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Abstract 

The final element of the Qi Men Dun Jia Model is the Boerdijk-Coxeter 
Helix, since this brings matter up to the level of DNA strings or 
lattices. Composed of Octonions, Twisted Octonions and Sedenions, 
the author examines the Boerdijk-Coxeter Helix from various 
perspectives to illustrate how BC – Helices play an important role in 
the formation of matter. 
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Introduction 

The Qi Men Dun Jia Model has been described in this series of papers 
published on Vixra, and at this point the author has shown that all 
matter begins in the invisible substratum of "black hole" material at 
the natural logarithm of e, (2.718) from whence it rises through the 
substratum via a combinatorial process of beats or counts, perhaps 
similar to the number of breaths a human takes per minute, for 
example. 

When approaching the border with visible matter, the new-forming 
matter takes on a spherical form and can be measured with the use 
of Pi. The newly - forming matter will take on the characteristics of 8 
x 8 stable Satva matter, or the 9 x 9 character of the more dynamic 
Raja matter. 

Upon passing the threshold of visible matter, a series of structures 
await the newly - emergent matter, starting with a 3 x 3 Magic 
Square, of the Luo Shu, or He Tu (Book of Luo, River Diagram) 
varieties or in a related order. The Magic Square functions to provide 
the "ribbon," in terms of Buckminster Fuller, which will ultimately bind 
the tetrahedra at the opposite end of the series of structures. 

One possibility remains, in addition to the Magic Square, of Magic 
Cayley Graphs, and the author shall explore this topic in a future 
paper. 
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Magic Squares / Wikipedia 

It is possible to construct a normal magic square of any size except 2 x 2 (that is, where n = 2), 
although the solution to a magic square where n = 1 is trivial, since it consists simply of a single cell 
containing the number 1. The smallest nontrivial case, shown below, is a 3 x 3 grid (that is, a magic 
square of order 3).

The constant that is the sum of every row, column and diagonal is called the magic constant or magic 
sum, M. Every normal magic square has a unique constant determined solely by the value of n. 

Lo Shu square (3×3 magic square)

Main article: Lo Shu Square
Chinese literature dating from as early as 650 BCE tells the legend of Lo Shu or "scroll of the river 
Lo".[2] According to the legend, there was at one time in ancient China a huge flood. While the great 
king Yu (禹) was trying to channel the water out to sea, a turtle emerged from it with a curious figure / 
pattern on its shell: a 3x3 grid in which circular dots of numbers were arranged, such that the sum of 
the numbers in each row, column and diagonal was the same: 15, which is also the number of days in 
each of the 24 cycles of the Chinese solar year. According to the legend, thereafter people were able to 
use this pattern in a certain way to control the river and protect themselves from floods.

4 9 2
3 5 7
8 1 6

The Lo Shu Square, as the magic square on the turtle shell is called, is the unique normal magic square 
of order three in which 1 is at the bottom and 2 is in the upper right corner. Every normal magic square 
of order three is obtained from the Lo Shu by rotation or reflection.
The Square of Lo Shu is also referred to as the Magic Square of Saturn.

Forming a circle around the center of the Magic Square lies the 
Spinorial Clock or the Clifford Clock, comprised of the real, complex 
numbers and Quarternions. The Clifford Clock lies embedded in the 
Clock of Complex Spaces, while forgetful functors circulate in the 
anti-clockwise direction, limiting the function of the higher numbers. 

Forgetful functors: The functor U : Grp → Set which maps a group to its underlying set 
and a group homomorphism to its underlying function of sets is a functor.[7] Functors like 
these, which "forget" some structure, are termed forgetful functors. Another example is 
the functor Rng → Ab which maps a ring to its underlying additive abelian group. 
Morphisms in Rng (ring homomorphisms) become morphisms in Ab (abelian group 
homomorphisms). (See Appendix IV for details on forgetful functors). 
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As the sphere of matter emerges into the realm of visible matter, it 
takes on certain characteristics based on the current arrangement of 
numbers in the Magic Square as well as the arrangement of Clifford 
Algebras in the Clifford Clock, with minor aspects imprinted from the 
Five Element aspects of each Clifford Algebra and its complex space. 
The characteristics imprinted from the Magic Square program the 
particle wave which determines the winding of the “ribbon” (in 
Buckminster Fuller’s term) that connects to the Tetrahelix, with its 
icosahedral and tetrahedral elements. 

Of the eight figures putatively rotating about the face of the Clifford 
Clock, one of them always turns up missing, which leaves the actual 
count of numbers at seven – the number of Octonions in the Fano 
Plane. In a later paper the author will describe the related aspects of 
the Qi Men Dun Jia Cosmic Board, suffice it here to state that there 
may exist as many as seven additional dimensions associated with 
the Clifford Algebras, each of which possesses unique Five Element 
associations, and which add additional qualities to each Clifford 
Algebra’s informational content. 

Next, the mole of matter receives imprint from a rotating set of 60 
Stellated Icosahedra, in the form of double icosahedra, which provide 
information in terms of frequency and Time. The double icosahedra 
represent the 60 Na Yin and 60 Jia Zi of Chinese metaphysics, which 
is a Base 60 cycle and have Period 60, given Pisano Periodicity. 
Pisano Periodicity limits the number of permutations in nature to 60. 

In relation to Pisano Periodicity, Fibonacci Numbers and the Golden 
Ratio enter the process of material formation, along with a series of 
Platonic Solids, from the Triangle and Square to the Icosahedron and 
Dodecahedron. The latter two play critical roles in the formation of 
matter, especially that of DNA strands. The author speculates here 
that the role of the Golden Ratio in the Qi Men Dun Jia Model is to 
separate matter in the 8 x 8 Satva State from matter in the 9 x 9 Raja 
State. In the discussion of the Boerdijk-Coxeter Helix, where both 
states form part of the structure. 

The next essential structure of the Qi Men Dun Jia Model is the 
Poincare Dodecahedral Space, which the author described in detail in 
an earlier paper in this series. Then, associated with the Poincare 
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Dodecahedral Space is the Hopf Fibration, some 15 copies of which 
float about the structure of the Boerdijk-Coxeter Helix, apparently 
helping to rotate the helix.

In fact, the literature on the Hopf Fibration is quite confusing, some 
of which leads the author to consider the Hopf Fibration as a micro 
element of the Qi Men Dun Jia Model, and some articles which 
suggest the opposite. It is the author’s intention that the logic of the 
Qi Men Dun Jia Model will help to solve this dilemma. 

With regard to the Boerdijk – Coxeter Helix, only a minimum amount 
of research has been done, given the extreme importance of the 
structure in the formation of matter. Worse, the helix goes under 
different names in different disciplines, as R. Buckminster Fuller 
referred to this as the Tetrahelix, while physicists refer to the same 
structure as the Bernal Spiral. 

In fact, the BC – Helix appears as one among a group of similar 
structures which appear across disciplines and have a variety of uses. 
Given the isolation of one academic discipline to another, it appears 
that the BC – Helix crosses these artificial boundaries and wears 
many faces. 

Insofar as the Qi Men Dun Jia Model is concerned, it appears that 
matter, once having passed through the Poincare Dodecahedral 
Space, may pass through either the BC – Helix or the Polytope 
(3,3,5), while there may exist additional similar structures. The 
Polytope (3,3,5) appears to produce matter of the 9 x 9 Raja state, 
while the BC – Helix appears to produce both Satva 8 x 8 and 9 x 9 
Raja states of matter, interwoven upon the same structure. Other 
candidates include the y-brass and the bcc, which the author will 
explore in future papers. 

This paper attempts to assemble and display the known, relevant 
information concerning the Boerdijk – Coxeter Helix for the purpose 
of conducting an autopsy – analysis, to illuminate and elucidate its 
parts, to demonstrate its workings and to show how it fits into the 
QMDJ Model. 
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Sedenions, Twisted Octonions and 
Octonions

Sir Roger Penrose has described them as “the lost cause” of physics, 
but the Octonions enter the structure of the Qi Men Dun Jia Model at 
this point, along with the Twisted Octonions and the Sedenions. At 
the same time, the model moves from Binary or Yin – Yang numbers 
towards ternary quadratic equations, since it proves necessary to 
engage the function of triples in the transition from Octonions to 
Sedenions. 

From the work of Sultan Catto and Donald Chesley, we learn about 
the subtleties of the Octonion – Sedenion connection: 

Preliminary Classification of Sedenion Types
Testing each of the 235 values of signmask in the XOR-based multiplication tables and 
analyzing the associators (eiej)ek - ei(ejek) shows that there are 9 broad classes of 
sedenions, classified by the nature of the heptads: of the 15 heptads, anywhere from 0 to 8 
are true octonions, with the balance being twisted. Below, counts[N] shows how many 
signmask values give N true octonionic heptads in the corresponding multiplication table:

counts[0] = 4699455488

counts[1] = 9688596480

counts[2] = 10254827520

counts[3] = 6041190400

counts[4] = 2582200320

counts[5] = 817152000

counts[6] = 248299520

counts[7] = 25804800

counts[8] = 2211840

counts[9] = 0

Adding these up gives 235, establishing the fact that (at least for representations derived 
via permutation from the XOR-based multiplication tables) all sedenion types must 
include at least 7 twisted octonion subalgebras. 
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2.2 Refinements in Classification
When embedded in the sedenions, heptads have more subtle properties than simply 
whether they are twisted or not, and a more refined classification of the sedenion types 
must take this into account. Each twisted heptad has a distinguished triad, and that triad 
occurs in 2 other heptads as well, which might be untwisted, or twisted with a different 
distinguished triad, or twisted with the same distinguished triad. Any heptad has 7 triads - 
how many of them are distinguished in some other heptad? A partial analysis based on 
these questions has so far revealed more than 52 types of sedenions. Several different 
types will emerge in constructions presented below. Moreover, any quaternionic 
groupings not based on permutations of XOR indices would (if they exist) add whole new 
families of sedenion types to the classification scheme. Although classification is still an 
ongoing process and the inventory is far from complete, enough is known to inform 
observations on properties like zero divisors, etc. in the following sections. 

2.3 Zero Divisors in Sedenions
Since all sedenion multiplication tables contain at least some twisted octonion 
multiplication tables embedded in them, there are at least the zero divisors already 
described for the twisted octonions. Moreover, sharing of distinguished triads can induce 
complicated interactions among the sets of zero divisors induced by different heptads. A 
general survey awaits completion of the classification scheme sketched above.

