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Abstract

In a preliminary assessment, we begin to apply Santilli’s iso-mathematics to triplex
numbers, Euclidean triplex space, triplex fractals, and Inopin’s 2-sphere holographic
ring (HR) topology. In doing so, we successfully identify and define iso-triplex numbers
for iso-fractal geometry in a Euclidean iso-triplex space that is iso-metrically equipped
with an iso-2-sphere HR topology. As a result, we state a series of lemmas that aim to
characterize these emerging iso-mathematical structures. These initial outcomes indicate
that it may be feasible to engage this encoding framework to systematically attack a
broad range of problems in the disciplines of science and mathematics, but a thorough,
rigorous, and collaborative investigation should be in order to challenge, refine, upgrade,
and implement these ideas.
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1 Introduction
A number is a mathematical object that is used to count, label, and mea-

sure. Number systems are fundamental to all quantitative sciences because
they are used to encode the state space and transition space of experimental
and observable features in nature. Such systems are tools that let scientists
explore ideas and quantify experimental results. Historically, advances in
science, engineering, and technology have pushed the mathematical defi-
nition of a number to include additional structures such as 0, negative,
integer, rational, irrational, real, complex, and quaternion numbers in order
to satisfy the imposed representational demands of these disciplines.

A number is an element, so a set of numbers is a set of elements, where
the number set is equipped with addition and multiplication operators to
establish a number field that complies with five number field axioms [1].
Let

X = {x1, x2, x3, ...} (1)

be a number field, where operators can be applied to numbers for addition
(+) and multiplication (×) to produce a sum (x1+x2) and product (x1×x2),
respectively, because X satisfies the five number field axioms [1, 2, 3]

1. X permits an element 1, namely the multiplicative unit, such that
1× xA = xA × 1, ∀xA ∈ X;

2. X permits an element 0, namely the additive unit, such that 0 +xA =
xA + 0, ∀xA ∈ X;

3. X is closed under addition and multiplication, which indicates that the
respective sums (xA + xB) and products (xA × xB) between elements
xA, xB ∈ X produce all possible elements of X;

4. X’s addition and multiplication are associative, such that (xA+xB)+
xC = xA+(xB+xC) and (xA×xB)×xC = xA×(xB×xC), respectively;
and

5. the combination of X’s addition and multiplication is distributive,
such that (xA + xB)× xC = xA× xC + xB × xC and xA× (xB + xC) =
xA × xB + xA × xC .
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A dominant problem of pure mathematics, in the context of number
theory, is to establish a universal number classification, such as the iden-
tification of all sets that exist with numeric field axioms. To attack this
gigantic classification problem, extensive and rigorous studies have been
conducted over the course of history [1, 2, 4, 5, 6, 7]. A major result of
these studies is the creation of real numbers [8, 9, 10], complex numbers
[11, 12], and quaternion numbers [13, 14] with all possible numeric fields
[2]. Moreover, it is known that these encoding frameworks bare enormous
scientific application to quantifiable and computational implementations of
disciplines such as physics, chemistry, biology, and more.

Fractal and chaotic patterns are abundant in the physical, chemical,
and biological expressions of nature [15, 16, 17]. Fractal geometry—the
language of chaos theory [18]—is a relatively new discipline of mathematics
that was largely popularized by pioneer B. Mandelbrot [19, 20]. Chaos
theory studies the behavior of dynamical systems that are highly sensitive
to initial conditions [21, 15]. In a chaotic dynamical system, miniscule
differences in initial conditions yield widely diverging outcomes, thereby
generally rendering long-term predictions impossible [21, 15]. In addition to
particle and astro physics, examples of chaos and fractals are also observed
in lightning discharges [22, 23, 24, 25], weather patterns [26, 27, 28], aquatic
ecosystems [29, 30], population biology [31], the biological allometric scaling
laws [32, 33, 34, 35, 36], cancers and genetics [37, 38], viruses and pathogens
[39, 40], the human brain [41, 42, 43], earthquakes [44, 45, 46], volcanoes
[47, 48, 49], the global stock market [50, 51], and more. Certainly, iso-
mathematics must play a fundamental role in classifying and demystifying
such complex systems—but how?

As scientists and mathematicians, it is imperative to continue to in-
vestigate, scrutinize, challenge, develop, and test cutting-edge theories and
ideas, such as the triplex numbers [52, 53, 54, 55], Inopin’s HR [56], and
Santilli’s iso-mathematics [57, 58, 59, 60]. At the basis of this is the Sci-
entific Method. Thus, in this preliminary paper, we hunt this “universal
number classification beast” with an initial application of the Santillian
iso-mathematics framework [2, 57, 58, 59, 60] to the triplex numbers [52],
the Mandelbrot Set [19, 20], and the Inopin HR topology [56]. In Section
2, we prepare for the expedition by presenting a brief outline of Santilli’s
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framework [2, 57, 58, 59, 60], the triplex numbers [52], Mandelbrot’s set
[19, 20], and Inopin’s HR topology [56]. Subsequently, in Section 3, we be-
gin to apply Santilli’s framework [2, 57, 58, 59, 60] to the triplex framework
[52], Mandelbrot’s set [19, 20], and Inopin’s HR framework [56]. The paper
concludes with Sections 4–5, where we briefly recapitulate the results and
provide a thankful acknowledgment, respectively.

