined in terms of radial distance since

the y axis only equals r when 0x  .

scienceworld.wolfram.com/astronomy/Parsec.html

25. With the angle p  , and the wavefront travel distance r to the Earth as ct , then the

wavefront travel distance y to the Sun can be expressed as cosct  . Thus, by dividing by

both distances by c , the relationship of proper time to coordinate time is a factor of

cosct c ct c .

The relationship between r and y can be expressed in terms of the x distance, using the

Pythagorean Theorem (  
2 2 2( cos )ct ct x  .

The equation is first normalized to the Earth’s frame of reference by dividing through

both sides of the equation with 2( )ct , which creates dimensionless units whose magnitude

is made relative to ct .

 

 

 

   

2 2 2

2 2 2

cosct ct x

ct ct ct


 

The equal function is canceled to make unity.
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 

   

2 2

2 2

cos
1

ct x

ct ct


 

Taking the square root of both sides and simplifying provides the ratio of the wavefront
distances from the two frames of reference.

 

2

2

cos
1

c t x

ct ct


  .

The common term ct on the left side can be canceled,

 

2

2
cos 1

x

ct
   .

. Next, the position 2x is expressed as velocity times time 2( )vt

 

2

2

( )
cos 1

vt

ct
  

Dividing by t gives the ratio in terms of velocity

2

2
cos 1

v

c
  

Since proper time is t and coordinated time is cost  , the conversion factor is 1 cos

which, as can be seen, is equal to the relativistic gamma 2 21 1 v c  

26. www.merriam-webster.com/dictionary/proper

27. Artifact definition: any perceived distortion or other data error caused by the
instrument of observation.
www.websters-online-dictionary.org/definition/artifact

28. The current scientific method does contain a procedure for excluding data with
systematic errors; for instance, it does not require the observer’s frame of reference be
aligned with the force or energy source. It only deals with excluding observations with
random errors, since it requires reproducibility

29. The calculation of Hubble’s constant is shown in Equation 11.
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1 2F F are the individual flux from each star one and 1 2,m m are their individual apparent

magnitudes
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However, for astronomy use, this ratio between two stars is modified to work with one
star at two different distances. In this modification, F is the flux of the star at a given
distance and 10F is the flux of the same star at 10 parsecs further away and the difference

in magnitude is the difference between the absolute magnitude and the apparent
magnitude of the one star.
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This equation is calibrated in distance r (in parsecs) by the relationship between flux F
and luminosity L :
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When this function is substituted for flux in the ratio, luminosity is canceled (luminosity
is an intrinsic property of the star and does not depend on distance).
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Rearranged, this is seen as the distance modulus
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