23 144: (ac - bd*, ad + c*b)
Twisted octonions XOR/10 

e0 e1 e2 e3 e4 e5 e6 e7 
e0 e0 e1 e2 e3 e4 e5 e6 e7 
e1 e1 -e0 e3 -e2 e5 -e4 e7 -e6 
e2 e2 -e3 -e0 e1 e6 -e7 -e4 e5 
e3 e3 e2 -e1 -e0 e7 e6 -e5 -e4 
e4 e4 -e5 -e6 -e7 -e0 e1 e2 e3 
e5 e5 e4 e7 -e6 -e1 -e0 e3 -e2 
e6 e6 -e7 e4 e5 -e2 -e3 -e0 e1 
e7 e7 e6 -e5 e4 -e3 e2 -e1 -e0
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Wikipedia 

The Boerdijk–Coxeter helix, named after H. S. M. Coxeter and A. 
H. Boerdijk, is a linear stacking of regular tetrahedra, arranged so 
that the edges of the complex that belong to a single tetrahedron 
form three intertwined helices. There are two chiral forms, with either 
clockwise or counterclockwise windings. Contrary to any other 
stacking of Platonic solids, the Boerdijk–Coxeter helix is not 
rotationally repetitive. Even in an infinite string of stacked tetrahedra, 
no two tetrahedra will have the same orientation. This is because the 
helical pitch per cell is not a rational fraction of the circle.
Buckminster Fuller named it a tetrahelix and considered them with 
regular and irregular tetrahedral elements.[1]

Higher dimensional geometry
The 600-cell partitions into 20 rings of 30 tetrahedra, each a 
Boerdijk–Coxeter helix. When superimposed onto the 3-sphere 
curvature it becomes periodic, with a period of ten vertices, 
encompassing all 30 cells. The collective of such helices in the 600-
cell represent a discrete Hopf fibration. While in 3 dimensions the 
edges are helices, in the imposed 3-sphere topology they are 
geodesics and have no torsion. They spiral around each other 
naturally due to the Hopf fibration.
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Octahedron / Wolfram 

Octahedron

An octahedron is a polyhedron having eight faces. Examples include the 

augmented triangular prism (Johnson solid ), boat, gyrobifastigium 

(Johnson solid ), heptagonal pyramid, hexagonal prism, (regular) 

octahedron, square dipyramid, triangular cupola (Johnson solid ), 

tridiminished icosahedron (Johnson solid ), and truncated 

tetrahedron. 

There are 257 convex octahedra, corresponding to the duals of the 

octahedral graphs. The convex octahedra consisting of regular polygonal 

faces of equal edge lengths are summarized in the following table. They 

all have , as required by the polyhedral formula. 

polyhedron degree sequence
truncated tetrahedron 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 12 18
heptagonal pyramid 3, 3, 3, 3, 3, 3, 3, 7 8 14
triangular cupola 3, 3, 3, 3, 3, 3, 4, 4, 4 9 15
tridiminished icosahedron 3, 3, 3, 3, 3, 3, 4, 4, 4 9 15
gyrobifastigium 3, 3, 3, 3, 4, 4, 4, 4 8 14
augmented triangular prism 3, 3, 4, 4, 4, 4, 4 7 13
octahedron 4, 4, 4, 4, 4, 4 6 12
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The regular octahedron is the Platonic solid with six polyhedron 

vertices, 12 polyhedron edges, and eight equivalent equilateral 

triangular faces, denoted . It is also uniform polyhedron and 

Wenninger model . It is given by the Schläfli symbol and Wythoff 

symbol . The octahedron of unit side length is the antiprism of 

sides with height . The octahedron is also a square dipyramid 

with equal edge lengths. 

There are 11 distinct nets for the octahedron, the same as for the cube 

(Buekenhout and Parker 1998). Questions of polyhedron coloring of the 

octahedron can be addressed using the Pólya enumeration theorem. 

The dual polyhedron of an octahedron with unit edge lengths is a cube 

with edge lengths . 
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The illustration above shows an origami octahedron constructed from a 

single sheet of paper (Kasahara and Takahama 1987, pp. 60-61). 

Like the cube, it has the octahedral group of symmetries. 

The connectivity of the vertices is given by the octahedral graph. 
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Wikipedia

In geometry, an octahedron (plural: octahedra) is a polyhedron with 

eight faces. A regular octahedron is a Platonic solid composed of eight 

equilateral triangles, four of which meet at each vertex.

An octahedron is the three-dimensional case of the more general concept 

of a cross polytope.

Dimensions

If the edge length of a regular octahedron is a, the radius of a 

circumscribed sphere (one that touches the octahedron at all vertices) 

is

and the radius of an inscribed sphere (tangent to each of the 

octahedron's faces) is

while the midradius, which touches the middle of each edge, is

Orthogonal projections

The octahedron has four special orthogonal projections, centered, on an 

edge, vertex, face, and normal to a face. The second and third 

correspond to the B2 and A2 Coxeter planes.
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Orthogonal projections
Centered 

by Edge Face
Normal Vertex Face

Image

Projective
symmetry [2] [2] [4] [6]

Cartesian coordinates

An octahedron with edge length sqrt(2) can be placed with its center at 

the origin and its vertices on the coordinate axes; the Cartesian 

coordinates of the vertices are then

( ±1, 0, 0 );
( 0, ±1, 0 );
( 0, 0, ±1 ).

In an x–y–z Cartesian coordinate system, the octahedron with center 

coordinates (a, b, c) and radius r is the set of all points (x, y, z) 

such that

Area and volume

The surface area A and the volume V of a regular octahedron of edge 

length a are:

Thus the volume is four times that of a regular tetrahedron with the 

same edge length, while the surface area is twice (because we have 8 vs. 

4 triangles).
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If an octahedron has been stretched so that it obeys the equation:

The formula for the surface area and volume expand to become:

Additionally the inertia tensor of the stretched octahedron is:

These reduce to the equations for the regular octahedron when:

Geometric relations

The octahedron represents the central intersection of two tetrahedra

The interior of the compound of two dual tetrahedra is an octahedron, 

and this compound, called the stella octangula, is its first and only 

stellation. Correspondingly, a regular octahedron is the result of 
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cutting off from a regular tetrahedron, four regular tetrahedra of half 

the linear size (i.e. rectifying the tetrahedron). The vertices of the 

octahedron lie at the midpoints of the edges of the tetrahedron, and in 

this sense it relates to the tetrahedron in the same way that the 

cuboctahedron and icosidodecahedron relate to the other Platonic solids. 

One can also divide the edges of an octahedron in the ratio of the 

golden mean to define the vertices of an icosahedron. This is done by 

first placing vectors along the octahedron's edges such that each face 

is bounded by a cycle, then similarly partitioning each edge into the 

golden mean along the direction of its vector. There are five octahedra 

that define any given icosahedron in this fashion, and together they 

define a regular compound.

Octahedra and tetrahedra can be alternated to form a vertex, edge, and 

face-uniform tessellation of space, called the octet truss by 

Buckminster Fuller. This is the only such tiling save the regular 

tessellation of cubes, and is one of the 28 convex uniform honeycombs. 

Another is a tessellation of octahedra and cuboctahedra.

The octahedron is unique among the Platonic solids in having an even 

number of faces meeting at each vertex. Consequently, it is the only 

member of that group to possess mirror planes that do not pass through 

any of the faces.

Using the standard nomenclature for Johnson solids, an octahedron would 

be called a square bipyramid. Truncation of two opposite vertices 

results in a square bifrustum.

The octahedron is 4-connected, meaning that it takes the removal of four 

vertices to disconnect the remaining vertices. It is one of only four 4-

connected simplicial well-covered polyhedra, meaning that all of the 

maximal independent sets of its vertices have the same size. The other 

three polyhedra with this property are the pentagonal dipyramid, the 

snub disphenoid, and an irregular polyhedron with 12 vertices and 20 

triangular faces.[1]

Uniform colorings and symmetry

There are 3 uniform colorings of the octahedron, named by the triangular 

face colors going around each vertex: 1212, 1112, 1111.
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The octahedron's symmetry group is Oh, of order 48, the three 

dimensional hyperoctahedral group. This group's subgroups include D3d 

(order 12), the symmetry group of a triangular antiprism; D4h (order 

16), the symmetry group of a square bipyramid; and Td (order 24), the 

symmetry group of a rectified tetrahedron. These symmetries can be 

emphasized by different colorings of the faces.

Irregular octahedra

The following polyhedra are combinatorially equivalent to the regular 

polyhedron. They all have six vertices, eight triangular faces, and 

twelve edges that correspond one-for-one with the features of a regular 

octahedron.

• Triangular antiprisms: Two faces are equilateral, lie on parallel planes, and have a 
common axis of symmetry. The other six triangles are isosceles.

• Tetragonal bipyramids, in which at least one of the equatorial quadrilaterals lies 
on a plane. The regular octahedron is a special case in which all three 
quadrilaterals are planar squares.

• Schönhardt polyhedron  , a nonconvex polyhedron that cannot be partitioned into 
tetrahedra without introducing new vertices.

More generally, an octahedron can be any polyhedron with eight faces. 

The regular octahedron has 6 vertices and 12 edges, the minimum for an 

octahedron; nonregular octahedra may have as many as 12 vertices and 18 

edges.[1] Other nonregular octahedra include the following:

• Hexagonal prism  : Two faces are parallel regular hexagons; six squares link 
corresponding pairs of hexagon edges.

• Heptagonal pyramid: One face is a heptagon (usually regular), and the remaining 
seven faces are triangles (usually isosceles). It is not possible for all triangular 
faces to be equilateral.

• Truncated tetrahedron  : The four faces from the tetrahedron are truncated to 
become regular hexagons, and there are four more equilateral triangle faces where 
each tetrahedron vertex was truncated.

• Tetragonal trapezohedron  : The eight faces are congruent kites.
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R. Buckminster Fuller and the Tetrahelix

Fuller gave quite explicit and far – seeing description of the 
Tetrahelix, surmising the existence of two states of matter – the 8 x 8 
Satva and the 9 x 9 Raja states, both of which enter into the 
composition of the Tetrahelix. In this case, Fuller must have deduced 
the existence of two states of matter from qualities of the Tetrahelix. 

Moreover, Fuller goes into great detail about the relationship between 
the Tetrahelix and the DNA helix. The author shall present an 
additional paper on this theme, but as shall shortly be seen, Fuller 
drew these connections many decades ago. 

In his Sinergetics, Fuller suggests the definition of the Tetrahelix:

933.00 Tetrahelix 

Fig. 933.01 

933.01 The tetrahelix is a helical array of triple-bonded 

tetrahedra. (See Illus. 933.01) We have a column of tetrahedra 

with straight edges, but when face-bonded to one another, and 

the tetrahedra's edges are interconnected, they altogether 

form a hyperbolic-parabolic, helical column. The column 

spirals around to make the helix, and it takes just ten 

tetrahedra to complete one cycle of the helix. 

In this section, Fuller discusses the binary aspects of the Tetrahelix, 
which implies Yin and Yang qualities: 

933.07 When we address two or more positive or two or more negative 

tetrahelixes together, the positives nestle their angling forms into one 

another, as the negatives nestle likewise into one another's forms.
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The next section indicates the importance of carbon and its 
relationship to the Tetrahelix and DNA, with an eye to the formation 
of life: 

931.61 The closest-packing concept was developed in respect to 

spherical aggregates with the convex and concave octahedra and vector 

equilibria spaces between the spheres. Spherical closest packing 

overlooks a much closer packed condition of energy structures, which, 

however, had been comprehended by organic chemistry__that of 

quadrivalent and fourfold bonding, which corresponds to outright 

congruence of the octahedra or tetrahedra themselves. When carbon 

transforms from its soft, pressed-cake, carbon black powder (or 

charcoal) arrangement to its diamond arrangement, it converts from the 

so-called closest arrangement of triple bonding to quadrivalence. We 

call this self-congruence packing, as a single tetrahedron arrangement 

in contradistinction to closest packing as a neighboring-group 

arrangement of spheres.