2 Alignment and background
Here, we prepare by aligning the reader with a background that high-

lights some aspects of Santilli’s framework [2, 57, 58, 59, 60], the triplex
numbers [52], Mandelbrot’s set [19, 20], and Inopin’s HR [56] that pertain
to the application of Section 3.

2.1 Santilli’s iso-mathematics framework
In [57, 58], Santilli reinspected the historical classification of sets verify-

ing the numeric field axioms [1] and discovered that they equally authorize
solutions for an arbitrary unit r̂, generally outside the original fields [1], un-
der the sole condition of being non-singular, and therefore invertible, such
that r̂ = 1

κ̂
, provided that the conventional associative number multiplica-

tion xA × xB is replaced with the associativity-preserving form [2, 57, 58]

xA ×̂ xB = xA × κ̂× xB (2)

under which r̂ is indeed the right and left multiplicative unit. In [57, 58],
Santilli then classified the new numbers depending on the main topological
features of r̂, such as:

1. r̂ is single-valued and Hermitean for the case of Santilli iso-numbers ;

2. r̂ is single-valued and non-Hermitean for the case of right Santilli geno-
numbers, characterized by r̂, and left Santilli geno-numbers character-
ized by r̂†; and

3. r̂ is multi-valued and non-Hermitean for the case of right Santilli
hyper-numbers, characterized by r̂, and left Santilli hyper-numbers
characterized by r̂†.
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Moreover, in [57, 58], Santilli identified the additional number series charac-
terized by the anti-Hermitean image of the preceding generalized numbers
via the iso-duality map that is denoted with the upper index d̂ = r̂† called
Santilli iso-dual iso-, geno-, and hyper-numbers.

In general, Santilli [57, 58] successfully demonstrated that, in addition to
conventional numbers, such axioms authorize the existence of four distinct
iso-number classes [2]:

1. Santilli iso-topic numbers (“iso-numbers”)

• Iso-numbers exist because Santilli [57, 58] showed that the num-
ber field axioms [1] do not require that the multiplicative unit r̂
is the number 1, so r̂ can be any value provided that [2]:

(a) the new Santilli iso-unit r̂ is positive (r̂ > 0) to permit the
inverse r̂ = 1

κ̂
> 0,

(b) the multiplication xA × xB is changed to the Santilli iso-
multiplication

xA ×̂ xB = xA × κ̂× xB = xA ×
1

r̂
× xB, (3)

which is always associative for the iso-topic liftings

xA = xA × r̂
xB = xB × r̂,

(4)

and

(c) the additive unit and its sum are kept unchanged.

• The number elements comprising X in eq. (1) are iso-topically
“lifted” via the iso-topic lifting X → X̂ to become the liftings of
the new iso-topic number set X̂ X̂ [2], which exist for the number
field axioms [1] and are therefore numbers that are applicable to
quantitative science [2]. Hence, the axiom of the multiplicative
units is confirmed by the expression [2]

1 ×̂ xA = 1× κ̂× xA = xA ×
1

r̂
× 1 = xA ×̂ 1 (5)

is valid ∀xA ∈ X̂.
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• The original number field axioms [1] are preserved for X̂ equipped
with the iso-unit r̂ for the iso-multiplication xA ×̂ xB [2].

• The iso-multiplication led to additional refinement, identifica-
tion, and usage [57, 58, 59] of the iso-real numbers, iso-complex
numbers, and iso-quaternion numbers [2].

• Note the importance that if xA = 2 and xB = 3, then in general
the iso-multiplication 2 ×̂ 3 yields a product that is different
than 6 [2].

2. Santilli geno-topic numbers (“geno-numbers”)

• Geno-numbers exist because, in addition to iso-numbers, Santilli
[57, 58] showed that the number field axioms [1] do not require
that the iso-multiplication operates on both the right and left
directions because the axioms are also tested when all the mul-
tiplications (and sums) are restricted to operate right xA ×̂> xB
or to operate left xA ×̂< xB [2].

• When Santilli [57, 58] restricted all operations to act on the right
or left, he was able to construct two different sets X̂> and X̂<

with corresponding Santilli geno-units r̂> and r̂< for the com-
patible Santilli geno-multiplication operators ×̂> and ×̂<, re-
spectively [2].

• The geno-multiplication led to additional refinement, identifi-
cation, and usage [57, 58, 59] of the geno-real numbers, geno-
complex numbers, and geno-quaternion numbers [2].

• Note the importance that if xA = 2 and xB = 3, then in gen-
eral the geno-multiplications 2 ×̂> 3 and 2 ×̂< 3 yield distinct
products that both differ from 6 because 2 ×̂> 3 6= 2 ×̂< 3 and
r̂> 6= r̂< [2].

3. Santilli hyper-topic numbers (“hyper-numbers” or “hyper-
Santilli numbers”)

• Hyper-numbers (which are not to be confused with so-called
hyper-mathematical structures that generally do not have units)
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exist because, in addition to the geno-numbers, Santilli [57, 58]
showed that a geno-multiplicative unit is not limited to a unique
value because it can comprise a set of values for Santilli hyper-
multiplication, such as the Santilli hyper-units r̂> = {1, 1, 2, 3, 5, ...}
or r̂> = {2, 4

5
, 7, ...}, if the set is ordered and defined as being ap-

plicable to right or left [2].

• The hyper-multiplication led to additional refinement, identifi-
cation, and usage [57, 58, 59] of the hyper-real numbers, hyper-
complex numbers, and hyper-quaternion numbers [2].