932.01 The four chemical compounds guanine, cytosine, thymine, and 

adenine, whose first letters are GCTA, and of which DNA always consists 

in various paired code pattern sequences, such as GC, GC, CG, AT, TA, 

GC, in which A and T are always paired as are G and C. The pattern 

controls effected by DNA in all biological structures can be 

demonstrated by equivalent variations of the four individually unique 

spherical radii of two unique pairs of spheres which may be centered in 

any variation of series that will result in the viral steerability of 

the shaping of the DNA tetrahelix prototypes. (See Sec. 1050.00 et. 

seq.)

In the following section, Fuller describes the “ribbon” of a wave which 
determines the connections between the tetrahedral and the helix. 
While Fuller fails to specify a source for this wave, the author 
theorizes that the wave originates with a spiral created from the 
Magic Square at the center of the Clifford Clock and the Clock of 
Complex Spaces. Just has H.L. Coxeter theorized that a polyhedra 
emanates from rotations about a single point in space, so does 
Fuller’s “ribbon” emanate from the Magic Square, the most likely 
candidate for which is the Svas Tika (swastika) Magic Square, which 
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determines a revolving spiral – arm movement. 

The 60 – degree pattern appears to fit nicely with the Fano Plane and 
the Octonions, which the author posits as a key element of the 
mathematics of the Tetrahelix. The ribbon works with the octahedra, 
the icosahedra and the tetrahedra. 

930.11 Exploring the multi-ramifications of spontaneously regenerative 

re-angulations and triangulations, we introduce upon a continuous ribbon 

a 60-degree-patterned, progressively alternating, angular bounce-off 

inwards from first one side and then the other side of the ribbon, which 

produces a wave pattern whose length is the interval along any one side 

between successive bounce-offs which, being at 60 degrees in this case, 

produces a series of equiangular triangles along the strip. 

As seen from one side, the equiangular triangles are alternately 

oriented as peak away, then base away, then peak away again, etc. This 

is the patterning of the only equilibrious, never realized, angular 

field state, in contradistinction to its sine-curve wave, periodic 

realizations of progressively accumulative, disequilibrious aberrations, 

whose peaks and valleys may also be patterned between the same length 

wave intervals along the sides of the ribbon as that of the equilibrious 

periodicity. (See Illus. 930.11.)

930.20 Pattern Strips Aggregate Wrapabilities: The equilibrious state's 

60- degree rise-and-fall lines may also become successive cross-ribbon 

fold-lines, which, when successively partially folded, will produce 

alternatively a tetrahedral- or an octahedral- or an icosahedral-shaped 

spool or reel upon which to roll-mount itself repeatedly: the 

tetrahedral spool having four successive equiangular triangular facets 

around its equatorial girth, with no additional triangles at its polar 

extremities; while in the case of the octahedral reel, it wraps closed 

only six of the eight triangular facets of the octahedron, which six lie 

around the octahedron's equatorial girth with two additional triangles 

left unwrapped, one each triangularly surrounding each of its poles; 

while in the case of the icosahedron, the equiangle-triangulated and 

folded ribbon wraps up only 10 of the icosahedron's 20 triangles, those 

20

http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=930_20
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=930_11


10 being the 10 that lie around the icosahedron's equatorial girth, 

leaving five triangles uncovered around each of its polar vertexes. (See 

Illus. 930.20.) 

The next sections give details about the ribbon: 

930.23 The tetrahedron requires only one wrap-up ribbon; the octahedron 

two; and the icosahedron three, to cover all their respective numbers of 

triangular facets.

930.24 If each of the ribbon-strips used to wrap-up, completely and 

symmetrically, the tetra, octa, and icosa, consists of transparent tape; 

and those tapes have been divided by a set of equidistantly interspaced 

lines running parallel to the ribbon's edges; and three of these ribbons 

wrap the tetrahedron, six wrap the octahedron, and nine the icosahedron; 

then all the four equiangular triangular facets of the tetrahedron, 

eight of the octahedron, and 20 of the icosahedron, will be seen to be 

symmetrically subdivided into smaller equi-angle triangles whose total 

number will be N2, the second power of the number of spaces between the 

ribbon's parallel lines.
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R. Gray 

 TETRAHELIX DATA 
 

The tetrahelix of Fuller's Synergetics consists of face bond regular 
tetrahedra. The mathematics for this spiraling structure is quit 
einteresting. Despite the tetrahelix composition of regular tetrahedra 
(the "simplest" polyhedron), I have not been able to find a simple way 
to calculate the information for the tetrahelix.

From the Zheng paper (see References below): "The tetrahedral helix 
is called the 'Bernal spiral' in association with discussions of liquid 
structures in the physics literature."

The vertices of the regular tetrahedra of the tetrahelix all lay on the 
surface of a cylinder. Let us visualize this cylinder lying along the z-
axis.

The radius of the cylinder:

r = (3 sqrt(3) / 10) EL

where EL is the edge length of the tetrahedra used to build the 
tetrahelix.
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Let us put a vertex (call it V0) of one of the tetrahedra on the x-axis. 
That is

V0 = (r, 0, 0)
Then the next vertex of the tetrahelix (V1) will be at the coordinates

V1 = (r cos(theta), r sin(theta), h)

where theta is the angle around the z-axis and is given by

theta = arccos(-2/3) (approximately 131.8103149 degrees)
and where h is the distance in the z-axis direction and is given by

h = (1/sqrt(10)) EL

In the above figures, the yellow band connects a vertex to the "next" 
vertex, while the distance h is the distance between the 2 blue bands 
around the cylinder.

In general, the coordinates for the vertices of a Counter Clockwise 
tetrahelix Vn (n = 0, 1, 2, 3, ...) are given by

Vn = (r cos(n*theta), r sin(n*theta), n*h)

The coordinates for the vertices of a Clockwise tetrahelix 

Vn (n = 0, 1, 2, 3, ...) are given by

Vn = (r cos(n*theta), - r sin(n*theta), n*h)

Note that cos(theta) = -2/3 and that sin(theta) = sqrt(5)/3. You can 
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calculate exact expressions for the vertex coordinates by using these 
relations together with the following trig identities:

cos(n*theta) = cos(theta)*cos((n-1)*theta) - sin(theta)*sin((n-1)*theta)

sin(n*theta) = sin(theta)*cos((n-1)*theta) + cos(theta)*sin((n-1)*theta)

One of the reasons that deriving the above information is difficult is 
that the axis of symmetry of the cylinder (the axis through the center 
of the cylinder) does not pass through the center of volume of the 
tetrahedra. The distance from the z-axis to the tetrahedron center of 
volume is given by the equation

dist. = (sqrt(2)/10) EL

Therefore, all the Tetrahelix cylinder axis of symmetry pass 
tangentially by a sphere of radius (sqrt(2)/10)EL centered at the 
Tetrahedron's center of volume.

Comments

• Tetrahelix come in 2 orientations; a right-handed spiral and a 
left-handed spiral. 

•
• The vertices of the tetrahelix never line up. That is, no two 
vertices will ever rest directly above one another, since the theta 
angle above is an irrational number. 
•
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•
• It may prove possible to "nest" 3 additional tetrahelix about the 
original tetrahelix in a tight bundle, yet this proves impossible since 
that face binding 5 tetrahedra together about a single edge/axis 
leaves a gap (which Fuller calls the unzipping angle.) The dihedral 
angle of the regular tetrahedron is 
•

D-tetra = arccos(1/3) (approximately 70.528779 degrees)

• 5 times this amount is approx 352.643895 degrees, which is 
approx 7.356105 degrees (the unzipping angle) short of 360 
degrees. So the tetrahedra of multiple helixes can not pack 
together without gaps.

• Twelve (12) possible Tetrahelix pass through a single 
Tetrahedron: 6 Clockwise and 6 Counter clockwise. As the figure 
shows, the spiral/coil associated with a Tetrahelix going through a 
Tetrahedron passes through all 4 vertices of the Tetrahedron 
sequentially. Since the spiral has the same symmetry axes as the 
Tetrahelix, we can count the number of possible different spirals to 
count the number of Tetrahelix. 
•

•
•
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• We label the Tetrahedron's vertices by numbering them 1, 2, 3, 
and 4. Then that equals 4x3x2x1 = 24 combinations for the order 
in which the spiral can pass through the vertices. However, 1/2 of 
these are simply reversals: (1,2,3,4) has the same spiral symmetry 
axis as the spiral (4,3,2,1). That leaves 12 spirals/Tetrahelix.

For more details on the way 12 Tetrahelix axes pass through a 
single Tetrahedron, see the next web page.

There is a Clockwise and a Counterclockwise spiral associated with 
every Tetrahelix.

Note that the spacing between adjacent loops in the spiral is different 
for the Counterclockwise spiral versus the Clockwise spiral.

In both cases, the spirals sequentially pass through all the vertices in 
a Tetrahedron.

In both cases, the spiral travels a distance along the z-axis by an 
amount:

h = (1/sqrt(10)) EL

But in one case, the spiral travels around the Tetrahelix by an angular 
amount of

theta = arccos(-2/3) (approximately 131.8103149 degrees) 

and in the other case, the spiral travels around the Tetrahelix by an 
angular amount of

alpha = 360 - arccos(-2/3) (approximately 228.1896851 degrees) 

• (My notes on this (dated 1997) suggests that I am not the 
originator of this. Unfortunately, they do not indicate who 
suggested this originally.)

If the tetrahedra used to build the tetrahelix are 10-frequency 
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(have 11 vertices per edge) then the axis of the surrounding 
tetrahelix cylinder will always pass through the tetrahedra faces at 
an inner triangular face vertex. The "triangular face coordinate" 
which the symmetry axis passes through is (7,3). 

• For a finite length Tetrahelix, all of the Tetrahelix's vertices can 
be given rational (x, y, z) coordinates. Then by scaling, the 
coordinates' x, y, z, components can be made to be integers.

• I have found that if you allow the vertices to be flexible and 
allow some of the tetrahedra edges to expand in length, the 
tetrahelix can fold up into another (shorter) tetrahelix. When it 
does, it passes through an Octahedron phase. 
•

The following sequence of images helpd one visualize the 
transformation.

First, consider the Tetrahelix as consisting of a number of 3-
Tetrahedra units. By folding up each of these units, the Tetrahelix is 
reduced.

We can fold up a 3-Tetra unit as shown in the following figures.
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Not that only the C-to-D edge needs to change its length. All other 
edges of the Tetrahedra remain the same.
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At this point, the 3 Tetrahedra are very close to defining an 
Octahedron. They actually do form an Octahedron as the vertices "A" 
and "B" are brought closer togther.

When vertices "A" and "B" are brought together, a double Tetrahedron 
is formed. That is two Tetrahedra face bound togther. (This figure only 
shows one of the 2 Tetrahedra. The other is hidden behind this one.)

The transformation from the 3 Tetrahedra to the Octahedron Fuller 
calls the "Richter Transformation". See Color plate 6 in Fuller's book 
Synergetics. I am not aware that Fuller continued the transformation 
described here to transform a Tetrahelix.

•

• Joe Matto suggested to me (October, 2004) that 2 Tetrahelix 
can intersect each other at 90 degrees. If we define "intersect" to 
mean that the axis of symmetry of 2 Tetrahelix pass through a 
common Tetrahedron and pass through a common point at 90 
degrees, then this statement is not true. The 2 Tetrahelix 
"intersect" each other at 
•

2 arcsin(1/sqrt(10)) = 36.86989765... degrees.

However, if we define "intersect" to mean that the 2 Tetrahelix pass 
through a common Tetrahedron and thier symmetry axes pass by 
each other at 90 degrees, then this is true.

• There are 2 ways to place the end of a Tetrahelix flat on the top 
of a table such that the Tetrahelix rises above the table. See the 
calculations here. The angles which the symmetry axis makes with 
the table top are: 
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•
90 - arccos(sqrt(1/15)) = 14.96321744... degrees

• and 
90 - arccos(sqrt(3/5)) = 50.76847952... degrees

Tetrahelix Axes Passing Thru A Single Tetrahedron 

We know that the symmetry axis of a Tetrahelix passing through a 

Tetrahedron's triangular face must pass through a triangle face 

coordinate (7, 3). (See this web page for details.) 

We highlight the 3 (7,3) triangle face coordinates by drawing a 

red triangle. 

We divide all 4 faces of the Tetrahedron into a 10-frequency 

grid and draw the (7,3) triangles in red. 

30

http://www.rwgrayprojects.com/rbfnotes/helix/proof73.html


We next connect all the vertices of the red triangles to all 

other red triangle vertices. 

Since we know that the Tetrahelix symmetry axis passes into a 

Tetrahedron and out of a Tetrahedron through only these (7,3) 

positions, some of these lines must serve as symmetry axes for 

all possible Tetrahelix passing through this Tetrahedron. 
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Tetrahelix Axis Passes Thru (7,3) Face Coordinate 

 

 

We want to prove that the cylinder axis of the Tetrahelix passes through the Tetrahedron’s 
triangle face at triangle face coordinate (7, 3).  

 

The radius of the Tetrahelix cylinder is given by 

where EL is the edge length of the Tetrahedra making up the Tetrahelix.

 

The Tetrahelix can be positioned so that its (x, y, z) coordinates are given by the equation

 

 

where  (approximately 131.8103149 degrees) and 

 

Using the equations
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it is easy to calculate values for  and .

 

n
0 1 0
1

2

3

 

The n-th Terahelix vertex will then have the coordinate

 

For the “first” 4 vertices, with EL=1, we get
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What (7, 3) means is that we travel 7 (out of 10) units along one edge and then 3 units 
(out of 10) parallel to another edge of the triangular face.

 

Define Va to be the vector from vertex V0 toward vertex V1 but which is only 7 (out of 10) 
units in length.  Then define Vb to be the vector from vertex V1 toward vertex V2 and 
which is 3 (out of 10) units in length.  

 

Then the vector to (one of) the face  point (7, 3) is given by V0 + Va + Vb.   If this vector 
has no x or y components then it must lay on the z-axis, which is the symmetry axis of the 
Tetrahelix.

 

We calculate Va to be

 

 

And we calculate Vb to be 
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Then the vector to the point face coordinate point (7, 3) is given by

 

 

 

This lays on the z-axis.  So the symmetry axis of the Tetrahelix does pass through the 
triangular face coordinate (7,3).

 

There are 3 such face points depending on which of the 3 vertices of the triangular face is 
used to begin measuring the 7 (and then 3) units of length.

We also know that this symmetry axis passes by the center of 

volume of the Tetrahedron at a distance of (sqrt(2)/10)EL. (See 

this web page for details.) 

So we place a sphere with this radius value at the center of 

volume of the Tetrahedron. 
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The lines which pass the sphere at a tangent point on the sphere 

will be a symmetry axis for a Tetrahelix. These lines will be 

shown in green. 
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There are 12 green lines, so 12 Tetrahelices pass through a 

single Tetrahedron. Six of these will have a Clockwise screw 

sense and 6 will have a Counter Clockwise screw sense. 

It would be very interesting to know what breaks the symmetry of 

screw sense. How is it that one green line gets assigned to a 

Clockwise screw sense Tetrahelix and another gets assigned to a 

Counter Clockwise? At this point, one line seems the same as any 

other line. 
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Note that the green lines come in crossing pairs. There are 6 

intersection points which define an Octahedron. 

The angle of the intersecting green lines gives the angle at 

which the Tetrahelix intersect each other. 

However, it should be noted that the symmetry axis of two 

Tetrahelix which share the same Tetrahedron do not have to 

intersect inside the shared Tetrahedron. 

As the following figure shows, a Tetrahelix's symmetry axis will 

intersect 5 other Tetrahelix axis of symmetry and 2 of the 

intersection points are outside the Tetrahedron. 
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Intersection points 1 and 5 in the above figure are outside the 

Tetrahedron. Points 2 and 4 are on the face of the Tetrahedron 

and intersection point 3 is inside the Tetrahedron. 

It has been suggested to me by Joe Matto that 2 Tetrahelix can 

"intersect" each other at 90 degrees. This is not possible if by 

"intersect" one means that the axis of symmetry of the 

Tetrahelix intersect at 90 degrees. 

However, recall that the opposite edge of a Tetrahedron pass by 

each other at 90 degrees. That is, the two opposite edges share 

the same mid-edge point axis and one edge is rotated by 90 

degrees about this shared axis with respect to the other edge. 

In a similar way, the axis of symmetry of 2 Tetrahelix can pass 

by each other at 90 degrees. Note that the 2 Tetrahelix are also 

passing through the same Tetrahedron. So, one could say that the 

Tetrahelix are intersecting each other at 90 degrees. 

Here is a figure showing the symmetry axis lines from another 

point of view showing that one passes under another and are 
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rotated about a common axis by 90 degrees, just like the 

Tetrahedron case shown above. 

Here is another perspective of this in which I draw in a 

Tetrahedron (in black) and a mid-edge to mid-edge axis of the 

Tetrahedron (in blue). 
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More details and calculations are given on the next page. 

Tetrahelix Axis Passes Thru (7,3) Face Coordinate 

We want to prove that the cylinder axis of the Tetrahelix passes through the Tetrahedron’s 
triangle face at triangle face coordinate (7, 3).  

The radius of the Tetrahelix cylinder is given by 

where EL is the edge length of the Tetrahedra making up the Tetrahelix.

The Tetrahelix can be positioned so that its (x, y, z) coordinates are given by the equation

 

where  (approximately 131.8103149 degrees) and 

Using the equations
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it is easy to calculate values for  and .

 

n
0 1 0
1

2

3

 

The n-th Terahelix vertex will then have the coordinate

 

For the “first” 4 vertices, with EL=1, we get
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What (7, 3) means is that we travel 7 (out of 10) units along one edge and then 3 units 
(out of 10) parallel to another edge of the triangular face.

 

Define Va to be the vector from vertex V0 toward vertex V1 but which is only 7 (out of 10) 
units in length.  Then define Vb to be the vector from vertex V1 toward vertex V2 and 
which is 3 (out of 10) units in length.  

 

Then the vector to (one of) the face  point (7, 3) is given by V0 + Va + Vb.   If this vector 
has no x or y components then it must lay on the z-axis, which is the symmetry axis of the 
Tetrahelix.

 

We calculate Va to be
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And we calculate Vb to be 

 

 

Then the vector to the point face coordinate point (7, 3) is given by

 

 

 

This lays on the z-axis.  So the symmetry axis of the Tetrahelix does pass through the 
triangular face coordinate (7,3).

 

There are 3 such face points depending on which of the 3 vertices of the triangular face is 
used to begin measuring the 7 (and then 3) units of length.
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12 Tetrahelix-Tetrahedron Intersection Points 

We calculate the (x, y, z) coordinates for the 3x4=12 points (3 

per Tetrahedron triangular face) for the triangle face 

coordinates (7, 3). This will allows us to then calculate other 

properties of the Tetrahelix. 

Recall that the Tetrahelix axis passes through the (7, 3) points 

of the Tetrahedron's triangular face. 

We position the Tetrahedron so that its 4 vertices are at 

V1 = (1, 1, 1) 

V2 = (–1, –1, 1) 

V3 = (–1, 1, –1) 

V4 = (1, –1, –1) 
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The Tetrahedron edge length is then 

EL = dist(V2 - V1) = sqrt( (-1 - 1)^2 + (-1 - 1)^2 + (1 - 1)^2) 
EL = sqrt( 4 + 4 + 0) = 2 sqrt(2) = 2.828427125... 

For the V1-V2-V3 triangular face, we let 

Va = (V2 – V1) = (–2, –2, 0) 

Vb = (V3 – V2) = (0 , 2, –2) 

Vc = (V1 – V3) = (2, 0, 2) 

Then 

P1 = V1 + (7/10)Va + (3/10)Vb = (1 – 14/10, 1 – 14/10 + 6/10, 

1 – 6/10) 

P1 = (–4/10, 2/10, 4/10) = (–0.4, 0.2, 0.4) 

P2 = V2 + (7/10)Vb + (3/10)Vc = (–1 + 6/10, –1 + 14/10, 1 – 

14/10 + 6/10) 

P2 = (–4/10, 4/10, 2/10) = (–0.4, 0.4, 0.2) 
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P3 = V3 + (7/10)Vc + (3/10)Va = (–1 + 14/10 – 6/10, 1 – 6/10, 

–1 + 14/10) 

P3 = (– 2/10, 4/10, 4/10) = (–0.2, 0.4, 0.4) 

For the V1-V2-V4 triangular face, we let 

Va = (V2 – V1) = (–2, –2, 0) 

Vb = (V4 – V2) = (2 , 0, –2) 

Vc = (V1 – V4) = (0, 2, 2) 

Then 

P1 = V1 + (7/10)Va + (3/10)Vb = (1 – 14/10 + 6/10, 1 – 14/10, 

1 – 6/10) 

P1 = ( 2/10, –4/10, 4/10) = (0.2, –0.4, 0.4) 

P2 = V2 + (7/10)Vb + (3/10)Vc = (–1 + 14/10, –1 + 6/10, 1 – 

14/10 + 6/10) 

P2 = ( 4/10, – 4/10, 2/10) = (0.4, –0.4, 0.2) 

P3 = V4 + (7/10)Vc + (3/10)Va = ( 1 – 6/10, –1 + 14/10 – 

6/10, –1 + 14/10) 

P3 = ( 4/10, –2/10, 4/10) = (0.4, –0.2, 0.4) 

For the V1-V3-V4 triangular face, we let 

Va = (V3 – V1) = (–2, 0, –2) 

Vb = (V4 – V3) = (2 , –2, 0) 

Vc = (V1 – V4) = (0, 2, 2) 