• Note the importance that, in general, the hyper-multiplications
2 ×̂> 3 and 2 ×̂< 3 yield two distinct result sets that both differ
from 6 [2].

4. Santilli iso-dual numbers

• Iso-dual numbers exist because, in addition to iso-numbers, geno-
numbers, and hyper-numbers, Santilli [57, 58] showed that the
multiplicative unit r̂ can be any (positive or negative) value ex-
cept for zero (i.e. −r̂) [2].

• The “iso-dual” term identifies a duality between positive and
negative units in accordance to the original number field axioms
[2].

• The iso-dual multiplication led to additional refinement, iden-
tification, and usage [57, 58, 59] iso-dual iso-numbers, iso-dual
geno-numbers, and iso-dual hyper-numbers [2].

So in total, Santilli’s axiomatic iso-mathematics framework [57, 58, 59,
60] reveals eleven new data structures [2]:

• iso-numbers,

• geno-numbers (right and left),

• hyper-numbers (right and left),

• conventional iso-dual numbers,
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• iso-dual iso-numbers,

• iso-dual geno-numbers (right and left), and

• iso-dual hyper-numbers (right and left);

each data structure is applicable to the real [8, 9, 10], complex [11, 12],
and quaternion numbers [13, 14], where each application bares an infinite
number of possible units [2].

Subsequently, in a series of physical implementations, Santilli [57, 58,
59, 60] then utilized the generalized iso-numbers, geno-numbers, and hyper-
numbers to characterize the increasing complexities of matter with regard
to non-linearity, non-Hamiltonian features, irreversibility, multi-valuedness,
etc., while the iso-dual images were used by Santilli to characterize anti-
matter under the corresponding increase of complexity. For an in-depth
explanation of this framework, we recommend a technical study of the orig-
inal publications [57, 58, 59, 60].

2.2 Complex numbers, Euclidean complex space, Mandelbrot set,
and Inopin 1-sphere HR topology

Chronologically, the establishment of the Inopin HR [56] came before the
triplex numbers [52]. Inopin’s HR was initially introduced in the analytic
quark confinement and baryon-antibaryon duality proof of [56]. The HR is
a powerful tool because it is topological sphere with an “amplitude-radius”
(or “amplitude-modulus”) that serves as an iso-metric to construct Inopin’s
HR topology, which may be utilized to attack a wide range of mathematical
and physical problems [52, 56]. In this section, we recall the synchronized
complex number and 2D coordinate-vector system for Inopin’s 1-sphere HR
topology, which are fundamental prerequisites of the synchronized triplex
number and 3D coordinate-vector system for Inopin’s 2-sphere HR topology
[52, 56] in the upcoming Section 2.3.

First, starting from eq. (7) in [52], we engage the complex number, 2D
polar coordinate-vector, and 2D Cartesian coordinate-vector synchroniza-
tion form

x = ~x = ~xR + ~xI = (~x) = (|~x|, 〈~x〉)P = (~xR, ~xI)C , ∀~x ∈ X, (6)
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where the complex number ~x is a dual 2D Cartesian-polar coordinate-vector
state in the dual 2D Cartesian-polar coordinate-vector state space and Eu-
clidean complex space X, such that

X = C (7)

is also the set of all complex numbers (a field): (~xR, ~xI)C is a 2D Cartesian
coordinate-vector state in the 2D Cartesian coordinate-vector state space
XC so (~xR, ~xI)C ∈ XC , while (|~x|, 〈~x〉)P is a 2D polar coordinate-vector
state in the 2D polar coordinate-vector state space XP so (|~x|, 〈~x〉)P ∈ XP ,
where XC and XP are iso-morphic, dual, synchronized, and interlocking in
X [52, 56]. To prove this for eq. (6), the transformations between XC and
XP , ∀(~xR, ~xI)C ∈ XC and ∀(|~x|, 〈~x〉)P ∈ XP , are identified by the complex
number-coordinate-vector constraints of eqs. (2–6) in [52], which define:

1. the |~x| ∈ [0,∞) amplitude (“radius” or “modulus” or “Euclidean dis-
tance”) polar component

|~x| =
√
~x 2
R + ~x 2

I ; (8)

2. the 〈~x〉 ∈ [0, 2π]RI phase (“azimuth” or “RI-direction”) polar compo-
nent (for the RI-plane)

〈~x〉 = arctan

(
~xI
~xR

)
; (9)

3. the ~xR ∈ (−∞R,∞R) real (“x-axis”) Cartesian component

~xR =
~xI

tan〈~x〉
= |~x| cos〈~x〉 ; (10)

and

4. the ~xI ∈ (−∞I,∞I) imaginary (“y-axis”) Cartesian component

~xI = i~xR tan〈~a〉 = i|~x| sin〈~x〉. (11)
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Hence, for X, the built-in iso-morphic duality between XC and XP is defined
as

δ2D : XC → XP (12)

from the transformation of eqs. (8–9) and

δ−12D : XP → XC (13)

from the transformation of eqs. (10–11). Therefore, X clearly satisfies the
five number field axioms of [1]. For a depiction of eqs. (6–13) see Figure 1,
where observe that ~xR and ~xI are treated as vectors (with axis-dependent
magnitude and direction) so the vector sum is ~x = ~xR + ~xI with amplitude
|~x| and direction 〈~x〉.