P1 = V1 + (7/10)Va + (3/10)Vb = (1 – 14/10 + 6/10, 1 – 6/10, 1 

– 14/10) 

P1 = ( 2/10, 4/10, – 4/10) = (0.2, 0.4, –0.4) 
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P2 = V3 + (7/10)Vb + (3/10)Vc = (–1 + 14/10, 1 – 14/10 + 6/10, 

–1 + 6/10) 

P2 = ( 4/10, 2/10, –4/10) = (0.4, 0.2, –0.4) 

P3 = V4 + (7/10)Vc + (3/10)Va = ( 1 – 6/10, –1 + 14/10, –1 + 

14/10 – 6/10) 

P3 = ( 4/10, 4/10, –2/10) = (0.4, 0.4, –0.2) 

For the V2-V3-V4 triangular face, we let 

Va = (V3 – V2) = (0, 2, –2) 

Vb = (V4 – V3) = (2 , –2, 0) 

Vc = (V2 – V4) = (–2, 0, 2) 

P1 = V2 + (7/10)Va + (3/10)Vb = (–1 + 6/10, –1 + 14/10 – 

6/10, 1 – 14/10) 

P1 = (–4/10, –2/10, – 4/10) = (–0.4, –0.2, –0.4) 

P2 = V3 + (7/10)Vb + (3/10)Vc = (–1 + 14/10 – 6/10, 1 – 

14/10, –1 + 6/10) 

P2 = (–2/10, –4/10, –4/10) = (–0.2, –0.4, –0.4) 

P3 = V4 + (7/10)Vc + (3/10)Va = ( 1 – 14/10, –1 + 6/10, –1 + 

14/10 – 6/10) 

P3 = (–4/10, –4/10, –2/10) = (–0.4, –0.4, –0.2) 

Now that we know the (7,3) points we can draw the small triangle 

red triangle on each of the 4 Tetrahedron's faces. 
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We know that the Tetrahelix axes make crossing lines through 

these (7, 3) triangle face points. 

For example, if we look at just 2 of the red triangles, then two 

of the Tetrahelix axes pass through the 4 points as follows. 
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"A" goes to "A" and "B" goes to "B". 

The two "A" point coordinates are 

A(123) = (–0.2, 0.4, 0.4), A(134) = (0.2, 0.4, –0.4) 

The length of the line segment A-to-A is given by 

dist = sqrt( (0.2 + 0.2)^2 + (0.4 - 0.4)^2 + (-0.4 - 0.4)^2 ) 
dist = sqrt(0.16 + 0.0 + 0.64) = sqrt(0.8) 

dist = sqrt(8/10) = 2 / sqrt(5) = 0.894427191... 

We can calculate the crossing angle as follows: 

Since the edge length of the Tetrahedron is EL = 2 sqrt(2) the 

edge length of the small red triangle is 

ELs = EL / 10 = sqrt(2) / 5. 

We let alpha = (1/2) crossing angle. 
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Then 

sin(alpha) = (ELs/2) / ( (2/sqrt(5)) / 2) 
sin(alpha) = ( sqrt(2) / 10 ) / ( 1 / sqrt(5) ) 

sin(alpha) = sqrt(5) / (5 sqrt(2) ) 
sin(alpha) = 1 / sqrt(10) 

Then the crossing angle is 

alpha = 2 arcsin(1/sqrt(10)) = 36.86989765... degrees. 

We now wish to calculate the angle which a Tetrahelix makes with 

a table top when the a Tetrahedron face is placed flat on the 

table. 

We first need a vector which is perpendicular to a Tetrahedron 

face. This can easily be found by summing the vectors to 

vertices V1, V2, and V3. (The red line in the next figure is 

perpendicular to the V1,V2,V3 face of the Tetrahedron.) 
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This is essentially taking the average of the 3 vectors and 

multiplying by 3. Recall that the average of the vectors is 

given by 

Avg(123) = (1/3)(V1 + V2 + V3) 

So, multiplying by 3 we get 

Vn(123) = (V1 + V2 + V3) = (-1, 1, 1) 

This is a vector pointing out through the Face Center of the V1, 

V2, V3 face. 

This vector Vn(123) is normal (perpendicular) the the V1, V2, V3 

face. 

If we put the Tetrahedron of the table with its V1, V2, V3 face 

flat on the table, this vector will point down through the 

table. So, we reverse the direction of this vector so that it 

will point up from the table top. 

Vn(123) = (1, -1, -1) 
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For calculation purposes, we make the length of this vector to 

be 1. In the Figures, the length is not 1 and is drawn as a red 

line. 

Vn(123) = (1/sqrt(3))(1, -1, -1) = (1/sqrt(3), -1/sqrt(3), -1/sqrt(3)) 

We will use the vector dot product to calculate the angles. 

A.B = |A| |B| cos(theta) 
theta = arccos(A.B / (|A||B|)) 

The vector connecting the 2 "A" points above 

A(123) = (–0.2, 0.4, 0.4) 
A(134) = (0.2, 0.4, –0.4) 

is given by 

VAA = A(134) - A(123) = (0.4, 0.0, -0.8) = (2/5, 0, -4/5) 

(see the blue line in the figures.) 

Its magnitude is 

mag(VAA) = sqrt(0.4^2 + (-0.8)^2) = sqrt(0.16 + 0.64) 
mag(VAA) = sqrt(0.8) = sqrt(8/10) = 2 / sqrt(5) 

The unit vector in the VAA direction is then 

UAA = (sqrt(5)/2)(2/5, 0, -4/5) 
UAA = (1/sqrt(5), 0, -2/sqrt(5)) 

Note that vectors can be moved to any position as long as we 

don't change their direction nor their magnitude. So I move it 

(blue line) in the Figure so that it is at the face center. The 

red line (perpendicular line to the Tetrahedron face) also 

passes through the face center point. 
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The dot product is 

(1/sqrt(3), -1/sqrt(3), -1/sqrt(3)).(1/sqrt(5), 0, -2/sqrt(5)) 
(1/sqrt(15) + 2/sqrt(15)) = 3/sqrt(15) = sqrt(3/5) 

So theta is 

theta = arccos(sqrt(3/5)) = 39.23152048... degrees 

Which means the Tetrahelix makes an angle of 

90 - arccos(sqrt(3/5)) = 50.76847952... degrees 

with the table's surface. 

There is another angle at which a Tetrahelix can make with the 

table when the Tetrahedron is placed flat on the table. See the 

green line in the above figure. This is another axis of symmetry 

for some Tetrahelix. It passes through the table top some 

distance away from the Tetrahedron as the following Figures 

show. 
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There are several line segments we could chose for the 

calculation. The following 2 Figures shows the line segment in 

green that I will use. Yes, its very hard to see the 

orientation. 
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The two points selected are: 

P3 = (0.4, -0.2, 0.4) from face (1.2.4), and 

P2 = (0.4, 0.2, -0.4) from face (1.3.4). 

The vector along this line segment is then 

V = (0.4, 0.2, -0.4) – (0.4, –0.2, 0.4) 
V = (0.0, 0.4, -0.8) = (0, 2/5, -4/5) 

As before, the magnitude of this vector is 

mag(V) = sqrt(0.4^2 + (-0.8)^2) = sqrt(0.16 + 0.64) 
mag(V) = sqrt(0.8) = sqrt(8/10) = 2 / sqrt(5) 

The unit vector in the direction of th egreen line segment is 

then 

UV = (sqrt(5)/2)(0, 2/5, -4/5) 
UV = (0, 1/sqrt(5), -2/sqrt(5)) 

We can place this vector anywhere we want. So we place it at the 

center of the 1.2.3 face. 
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The dot product with the face unit normal is given by 

D = (1/sqrt(3), -1/sqrt(3), -1/sqrt(3)).(0, 1/sqrt(5), -2/sqrt(5)) 
D = 0 - 1/sqrt(15) + 2/sqrt(15) = 1/sqrt(15) 

So, for this case, theta is 

theta = arccos(sqrt(1/15)) = 75.0367825... degrees 
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Which means this Tetrahelix makes an angle of 

90 - arccos(sqrt(1/15)) = 14.96321744... degrees 

with the table. 
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Conclusion

Discussion of R. Grey Section

Grey certainly develops and articulates the model left by R. 
Buckminster Fuller. The most interesting aspect of his work is the 
following: 

• The "triangular face coordinate" which the symmetry axis 
passes through is (7,3). 

Viewing the BC – Helix from this angle suggests a number of related 
mathematical structures: the Binomial Pyramid, attributed to Zhang 
Hui, to the Hindus as Mt. Meru and to Blaise Pascal. Frank “Tony” 
Smith has done considerable work on his massive website to 
illustrate similar numerical relationships among Clifford and other 
higher algebras.

Since ours is a combinatorial universe, could we construct a triangle 
like this after the Binomial Pyramid? The shape is suggestive of many
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possibilities, including the Fano Plane and the Octonions, which 
obviously play a part in the BC – Helix. 

Tony Smith and the late Robert de Marrais have suggested the 
relationship of Sedenions to various lattices, specifically the Leech 
Lattice, the E8 Lattice and the Barnes – Wall Lattice. The triangular 
shape of the latter suggests a relationship to the BC – Helix, while the 
involvement of DNA with the helix implies a relationship to the Leech 
Lattice. Indeed, the author will later present a paper which explores 
the relationship of these lattices to the BC – Helix and the 64 
hexagrams of the I Ching, as well as the 64 amino acid combinations 
of DNA. 

Given the involvement of the E8 Lattice, one might include the 
Freudenthal – Tits Magic Square of Exceptional Lie Algebras, which is 
related to triality. 
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A \ B R C H O
R A1 A2 C3 F4

C A2 A2 × A2 A5 E6

H C3 A5 D6 E7

O F4 E6 E7 E

B R C H O
A der(A/B) 0 0
R 0
C 0
H
O
Note that by construction, the row of the table with A=R gives 

der(J3(B)), and similarly vice versa.
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Barnes Wall Lattice 

Another related lattice is that of the Barnes – Wall Lattice, shown 
below: notice the position of E8 here, as well as D4. If we may draw 
parallels between Exceptional Lie Algebra and the BW Lattice, it 
appears that higher forms of organization may exist beyond E8. 
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The Magic Triangle 

While apparently square in shape, the Magic Square can be fashioned 
into a triangle, as has been done by P. Cvitanovic.

Hypothesis

Would it prove possible to combine the Exceptional Lie Algebras of 
the three Magic Triangles into one face of the BC – Helix? What might 
be the result? E8 on each vertex with the remainder filling in. 
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In fact, it appears that there exist two versions of the BC Helix, one 
containing proportionately more of the 8 x 8 equilibrious Satva state, 
and related to the more stable structures of DNA, as discussed in 
detail by R. Buckminster Fuller and R. Gray as the Tetrahelix. 

The second version appears more akin to what has been oddly 
termed the Pearce Cluster, since Peter Pearce disavows this title for 
his own creation, preferring “Oblate Icosahedral system.” 