Second, given that X is the set of complex numbers, we note that X can
be populated with the Mandelbrot Set by systematically iterating Mandel-
brot’s complex quadratic polynomial [19, 20]

~xn+1 = ~x 2
n + ~c = ~xn+1R + ~xn+1I = (~xnR + ~xnI)

2 + (~cR + ~cI), (14)

where ~xn, ~xn+1,~c ∈ X are complex numbers that satisfy eqs. (6–13)—see
Figure 2.

Third, following [52, 56], we equip X with Inopin’s 1-sphere HR, namely
T 1 ⊂ X, by iso-metrically embedding T 1 in X of eqs. (10–11) of [56] to
construct Inopin’s 1-sphere HR topology; T 1 is a topological circle that is
centered on the origin

O ∈ X = 0 + 0i (15)

with the positive-definite amplitude-radius r and the corresponding curva-
ture κ = 1

r
. Hence, T 1 is employed to topologically encode the 1-sphere ver-

sion of Inopin’s “non-linear time dimension” and “temporal distance scale”,
where eq. (15) of [56] defines it as

T 1 = {~x ∈ X : |~x| = r} (16)

for Inopin’s 1-sphere HR topology, which is the multiplicative group of all
non-zero complex numbers with the amplitude-radius r.

Now T 1 was equipped with topological deformation order parameter
fields of fractional statistics for quasi-particles [52, 56]. The inside of T 1
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Fig. 1: Complex components for the dual 2D Cartesian-polar coordinate-vector state

~x in the dual 2D Cartesian-polar coordinate-vector state space (and Euclidean complex

space) X, such that ~x ∈ X, where ~x is simultaneously treated as a complex number,

2D polar coordinate-vector, and 2D Cartesian coordinate-vector. Specifically, (~xR, ~xI)C

is a 2D Cartesian coordinate-vector state in the 2D Cartesian coordinate-vector state

space XC so (~xR, ~xI)C ∈ XC , while (|~x|, 〈~x〉)P is a 2D polar coordinate-vector state in

the 2D polar coordinate-vector state space XP so (|~x|, 〈~x〉)P ∈ XP , where XC and XP

are iso-morphic, dual, synchronized, and interlocking in X. Note that ~xR and ~xI are

treated as vectors (with axis-dependent magnitude and direction) so the vector sum is

~x = ~xR + ~xI with amplitude |~x| and direction 〈~x〉.
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Fig. 2: The Mandelbrot Set [19, 20], which is often considered to be the most famous

fractal, can populate the dual 2D Cartesian-polar coordinate-vector state space (and

Euclidean complex space) X.
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corresponds to an interior dynamical system of superluminal quasi-particle
spatial excitations, namely the 2-brane micro sub-space zone (or “short spa-
tial distance scale”) X− ⊂ X of eq. (16) in [56], while the outside of
T 1 corresponds to an exterior dynamical system of luminal or sub-luminal
quasi-particle spatial excitations, namely the 2-brane macro sub-space zone
(or “long spatial distance scale”) X+ ⊂ X of eq. (17) in [56]—T 1 itself
is populated with luminal quasi-particle temporal excitations, which is si-
multaneously dual to both X− and X+ as in eqs. (20–21) in [56]. Here,
X−, T

1, X+ ⊂ X are disjoint and comprise the complete X, such that
X = X− ∪ T 1 ∪ X+ [56]—see Figure 3. For this, each complex location
~x ∈ X was equipped with one or more complex order parameter field states
in the generic form ~ψ(~x) within a complex order parameter field state space

Φ(~x) for topological deformations, such that ~ψ(~x) ∈ Φ(~x)—see eq. (20) in
[52].

For the quark confinement proof of [56], the three distinct quark-antiquark
pairs for a baryon-antibaryon pair are confined to T 1 in the upgraded Gri-
bov vacuum on a six-coloring kagome lattice antiferromagnet with correlated
order parameters. The transforming wavefunction states of T 1 are directly
related to the states of X− and X+, which are 2-branes within 3-branes, so
their 3D state space is directly inferred from the 2D state space of T 1. But
at the time of writing [56], the triplex numbers with triplex multiplication
did not yet exist, therefore it was not possible to fully encode the 3D state
space of the 3-branes—this genuine need to employ 3D numbers to encode
3D states (with a pertinent 3D number multiplication) fueled the motiva-
tion for the triplex implementation of [52], which served as a topological
upgrade to [56].

2.3 Triplex numbers, Euclidean triplex space, Mandelbulb set,
and Inopin 2-sphere HR topology

The triplex work of [52] was inspired by the emerging “3D hyper-complex
number” framework of pioneers D. White and P. Nylander [53, 54, 55].
White and Nylander originally developed their 3D hyper-complex number
system in order to generate magnificent 3D fractals with computer graphics
[53, 54, 55]. However, the White-Nylander 3D hyper-complex approach
[53, 54] was still considered incomplete primarily because their 3D spherical
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Fig. 3: Inopin’s 1-sphere HR topology for the dual 2D Cartesian-polar coordinate-

vector state space (and Euclidean complex space) X, where the topological 1-sphere HR

T 1 ⊂ X is simultaneously dual to two spatial 2-branes [52, 56]: the micro sub-space zone

X− ⊂ X and the macro sub-space zone X+ ⊂ X for interior and exterior dynamical

systems, respectively.
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form (extended polar form) was not unique while the system did not form
a well-behaved algebra [55, 52]. Fortunately, after a thorough and rigorous
investigation, this great “White-Nylander mythical beast” of [53, 54, 55]
was destroyed via the creation of a well-behaved triplex algebra equipped
with a unique 3D spherical form and triplex multiplication—observe the
work of [52] and the upcoming eqs. (17–28). Thus, the triplex structure Y
was introduced to supersede the complex structure X by upgrading it with
a third axis for 3D representation, such that X ⊂ Y , to establish Inopin’s
2-sphere HR topology [52].

First, eq. (35) in [52] defines the triplex number, 3D spherical coordinate-
vector, and 3D Cartesian coordinate-vector synchronization form

y = ~y = ~yR + ~yI + ~yZ = (~y) = (|~y|, 〈~y〉, [~y])S = (~yR, ~yI, ~yZ)C , ∀~y ∈ Y, (17)

where the triplex number ~y is a dual 3D Cartesian-spherical coordinate-
vector state in the dual 3D Cartesian-spherical coordinate-vector state space
and Euclidean triplex space Y , such that

Y ≡ T (18)

is also defined as the set of all triplex numbers (a field): (~yR, ~yI, ~yZ)C is a
3D Cartesian coordinate-vector state in the 3D Cartesian coordinate-vector
state space YC so (~yR, ~yI, ~yZ)C ∈ YC , while (|~y|, 〈~y〉, [~y])S is a 3D spherical
coordinate-vector state in the 3D spherical coordinate-vector state space YS
so (|~y|, 〈~y〉, [~y])S ∈ YS, where YC and YS are iso-morphic, dual, synchronized,
and interlocking in Y [52]. To prove this for eq. (17), the transformations
between YC and YS, ∀(~yR, ~yI, ~yZ)C ∈ YC and ∀(|~y|, 〈~y〉, [~y])S ∈ YS, are iden-
tified by the triplex number and 3D coordinate-vector constraints of eqs. (
29–34) in [52], which define:

1. the |~y| ∈ [0,∞) amplitude (“radius” or “modulus” or “Euclidean dis-
tance”) spherical component

|~y| =
√
~y 2
R + ~y 2

I + ~y 2
Z ; (19)

2. the 〈~y〉 ∈ [0, 2π]RI phase (“azimuth” or “RI-direction”) spherical com-
ponent (for the RI-plane)

〈~y〉 = arctan

(
~yI
~yR

)
; (20)



15

3. the [~y] ∈ [0, 2π]RZ inclination (“zenith” or “RZ-direction”) spherical
component (for the RZ-plane)

[~y] = arctan

(
~yZ
~yR

)
; (21)

4. the ~yR ∈ (−∞R,∞R) real (“x-axis”) Cartesian component

~yR =
~yI

tan〈~y〉
= |~y|RI cos〈~y〉 ; (22)

5. the ~yI ∈ (−∞I,∞I) imaginary (“y-axis”) Cartesian component

~yI = i~yR tan〈~y〉 = i|~y|RI sin〈~y〉, (23)

where

|~y|RI =
√
~y 2
R + ~y 2

I (24)

is the 2D limited amplitude radius for the RI plane; and

6. the ~yZ ∈ (−∞Z ,∞Z) projected (“z-axis”) Cartesian component

~yZ = j~yR tan[~y] = j|~y|RZ sin[~y], (25)

where

|~y|RZ =
√
~y 2
R + ~y 2

Z (26)

is the 2D limited amplitude radius for the RZ plane.

Hence, for Y , the built-in iso-morphic duality between YC and YS is defined
as

δ3D : YC → YS (27)

from the transformation of eqs. (19–21) and

δ−13D : YS → YC (28)

from the transformation of eqs. (22–26). For a depiction of eqs. (17–28)
see Figures 4–5, where observe that ~yR, ~yI, and ~yZ are treated as vectors
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Fig. 4: Triplex components for the dual 3D Cartesian-spherical coordinate-vector

state ~y in the dual 3D Cartesian-polar coordinate-vector state space (and Euclidean

triplex space) Y , such that ~y ∈ Y , where ~y is simultaneously treated as a triplex

number, 3D spherical coordinate-vector, and 3D Cartesian coordinate-vector. Specif-

ically, (~yR, ~yI, ~yZ)C is a 3D Cartesian coordinate-vector state in the 3D Cartesian

coordinate-vector state space YC so (~yR, ~yI, ~yZ)C ∈ YC , while (|~y|, 〈~y〉, [~y])S is a 3D

spherical coordinate-vector state in the 3D spherical coordinate-vector state space YS

so (|~y|, 〈~y〉, [~y])S ∈ YS , where YC and YS are iso-morphic, dual, synchronized, and in-

terlocking in Y . Note that ~yR, ~yI, and ~yZ are treated as vectors (with axis- dependent

magnitude and direction) so the vector sum is ~y = ~yR + ~yI + ~yZ with amplitude |~y| and

two directions 〈~y〉 and [~y].
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Fig. 5: Aligned perspectives of ~y ∈ Y from the RI-plane (top) and the RZ-plane

(bottom).
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(with axis-dependent magnitude and direction) so the vector sum is ~y =
~yR + ~yI + ~yZ with amplitude |~y| and two directions 〈~y〉 and [~y].