The author theorizes that the Pearce Cluster or the Oblated 
Icosahedral System forms when matter is programmed toward the 
more dynamic state of 9 x 9 Raja type. That is to say that matter 
forms has has been described in the Qi Men Dun Jia Model until it 
reaches the BC – Helix, which apparently includes both the 8 x 8 and 
the 9 x 9 state of matter, before choosing one type over the other. 

Thus, for example, if matter were developing towards a DNA strand, 
then this would be stable Satva matter of the 8 x 8 type, and the BC 
– Helix would develop into this formation. On the other hand, if there 
were a bit micro bit of dynamic matter that was programmed for a 
different use, then one would anticipate the formation of the Pearce 
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Cluster / Oblate Icosahedra structure. 

In a future paper the author hopes to show how these lattices, Magic 
Squares and Magic Triangles extend towards the Golay Code and DNA 
amino acid coding, as suggested by R. Buckminster Fuller. 

Eccentricities of the BC – Helix 

The BC – Helix or the Tetrahelix exhibit certain functional 
eccentricities that perhaps relate closely to one another as the helix 
carries out its functions. That is to say, that instead of simply 
dismissing these as odd aspects of the polytope, we may rather 
assemble these eccentricities to see whether and how they may fit 
together, for the purpose of serving some function that remains as yet 
unknown. 

As mentioned above, the Octonions have been dismissed as useless 
for physics since they lose the associative ability, while sedenions 
lose the division property. At the same time, the BC – Helix reduces 
from the dodecahedral shape to the octahedral, as discussed by R. 
Gray and R. Buckminster Fuller in the Richter Transformation. It may 
prove possible that the loss of functionality of the higher algebras may 
be connected to the reduction of the BC – Helix to an octahedral. 
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The Richter Transformation

“Quanta Lost by Precession” boasts the subtitle, teasingly suggesting 
the appropriate role of  the Octonions and Sedenions in  the BC – 
Helix, since most mathematicians and physicists complain about the 
loss of functionality in the Octonions and Sedenions, the Octonions 
losing  associativity  and  the  Sedenions  losing  divisibility.  Roger 
Penrose calls the Octonions the “lost cause” of physics, while Frank 
“Tony” Smith wrote that the best use of the Sedenions is to put the 
Octonions into complete perspective. 
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If  the  Richter  Transformation  signals  the  transition  from  a  3 
Tetrahedron to an Octahedron, then we might well expect a loss of 
functionality in the algebras which comprise the geometric structures. 
That is to say, that if indeed “Quanta is Lost by Precession,” then the 
reason may well be that nature requires this loss in order to carry out 
the transformation from one geometric structure to another, from one 
state of matter to another, ie, from 9 x 9 Raja matter to 8 x 8 Satva 
matter. 

Therefore, there may well exist a logical reason why the Octonions 
and  Sedenions  lose  their  properties,  just  as  the  Richter 
Transformation results in a loss of quanta. A butterfly must shed its 
cocoon  at  some  point.  Here  Tony  Smith  describes  the  loss  of 
divisibility in the Sedenions: 

The eccentricities of  BC – Helix  continue, when we learn that  the 
spiral which forms the helix pass through the vertices in sequence. 
We find that the axis fails to pass through the center of the object but 
is slightly off – center; and therefore the sections never actually line 
up smoothly. Wikipedia states that the BC – Helix is the only stacking 
Platonic Solid which is not rotationally repetitive, due to the helical 
pitch per cell. 

We learn that there are clockwise and anti – clockwise versions of the 
helix, and that the clockwise has a length of 131.8103149, while the 

68



anti – clockwise version has a length of 228.1896851. 

We learn from R. Buckminster Fuller that the BC – Helix attempts but 
forever fails to attain an equilibrious periodicity,  probably related to 
the 8  x  8 Satva state  of  matter,  while  mostly striving in  the more 
dynamic state, which perhaps Fuller understood without knowing that 
he was discussing the 9 x 9 Raja sate – the sign of a true genius. 

In section 930.11, Fuller tells us that the helix forms in the direction of 
peak to base to peak again, thus underscoring this dynamic process. 

Finally, there is the problem of the Hopf Fibration. After reading Tony 
Smith's piece called, “Why Not Sedenions,” it occurs that the Barnes 
Wall Lattices, along with the Leech Lattice and E8 Lattice, appear in 
the even dimensions, which suggests the stable 8 x 8 Satva structure, 
while the Hopf Fibration may only appear in odd dimensions. As 
noted above, the BC – Helix appears to fluctuate during its 
development between the two states of matter, and the problem of 
dimension, or combinatorial counts, may relate to which type finally 
emerges in the structure. 

The partially completed chart below illustrates this process: 

In odd dimensions we find Hopf Fibration while in even dimensions 
we find Barnes – Wall Lattices, including Leech and E8. What is the 
14 Dimension Lattice that corresponds to G2? 
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Dim Lattice Type 
1
2 Z2 Barnes - Wall
3 Hopf Fibration
4 D4
5
6
7 Hopf Fibration
8 E8 Barnes - Wall
9
10
11
12
13
14 G2 Exceptional Lie Algebra
15 Hopf Fibration
16 Laminated Barnes - Wall

The Barnes – Wall lattices can be constructed from the Leech Lattice 
A24. 

The BC – Helix appears in two types, clockwise and 
counterclockwise, and this may relate to the problem as well. Does 
the clockwise type correspond to the 8 x 8 version, and vice versa? 

This problem proves worthy of additional study and the author is 
planning a future paper on the subject of the Hopf Fibration and 
lattices. 
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Applications

The BC – Helix has a wide range of applications across various 
disciplines, but especially in crystallography and minerals. We list a 
few of them here. 

Abstract:

Helices and dense packing of spherical objects are two closely related 
problems. For instance, the Boerdijk-Coxeter helix, which is obtained 
as a linear packing of regular tetrahedra, is a very efficient solution to 
some close-packing problems. The shapes of biological helices result 
from various kinds of interaction forces, including steric repulsion. 
Thus, the search for a maximum density can lead to structures 
related to the Boerdijk-Coxeter helix. Examples are presented for the 
-helix structure in proteins and for the structure of the protein 
collagen, but there are other examples of helical packings at different 
scales in biology. Models based on packing efficiency related to the 
Boerdijk-Coxeter helix, explain, mainly from topological arguments, 
why the number of amino acids per turn is close to 3.6 in  -helices 
and 2.7 in collagen.
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Appendix I 

R. Buckminster Fuller on the Tetrahelix

930.00  Tetrahelix: Unzipping Angle
930.10 Continuous Pattern Strip: "Come and 
Go"

Fig. 
930.11

930.11 Exploring the multiramifications of spontaneously regenerative reangulations 
and triangulations, we introduce upon a continuous ribbon a 60-degree-patterned, 
progressively alternating, angular bounce-off inwards from first one side and then the 
other side of the ribbon, which produces a wave pattern whose length is the interval 
along any one side between successive bounce-offs which, being at 60 degrees in this 
case, produces a series of equiangular triangles along the strip. As seen from one side, 
the equiangular triangles are alternately oriented as peak away, then base away, then 
peak away again, etc. This is the patterning of the only equilibrious, never realized, 
angular field state, in contradistinction to its sine-curve wave, periodic realizations of 
progressively accumulative, disequilibrious aberrations, whose peaks and valleys may 
also be patterned between the same length wave intervals along the sides of the ribbon 
as that of the equilibrious periodicity. (See Illus. 930.11.)

930.20 Pattern Strips Aggregate Wrapabilities:The equilibrious state's 60- degree 
rise-and-fall lines may also become successive cross-ribbon fold-lines, which, when 
successively partially folded, will produce alternatively a tetrahedral- or an 
octahedral- or an icosahedral-shaped spool or reel upon which to roll-mount itself 
repeatedly: the tetrahedral spool having four successive equiangular triangular facets 
around its equatorial girth, with no additional triangles at its polar extremities; while 
in the case of the octahedral reel, it wraps closed only six of the eight triangular facets 
of the octahedron, which six lie around the octahedron's equatorial girth with two 
additional triangles left unwrapped, one each triangularly surrounding each of its 
poles; while in the case of the icosahedron, the equiangle-triangulated and folded 
ribbon wraps up only 10 of the icosahedron's 20 triangles, those 10 being the 10 that 
lie around the icosahedron's equatorial girth, leaving five triangles uncovered around 
each of its polar vertexes. (See Illus. 930.20.)

930.21 The two uncovered triangles of the octahedron may be covered by wrapping 
only one more triangularly folded ribbon whose axis of wraparound is one of the XYZ 
symmetrical axes of the octahedron.

930.22 Complete wrap-up of the two sets of five triangles occurring around each of 
the two polar zones of the icosahedron, after its equatorial zone triangles are 
completely enclosed by one ribbon-wrapping, can be accomplished by employing 
only two more such alternating, triangulated ribbon-wrappings .

930.23 The tetrahedron requires only one wrap-up ribbon; the octahedron two; and 
the icosahedron three, to cover all their respective numbers of triangular facets. 
Though all their faces are covered, there are, however, alternate and asymmetrically 
arrayed, open and closed edges of the tetra, octa, and icosa, to close all of which in an 
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even-number of layers of ribbon coverage per each facet and per each edge of the 
three-and-only prime structural systems of Universe, requires three, triangulated, 
ribbon-strip wrappings for the tetrahedron; six for the octahedron; and nine for the 
icosahedron.

930.24 If each of the ribbon-strips used to wrap-up, completely and symmetrically, 
the tetra, octa, and icosa, consists of transparent tape; and those tapes have been 
divided by a set of equidistantly interspaced lines running parallel to the ribbon's 
edges; and three of these ribbons wrap the tetrahedron, six wrap the octahedron, and 
nine the icosahedron; then all the four equiangular triangular facets of the tetrahedron, 
eight of the octahedron, and 20 of the icosahedron, will be seen to be symmetrically 
subdivided into smaller equiangle triangles whose total number will be N2, the second 
power of the number of spaces between the ribbon's parallel lines.

930.25 All of the vertexes of the intercrossings of the three-, six-, nine-ribbons' internal 
parallel lines and edges identify the centers of spheres closest-packed into tetrahedra, 
octahedra, and icosahedra of a frequency corresponding to the number of parallel intervals of 
the ribbons. These numbers (as we know from Sec. 223.21) are: 

2F2 + 2 for the tetrahedron;
4F2 + 2 for the octahedron; and
10F2 + 2 for the icosahedron (or vector equilibrium).

930.26 Thus we learn sum-totally how a ribbon (band) wave, a waveband, can self- 
interfere periodically to produce in-shuntingly all the three prime structures of 
Universe and a complex isotropic vector matrix of successively shuttle-woven 
tetrahedra and octahedra. It also illustrates how energy may be wave-shuntingly self-
knotted or self- interfered with (see Sec. 506), and their energies impounded in local, 
high-frequency systems which we misidentify as only-seemingly-static matter.

931.00 Chemical 
Bonds

931.10 Omnicongruence:When two or more systems are joined vertex to vertex, 
edge to edge, or in omnicongruence-in single, double, triple, or quadruple bonding, 
then the topological accounting must take cognizance of the congruent vectorial build 
in growth. (See Illus. 931.10.)