Second, using the notation of eq. (17), the triplex multiplication between
the two distinct triplex numbers ~yA, ~yB ∈ Y to yield the product ~yC ∈ Y is
defined in eqs. (70–71) of [52] as

~yC = ~yA × ~yB ⇐⇒
|~yC | = |~yA| × |~yB|
〈~yC〉 = 〈~yA〉 + 〈~yB〉
[~yC ] = [~yA] + [~yB]

, ∀~yA, ~yB, ~yC ∈ Y. (29)

In other words, the amplitude-radius values are multiplied while the cor-
responding directional values are added to yield the triplex spherical form
of the product in eq. (29). Hence, given that division is defined as the
inverse, opposite, and reverse operation of multiplication, then we engage
eq. (29) to incorporate this fundamental relation and thereby define the
triplex division as

~yC ≡ ~yA / ~yB ⇐⇒
|~yC | ≡ |~yA| / |~yB|
〈~yC〉 ≡ 〈~yA〉 − 〈~yB〉
[~yC ] ≡ [~yA] − [~yB]

, ∀~yA, ~yB, ~yC ∈ Y, (30)

where ~yA is the dividend, ~yB is the divisor, and ~yC is the quotient because
eq. (30) comprises operations that are the inverse, opposite, and reverse
of eq. (29). In other words, the amplitude-radius dividend is divided by
the amplitude-radius divisor while the corresponding directional values are
subtracted to yield the triplex spherical form of the quotient in eq. (30).
Therefore, Y clearly satisfies the five number field axioms of [1].

Third, we summarize the pertinent aspects of P. Rowlands’ dual 3D
vector space [61, 62, 63], which is a quaternion-based, nilpotent implemen-
tation of our Y . According to [61, 62, 63], a triplex structure based on three
orthogonal axes—i.e. the R-axis, the I-axis, and the Z-axis of Y—can be
constructed with a dual, interlocking 3D vector system that generates a
double 3D Clifford algebra to encode spatial states of dynamical systems
[61, 62, 63]. An overview of this process is as follows [61, 62, 63]:

1. At the start, two vector spaces are defined in the Clifford algebra
formulation, where the vector spaces are distinct but identical in every
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respect [61, 62, 63]. Both vector spaces have, in addition to one scalar
unit, three vector units to encode lengths, three bivector units to
encode areas, and one pseudo-scalar unit to encode volume [61, 62, 63].
Vectors in this algebra have a complete product and well-behaved
multiplication—see eq. (3) of [61].

2. Once the dual vector spaces are assembled, a commutative combi-
nation of the two spaces (allowing for + and 0 signs) generates an
algebra structured on 64 units so the Clifford algebra vectors can also
be written as complexified quaternions [61, 62, 63]. Therefore, the
complete double algebra is encoded as either a complexified double
quaternion algebra or as a product of a vector and a quaternion alge-
bra [61, 62, 63]—this yields a total of three unit sets of order 64 that
are iso-morphic to, for example, the Dirac algebra [61, 62, 63].

3. Now each unit set can be created by five generators [61, 62, 63]. There
are many options for the generators, but they all have the same struc-
ture in which the symmetry of one 3D unit set is preserved, while
the other is broken [61, 62, 63]. If six generators are used then both
symmetries are preserved, but not in the minimum case of using five
generators [61, 62, 63]: there are three instances of the five generators
that preserve one symmetry but not the other [61, 62, 63].

4. These three resulting instances permit the creation of a triplex repre-
sentation whose symmetry is not preserved as the basis of the three
triplex axes [61, 62, 63]. The character of each axis is then determined
by the type of quantity in which it is multiplied by [61, 62, 63].

5. Next, the middle three terms of a given five generator are used to
encode the Z-axis as a vector, and the three vector units in each case
are combined to be a single vector unit [61, 62, 63]. This yields a
triplex structure where the axes are encoded as quaternions [61, 62,
63].

6. Interestingly, Rowlands’ triplex structure can be thought of as be-
ing an endless fractal sequence as one moves up the scale [63]. The
first triplex structure, which is originally unbroken, becomes broken
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Fig. 6: Rowlands’ triplex structure can be thought of as being an endless fractal sequence

as one moves up the scale [63]. The first triplex structure, which is originally unbroken,

becomes broken by having a second triplex structure attached (top). Consequently, the

second triplex structure is now unbroken, but becomes broken by attaching another

triplex structure (bottom), and so on indefinitely.

by having a second triplex structure attached [63]. Consequently,
the second triplex structure is now unbroken, but becomes broken by
attaching another triplex structure, and so on indefinitely [63]. See
Figure 6 for a depiction of this process [63].

Fourth, given that Y is the set of triplex numbers equipped with a
well-behaved triplex algebra and unique triplex spherical form [52] that is
similar to Rowlands’ approach [61, 62, 63] and extends the White-Nylander
approach [53, 54, 55], we note that Y can be populated with the Mandelbulb
Set—a fundamental 3D fractal—by systematically iterating Mandelbrot’s
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triplex quadratic polynomial

~yn+1 = ~y 2
n +~c = ~yn+1R+~yn+1I+~yn+1Z = (~ynR+~ynI+~ynZ

)2+(~cR+~cI+~cZ), (31)

where ~yn, ~yn+1,~c ∈ Y are triplex numbers that satisfy eqs. (17–30).
Fifth, following [52], we equip Y with Inopin’s 2-sphere HR, namely

T 2 ⊂ Y , by iso-metrically embedding T 2 in Y of eqs. (40–41) of [52] to
construct Inopin’s 2-sphere HR topology; T 1 is a topological 2-sphere that
is centered on the origin

O ∈ Y = 0 + 0i+ 0j (32)

with the amplitude-radius r and the corresponding curvature κ = 1
r

(the
same as T 1). Hence, T 2 is employed to topologically encode the 2-sphere ver-
sion of Inopin’s “non-linear time dimension” and “temporal distance scale”,
where eq. (40) of [52] defines it as

T 2 = {~y ∈ Y : |~y| = r} (33)

for Inopin’s 2-sphere HR topology, which is the multiplicative group of all
non-zero triplex numbers with the amplitude-radius r [52]—T 1 ⊂ X is
generalized to T 2 ⊂ Y [52]. Hence, given that X ⊂ Y and T 1 ⊂ X ⊂ Y ,
then

T 1 = T 2 ∩X, (34)

so T 1 is the great (topological) circle of T 2 [52, 56], such that T 1 ⊂ T 2,
where both T 1 and T 2 share the same positive-definite amplitude-radius r
and curvature κ = 1

r
. So given X → Y and X ⊂ Y , T 2 delineates the dual

interconnected spatial 3-branes Y− ⊂ Y and Y+ ⊂ Y in eq. (41) of [52],
which supercede the spatial 2-branes X− ⊂ Y− ⊂ Y and X+ ⊂ Y+ ⊂ Y ,
where T 2 is simultaneously dual to the 3-brane micro sub-space zone Y− and
the 3-brane macro sub-space zone Y+ in eq. (44) of [52] for Y = Y−∪T 2∪Y+,
recalling that Y−, T

2, Y+ ⊂ Y are disjoint [52]—see Figure 7. For this, we
observe the analogy: T 1 is to X−, X+ ⊂ X just as T 2 is to Y−, Y+ ⊂ Y ,
respectively. Here, we recall from [52] that each triplex location ~y ∈ Y
was equipped with one or more triplex order parameter field states in the
generic form ~ψ(~y) within a triplex order parameter field state space Φ(~y)

for topological deformations, such that ~ψ(~y) ∈ Φ(~y)—see eq. (50) in [52].
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Fig. 7: Inopin’s 2-sphere HR topology in the dual 3D Cartesian-spherical coordinate-

vector state space (and Euclidean triplex space) Y , where the topological 2-sphere HR

T 2 ⊂ Y is simultaneously dual to two spatial 3-branes [52, 56]: the micro sub-space

zone Y− ⊂ Y and the macro sub-space zone Y+ ⊂ Y for interior and exterior dynamical

systems, respectively. Here, T 2 is depicted as M. C. Escher’s famous reflecting sphere

[64].
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Therefore, given that Santilli applied his iso-mathematics [57, 58] to the
real [8, 9, 10], complex [11, 12], and quaternion numbers [13, 14], it seems
important that his breakthroughs [2, 57, 58, 59, 60] should also be applied
to the triplex numbers [52], where the amplitude-radius r of both T 1 and
T 2 serves as an iso-metric [52, 56].

3 Application
In this section, we begin to apply Santilli’s iso-mathematics framework

[2, 57, 58, 59, 60] to the triplex numbers [52] and Inopin’s 2-sphere HR
topology [52, 56]. In Section 3.1, our first attack focuses on iso-topically
lifting the triplex number space Y—excluding T 2—and subsequently gives a
preliminary assessment on the feasibility of iso-morphing Y via geno-topic,
hyper-topic, and iso-dual-topic liftings. Next, we advance to our second
engagement in Section 3.2, where we assemble a preliminary explanation
on how one can upgrade the Y—including T 2—of Inopin’s 2-sphere HR
topology [52, 56] with Santilli’s iso-numbers [2, 57, 58, 59, 60]. In both
phases, we report the initial results.

3.1 Iso-triplex numbers, Euclidean iso-triplex space, and iso-fractal
Mandelbulb Set

Here, in the first phase of engagement, the initial and primary objective
is to iso-topically lift Y in accordance to Santilli’s iso-numbers [2, 57, 58, 59,
60], while the secondary objective is to assess the possibility of iso-morphing
Y via geno-topic, hyper-topic, and iso-dual-topic liftings.

First, for Santilli’s iso-topic numbers [2, 57, 58, 59, 60], we select some
r̂ > 0 with corresponding inverse κ̂ = 1

r̂
, such that κ̂ > 0. Next, following

[2, 57, 58, 59, 60], Y ’s triplex numbers ~yA, ~yB ∈ Y are redefined in the form

~yA ≡ ~yA × r̂
~yB ≡ ~yB × r̂

, ∀~yA, ~yB ∈ Y → ∀~yA, ~yB ∈ Ŷ , (35)

where the triplex number set and Euclidean triplex space Y of eq. (18)
is iso-topically lifted via Y → Ŷ to become Ŷ—defined as both the iso-
triplex number set and the Euclidean iso-triplex space—such that the triplex
multiplication between ~yA, ~yB ∈ Y of eq. (29) is upgraded to define the iso-
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triplex multiplication as

~yA ×̂ ~yB ≡ ~yA × κ̂× ~yB = ~yA ×
1

r̂
× ~yB (36)

for Ŷ , which is always associative, such that the additive unit and its sum
remain unmodified. Hence, from [2, 57, 58, 59, 60], the axiom of multiplica-
tive units is confirmed by the expressions