931.20 Single Bond:In a single-bonded or univalent aggregate, all the tetrahedra are 
joined to one another by only one vertex. The connection is like an electromagnetic 
universal joint or like a structural engineering pin joint; it can rotate in any direction 
around the joint. The mutability of behavior of single bonds elucidates the 
compressible and load-distributing behavior of gases.

931.30 Double Bond:If two vertexes of the tetrahedra touch one another, it is called 
double-bonding. The systems are joined like an engineering hinge; it can rotate only 
perpendicularly about an axis. Double-bonding characterizes the load-distributing but 
noncompressible behavior of liquids. This is edge-bonding.

931.40 Triple Bond:When three vertexes come together, it is called a fixed bond, a 
three-point landing. It is like an engineering fixed joint; it is rigid. Triple-bonding 
elucidates both the formational and continuing behaviors of crystalline substances. 
This also is face-bonding.
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931.50 Quadruple Bond:When four vertexes are congruent, we have quadruple- 
bonded densification. The relationship is quadrivalent. Quadri-bond and mid-edge 
coordinate tetrahedron systems demonstrate the super-strengths of substances such as 
diamonds and metals. This is the way carbon suddenly becomes very dense, as in a 
diamond. This is multiple self-congruence.

931.51 The behavioral hierarchy of bondings is integrated four-dimensionally with 
the synergies of mass-interattractions and precession.

931.60 Quadrivalence of Energy Structures Closer-Than-Sphere Packing:In 
1885, van't Hoff showed that all organic chemical structuring is tetrahedrally 
configured and interaccounted in vertexial linkage. A constellation of tetrahedra 
linked together entirely by such single-bonded universal jointing uses lots of space, 
which is the openmost condition of flexibility and mutability characterizing the 
behavior of gases. The medium- packed condition of a double-bonded, hinged 
arrangement is still flexible, but sum-totally as an aggregate, allspace-filling complex 
is noncompressible__as are liquids. The closest- packing, triple-bonded, fixed-end 
arrangement corresponds with rigid-structure molecular compounds.

931.61 The closest-packing concept was developed in respect to spherical aggregates 
with the convex and concave octahedra and vector equilibria spaces between the 
spheres. Spherical closest packing overlooks a much closer packed condition of 
energy structures, which, however, had been comprehended by organic 
chemistry__that of quadrivalent and fourfold bonding, which corresponds to outright 
congruence of the octahedra or tetrahedra themselves. When carbon transforms from 
its soft, pressed-cake, carbon black powder (or charcoal) arrangement to its diamond 
arrangement, it converts from the so-called closest arrangement of triple bonding to 
quadrivalence. We call this self-congruence packing, as a single tetrahedron 
arrangement in contradistinction to closest packing as a neighboring-group 
arrangement of spheres.

931.62 Linus Pauling's X-ray diffraction analyses revealed that all metals are 
tetrahedrally organized in configurations interlinking the gravitational centers of the 
compounded atoms. It is characteristic of metals that an alloy is stronger when the 
different metals' unique, atomic, constellation symmetries have congruent centers of 
gravity, providing mid-edge, mid-face, and other coordinate, interspatial 
accommodation of the elements' various symmetric systems.

931.63 In omnitetrahedral structuring, a triple-bonded linear, tetrahedral array may 
coincide, probably significantly, with the DNA helix. The four unique quanta corners 
of the tetrahedron may explain DNA's unzipping dichotomy as well as__T-A; G- 
C__patterning control of all reproductions of all biological species.

932.00 Viral 
Steerability

932.01 The four chemical compounds guanine, cytosine, thymine, and adenine, 
whose first letters are GCTA, and of which DNA always consists in various paired 
code pattern sequences, such as GC, GC, CG, AT, TA, GC, in which A and T are 
always paired as are G and C. The pattern controls effected by DNA in all biological 
structures can be demonstrated by equivalent variations of the four individually 
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unique spherical radii of two unique pairs of spheres which may be centered in any 
variation of series that will result in the viral steerability of the shaping of the DNA 
tetrahelix prototypes. (See Sec. 1050.00 et. seq.)

932.02 One of the main characteristics of DNA is that we have in its helix a structural 
patterning instruction, all four-dimensional patterning being controlled only by 
frequency and angle modulatability. The coding of the four principal chemical 
compounds, GCTA, contains all the instructions for the designing of all the patterns 
known to biological life. These four letters govern the coding of the life structures. 
With new life, there is a parent-child code controls unzipping. There is a dichotomy 
and the new life breaks off from the old with a perfect imprint and control, wherewith 
in turn to produce and design others.

933.00 Tetraheli
x

Fig. 
933.01

933.01 The tetrahelix is a helical array of triple-bonded tetrahedra. (See Illus. 933.01) 
We have a column of tetrahedra with straight edges, but when face-bonded to one 
another, and the tetrahedra's edges are interconnected, they altogether form a 
hyperbolic-parabolic, helical column. The column spirals around to make the helix, 
and it takes just ten tetrahedra to complete one cycle of the helix.

933.02 This tetrahelix column can be equiangle-triangular, triple-ribbon-wave 
produced as in the methodology of Secs. 930.10 and 930.20 by taking a ribbon three- 
panels wide instead of one-panel wide as in Sec. 930.10. With this triple panel folded 
along both of its interior lines running parallel to the three-band-wide ribbon's outer 
edges, and with each of the three bands interiorly scribed and folded on the lines of 
the equiangle-triangular wave pattern, it will be found that what might at first seem to 
promise to be a straight, prismatic, three-edged, triangular-based column__upon 
matching the next-nearest above, wave interval, outer edges of the three panels 
together (and taping them together)__will form the same tetrahelix column as that 
which is produced by taking separate equiedged tetrahedra and face-bonding them 
together. There is no distinguishable difference, as shown in the illustration.

933.03 The tetrahelix column may be made positive (like the right-hand-threaded 
screw) or negative (like the left-hand-threaded screw) by matching the next-nearest-
below wave interval of the triple-band, triangular wave's outer edges together, or by 
starting the triple-bonding of separate tetrahedra by bonding in the only alternate 
manner provided by the two possible triangular faces of the first tetrahedron furthest 
away from the starting edge; for such columns always start and end with a 
tetrahedron's edge and not with its face.

933.04 Such tetrahelical columns may be made with regular or irregular tetrahedral 
components because the sum of the angles of a tetrahedron's face will always be 720 
degrees, whether regular or asymmetric. If we employed asymmetric tetrahedra they 
would have six different edge lengths, as would be the case if we had four different 
diametric balls__G, C, T, A__and we paired them tangentially, G with C, and T with A, 
and we then nested them together (as in Sec. 623.12), and by continuing the columns 
in any different combinations of these pairs we would be able to modulate the rate of 
angular changes to design approximately any form.

76

http://www.rwgrayprojects.com/synergetics/s06/p2200.html#623.12
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=933_04
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=933_03
http://www.rwgrayprojects.com/synergetics/s09/p3000.html#930.10
http://www.rwgrayprojects.com/synergetics/s09/p3000.html#930.20
http://www.rwgrayprojects.com/synergetics/s09/p3000.html#930.10
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=933_02
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=933_01
http://www.rwgrayprojects.com/synergetics/s09/figs/f3301.html
http://www.rwgrayprojects.com/synergetics/s09/figs/f3301.html
http://www.rwgrayprojects.com/synergetics/s09/figs/f3301.html
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=933_00
http://www.rwgrayprojects.com/CSynergetics/DisplayCmnt.jsp?sn=932_02
http://www.rwgrayprojects.com/synergetics/s10/p5000.html#1050.00


933.05 This synergetics' tetrahelix is capable of demonstrating the molecular- 
compounding characteristic of the Watson-Crick model of the DNA, that of the 
deoxyribonucleic acid. When Drs. Watson, Wilkins, and Crick made their famous 
model of the DNA, they made a chemist's reconstruct from the information they were 
receiving, but not as a microscopic photograph taken through a camera. It was simply 
a schematic reconstruction of the data they were receiving regarding the relevant 
chemical associating and the disassociating. They found that a helix was developing.

933.06 They found there were 36 rotational degrees of arc accomplished by each 
increment of the helix and the 36 degrees aggregated as 10 arc increments in every 
complete helical cycle of 360 degrees. Although there has been no identification of 
the tetrahelix column of synergetics with the Watson-Crick model, the numbers of the 
increments are the same. Other molecular biologists also have found a correspondence 
of the tetrahelix with the structure used by some of the humans' muscle fibers.

933.07 When we address two or more positive or two or more negative tetrahelixes 
together, the positives nestle their angling forms into one another, as the negatives 
nestle likewise into one another's forms.

933.08 Closest Packing of Different-sized Balls:It could be that the CCTA tetrahelix 
derives from the closest packing of different-sized balls. The Mites and Sytes (see 
Sec. 953) could be the tetrahedra of the GCTA because they are both positive- 
negative and allspace filling.

Appendix III

A006003 n * (n^2 + 1) / 2.
(Formerly M3849)
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0, 1, 5, 15, 34, 65, 111, 175, 260, 369, 505, 671, 870, 1105, 1379, 1695, 2056, 2465, 2925, 3439, 
4010, 4641, 5335, 6095, 6924, 7825, 8801, 9855, 10990, 12209, 13515, 14911, 16400, 17985, 
19669, 21455, 23346, 25345, 27455, 29679, 32020, 34481(list; graph; refs; listen; history; text; 
internal format) 
OFFSET 0,3
COMMENTS Comment from Felice Russo: Write the natural numbers in groups: 1; 2,3; 4,5,6; 

7,8,9,10; ... and add the groups. In other words, "sum of the next n natural 
numbers".

Number of rhombi in an n X n rhombus, if 'crossformed' rhombi are allowed - 
Matti De Craene (Matti.DeCraene(AT)rug.ac.be), May 14 2000

Also the sum of the integers between T(n-1)+1 and T(n), the n-th triangular number 
(A000217). Sum of n-th row of A000027 regarded as a triangular array.

Unlike the cubes which have a similar definition, it is possible for 2 elements of 
this sequence to sum to a third. E.g. a(36)+a(37)=23346+25345=48691=a(46). 
Might be called 2nd order triangular numbers, thus defining 3rd order triangular 
numbers (A027441) as n(n^3+1)/2, etc... - Jon Perry, Jan 14 2004

Also as a(n)=(1/6)*(3*n^3+3*n), n>0: structured trigonal diamond numbers (vertex 
structure 4) (Cf. A000330 = alternate vertex; A000447 = structured diamonds; 
A100145 for more on structured numbers). - James A. Record 
(james.record(AT)gmail.com), Nov. 7, 2004.

The sequence M(n) of magic constants for n X n magic squares (numbered 1 
through n^2) from n=3 begins M(n)=15, 34, 65, 111, 175, 260, ... - Lekraj 
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Beedassy, Apr 16 2005. [Comment corrected by Colin Hall, Sep 11 2009]
The sequence Q(n) of magic constants for the n-queens problem in chess begins 0, 

0, 0, 0, 34, 65, 111, 175, 260, ... - Paul Muljadi, Aug 23, 2005.
Alternate terms of A057587. - Jeremy Gardiner, Apr 10 2005
Also partial differences of A063488(n) = (2*n-1)*(n^2-n+2)/2. a(n) = A063488(n) - 

A063488(n-1) for n>1. - Alexander Adamchuk, Jun 03 2006
In an n x n grid of numbers from 1 to n^2, select -- in any manner -- one number 

from each row and column. Sum the selected numbers. The sum is independent 
of the choices and is equal to the n-th term of this sequence. - F.-J. Papp 
(fjpapp(AT)umich.edu), Jun 06 2006

Sequence allows us to find X values of the equation:(X-Y)^3-(X+Y)=0. To find Y 
values: b(n)=(n^3-n)/2. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), May 16 
2006

For the equation: m*(X-Y)^k-(X+Y)=0 with X>=Y,k>=2 and m is an odd number 
the X values are given by the sequence defined by: a(n)=(m*n^k+n)/2. The Y 
values are given by the sequence defined by: b(n)=(m*n^k-n)/2. - Mohamed 
Bouhamida (bhmd95(AT)yahoo.fr), May 16 2006

If X is an n-set and Y a fixed 3-subset of X then a(n-3) is equal to the number of 4-
subsets of X intersecting Y. - Milan Janjic, Jul 30 2007

(m*(2n)^k+n, m*(2n)^k-n) solves the Diophantine equation: 2m*(X-Y)^k-
(X+Y)=0 with X>=Y,k>=2 where m is a natural integer. - Mohamed Bouhamida 
(bhmd95(AT)yahoo.fr), Oct 02 2007

Also c^(1/2) in a^(1/2) + b^(1/2) = c^(1/2) such that a^2 + b = c. - Cino Hilliard 
(hillcino368(AT)hotmail.com), Feb 09 2008

Number of units of a(n) belongs to a periodic sequence: 0, 1, 5, 5, 4, 5, 1, 5, 0, 9, 5, 
1, 0, 5, 9, 5, 6, 5, 5, 9. [From Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 
04 2009]

The n-th row sums of Floyd's triangle are 1, 5, 15, 34, 65, 111, 175, 260, .... [From 
Paul Muljadi, Jan 25 2010]

a(n) = n*A000217(n) - sum(A001477(i), i=0..n-1). [Bruno Berselli, Apr 25 2010]
a(n) is the number of triples (w,x,y) having all terms in {0,...n} such that at least 

one of these inequalities fails: x+y<w, y+w<x, w+x<y.  [Clark Kimberling, Jun 
14 2012]

Sum of n-th row of the triangle in A209297. - Reinhard Zumkeller, Jan 19 2013
a(n) = A000217(n) + n*A000217(n-1). [Bruno Berselli, Jun 07 2013]
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2008.
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LINKS T. D. Noe, Table of n, a(n) for n = 0..1000

J. D. Bell, A translation of Leonhard Euler's "De Quadratis Magicis", E795
Milan Janjic, Two Enumerative Functions
Eric Weisstein's World of Mathematics, Magic Constant.
Wikipedia, Floyd's triangle [From Paul Muljadi, Jan 25 2010]
Index entries for sequences related to linear recurrences with constant coefficients
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FORMULA binomial(n, 3)+binomial(n-1, 3)+binomial(n-2, 3).
G.f.: x*(1+x+x^2)/(x-1)^4. - Floor van Lamoen (fvlamoen(AT)hotmail.com), Feb 

11 2002.
Partial sums of A005448, centered triangular numbers: 3n(n-1)/2 + 1. - Jonathan 

Vos Post, Mar 16 2006
Binomial transform of [1, 4, 6, 3, 0, 0, 0,...] = (1, 5, 15, 34, 65,...). - Gary W. 

Adamson, Aug 10 2007
a(-n) = -a(n). - Michael Somos, Dec 24 2011
a(n) = sum_{k = 1..n} A(k-1, k-1-n) where A(i, j) = i^2 + i*j + j^2 + i + j + 1. - 

Michael Somos, Jan 02 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=0, a(1)=1, a(2)=5, 

a(3)=15. Harvey P. Dale, May 16 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3. - Ant King, Jun 13 2012

EXAMPLE x + 5*x^2 + 15*x^3 + 34*x^4 + 65*x^5 + 111*x^6 + 175*x^7 + 260*x^8 + ...
MAPLE with (combinat):seq((fibonacci(4, n)+n^3)/4, n=0..41); - Zerinvary Lajos 

(zerinvarylajos(AT)yahoo.com), May 25 2008
MATHEMATI
CA

Table[ n(n^2 + 1)/2, {n, 0, 45}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 5, 15}, 50] Harvey P. Dale, May 16 2012

PROG (PARI) { v=vector(100, i, i*(i^2+1)/2); x=vector(1275); c=0; for (i=1, 50, for (j=i, 
50, x[c++ ]=v[j]-v[i])); for (k=1, 1275, for (l=1, 100, if (x[k]==v[l], print(x[k]); 
break))) } (Perry)

(PARI) {a(n) = n * (n^2 + 1) / 2} /* Michael Somos, Dec 24 2011 */
(Haskell)
a006003 n = n * (n ^ 2 + 1) `div` 2
a006003_list = scanl (+) 0 a005448_list
-- Reinhard Zumkeller, Jun 20 2013

CROSSREFS Cf. A000330, A000537, A066886, A057587, A027480.
Cf. A000578 (cubes).
Cf. A007742, A005449.
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, 

A004068, A000578, A004126, A000447, A004188, A004466, A004467, 
A007588, A062025, A063521, A063522, A063523.

Antidiagonal sums of array in A000027.
Cf. A005448.
Cf. A063488 - Sum of two consecutive terms.
Cf. A118465.
Cf. A226449. [Bruno Berselli, Jun 09 2013]
Cf. A034262.
Cf. A080992.
Sequence in context: A147264 A147150 A162513 * A111385 A026101 A084288
Adjacent sequences:  A006000 A006001 A006002 * A006004 A006005 A006006

KEYWORD nonn,easy,nice
AUTHOR N. J. A. Sloane, Simon Plouffe
EXTENSIONS Better description from Albert Rich (Albert_Rich(AT)msn.com) 3/97.

More terms from Robert G. Wilson v, Apr 15 2002
This is a second attempt at correction, first submission is hereby withdrawn. 

Corrected comment by Lekraj Beedassy on magic squares. n=2 does not exist, 
not strictly correct to set M(2)=0 Colin Hall, Sep 11 2009

STATUS approved
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Appendix IV 

Forgetful functor
From Wikipedia, the free encyclopedia
Jump to: navigation, search 

In mathematics, in the area of category theory, a forgetful functor 

(also known as a stripping functor) 'forgets' or drops some or all of 

the input's structure or properties 'before' mapping to the output. For 

an algebraic structure of a given signature, this may be expressed by 

curtailing the signature: the new signature is an edited form of the old 

one. If the signature is left as an empty list, the functor is simply to 

take the underlying set of a structure. Because many structures in 

mathematics consist of a set with an additional added structure, a 

forgetful functor that maps to the underlying set is the most common 

case.

Introduction

As examples, there are several forgetful functors from the category of 

commutative rings. A (unital) ring, described in the language of 

universal algebra, is an ordered tuple (R,+,*,a,0,1) satisfying certain 

axioms, where "+" and "*" are binary functions on the set R, a is a 

unary operation corresponding to additive inverse, and 0 and 1 are 

nullary operations giving the identities of the two binary operations. 

Deleting the 1 gives a forgetful functor to the category of rings 

without unit; it simply "forgets" the unit. Deleting "*" and 1 yields a 

functor to the category of abelian groups, which assigns to each ring R 

the underlying additive abelian group of R. To each morphism of rings is 

assigned the same function considered merely as a morphism of addition 

between the underlying groups. Deleting all the operations gives the 

functor to the underlying set R.

It is beneficial to distinguish between forgetful functors that "forget 

structure" versus those that "forget properties". For example, in the 

above example of commutative rings, in addition to those functors that 

delete some of the operations, there are functors that forget some of 

the axioms. There is a functor from the category CRing to Ring that 

forgets the axiom of commutativity, but keeps all the operations. 

Occasionally the object may include extra sets not defined strictly in 
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terms of the underlying set (in this case, which part to consider the 

underlying set is a matter of taste, though this is rarely ambiguous in 

practice). For these objects, there are forgetful functors that forget 

the extra sets that are more general.

Most common objects studied in mathematics are constructed as underlying 

sets along with extra sets of structure on those sets (operations on the 

underlying set, privileged subsets of the underlying set, etc.) which 

may satisfy some axioms. For these objects, a commonly considered 

forgetful functor is as follows. Let be any category based on sets, 

e.g. groups - sets of elements - or topological spaces - sets of 

'points'. As usual, write for the objects of and write for 

the morphisms of the same. Consider the rule:

in the underlying set of 
in the morphism, , as a map of sets.

The functor is then the forgetful functor from to , the category 

of sets.

Forgetful functors are almost always faithful. Concrete categories have 

forgetful functors to the category of sets—indeed they may be defined 

as those categories that admit a faithful functor to that category.

Forgetful functors that only forget axioms are always fully faithful; 

every morphism that respects the structure between objects that satisfy 

the axioms automatically also respects the axioms. Forgetful functors 

that forget structures need not be full; some morphisms don't respect 

the structure. These functors are still faithful though; distinct 

morphisms that do respect the structure are still distinct when the 

structure is forgotten. Functors that forget the extra sets need not be 

faithful; distinct morphisms respecting the structure of those extra 

sets may be indistinguishable on the underlying set.

In the language of formal logic, a functor of the first kind removes 

axioms. The second kind removes predicates. The third kind remove types.

An example of the first kind is the forgetful functor Ab → Grp. One of 

the second kind is the forgetful functor Ab → Set. A functor of the 

third kind is the functor Mod → Ab, where Mod is the fibred category of 

all modules over arbitrary rings. To see this, just choose a ring 
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homomorphism between the underlying rings that does not change the ring 

action. Under the forgetful functor, this morphism yields the identity. 

Note that an object in Mod is a tuple, which includes a ring and an 

abelian group, so which to forget is a matter of taste.

Left Adjoint: Free

Forgetful functors tend to have left adjoints, which are 'free' 

constructions. For example:

• free module  : the forgetful functor from (the category of -module) to 
has left adjoint , with , the free -module with 

basis .
• free group  
• free lattice  
• tensor algebra  
• free category  , adjoint to the forgetful functor from categories to quivers

For a more extensive list, see (Mac Lane 1997).

As this is a fundamental example of adjoints, we spell it out: 

adjointness means that given a set X and an object (say, an R-module) M, 

maps of sets correspond to maps of modules : 

every map of sets yields a map of modules, and every map of modules 

comes from a map of sets.

In the case of vector spaces, this is summarized as: "A map between 

vector spaces is determined by where it sends a basis, and a basis can 

be mapped to anything."

Symbolically:

The unit of the free-forget adjunction is the "inclusion of a basis": 

.

Fld, the category of fields, furnishes an example of a forgetful functor 

with no adjoint. There is no field satisfying a free universal property 

for a given set.
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