1 ×̂ ~yA ≡ 1× κ̂× ~yA ≡ ~yA × 1
r̂
× 1 ≡ ~yA ×̂ 1

1 ×̂ ~yB ≡ 1× κ̂× ~yB ≡ ~yB × 1
r̂
× 1 ≡ ~yB ×̂ 1,

(37)

which are valid ∀~yA, ~yB ∈ Y → ∀~yA, ~yB ∈ Ŷ . Therefore, the opera-
tion ~yA ×̂ ~yB of eq. (36) is known as the triplex version of Santilli iso-
multiplication, so we’ve employed the work of [57, 58, 59, 60] to identify the
Santilli iso-triplex number set in accordance to [2]. Therefore, the results
of eqs. (36–37) indicate that the iso-topic lifting and its inverse are

f(r̂) : Y → Ŷ

f−1(r̂) : Ŷ → Y,
(38)

respectively, which define an iso-morphism (or bijective homo-morphism),
where Ŷ is the Euclidean iso-triplex space. At this point, we’ve successfully
applied Santilli’s iso-numbers [57, 58, 59, 60] to the triplex numbers [52] so
we identify:

• Lemma 1.1: A Euclidean triplex space Y (equipped with the mul-
tiplication operator ×) can be iso-topically lifted via the transition
f(r̂) : Y → Ŷ (with iso-unit r̂) to become a Euclidean iso-triplex
space Ŷ (equipped with the iso-multiplication operator ×̂), where Y
and Ŷ are locally iso-morphic.

• Lemma 1.2: A Euclidean triplex space Y and its corresponding (iso-
topically lifted) Euclidean iso-triplex space Ŷ are locally iso-morphic
because:

1. Y and Ŷ share the same origin O ∈ Y, Ŷ for O = 0+0i+0j; and
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2. there is a one-to-one mapping of mathematical location elements
between Y and Ŷ .

Second, for Santilli’s geno-topic numbers [57, 58], we see that the right
~yA ×̂> ~yB and left ~yA ×̂< ~yB geno-multiplication operations may establish
the two different sets Ŷ> and Ŷ< from Ŷ with corresponding geno-units
r̂> and r̂< to possibly identify geno-triplex numbers in accordance to [2].
Hence, Santilli’s geno-multiplication applies to the triplex numbers of [52].

Third, for Santilli’s hyper-topic numbers [57, 58], we clarify that the
iso-multiplicative unit for ~yA ×̂ ~yB is not limited to a unique value because
it can comprise an ordered set of values (i.e. recall r̂> = {1, 1, 2, 3, 5, ...}
or r̂> = {2, 4

5
, 7, ...}) since the set is applicable to right and left [2]. Thus,

it is evident that Santilli’s hyper-multiplication may apply to the triplex
numbers of [52] and possibly identify the pertinent hyper-triplex numbers in
accordance to [2].

Fourth, for Santilli’s iso-dual numbers [57, 58], the iso-multiplicative
unit r̂ may be any value except for zero, so Santilli’s method [57, 58] may
apply to the triplex numbers of [52] to possibly identify the relevant iso-dual
iso-triplex numbers in accordance to [2].

And finally, at this point, these initial results of our preliminary as-
sessment suggest the existence of geno-triplex, hyper-triplex, and iso-dual-
triplex numbers, with direct application to iso-fractals, geno-fractals, hyper-
fractals, and iso-dual-fractals—certainly, the iso-triplex numbers and iso-
triplex space of eqs. (35–38) engage an iso-fractal version of the Mandel-
bulb Set in eq. (31). Therefore, these topics will be subject for future
investigation beyond the limited scope of this paper.

3.2 Iso-2-sphere HR topology
Here, in the second phase of engagement, the primary objective is to

apply Santilli’s framework [2, 57, 58, 59, 60] to construct a preliminary ex-
planation on how the geometry of T 2 ⊂ Y in Inopin’s 2-sphere HR topology
[52, 56] can be reduced to the one single geodesic T 1, where T 1 ⊂ T 2 ⊂ Y ,
over the iso-triplex numbers.

First, given that the T 1 of eq. (16) and T 2 of eq. (33) are both triplex
sub-spaces of Y , then Lemmas 1.1–1.2 apply to T 1, T 2 ⊂ Y so they can be



26

iso-topically lifted to T̂ 1, T̂ 2 ⊂ Ŷ , respectively, where we define T̂ 1 as the
iso-1-sphere HR and T̂ 2 as the iso-2-sphere HR. This enables us to apply
eq. (38) to define the iso-topic liftings (and the inverses) for T 1, T 2 ⊂ Y
with some iso-unit r̂ as

f(r̂) : T 1 → T̂ 1

f−1(r̂) : T̂ 1 → T 1
(39)

and
f(r̂) : T 2 → T̂ 2

f−1(r̂) : T̂ 2 → T 2,
(40)

respectively. At this point, we identify:

• Lemma 2.1: An Inopin n-sphere HR T n that is iso-metrically em-
bedded in a triplex space Y , such that n ∈ {1, 2}, can be iso-topically
lifted via the transition f(r̂) : T n → T̂ n (with iso-unit r̂) to become an
iso-n-sphere HR T̂ n when the superseding Y is simultaneously lifted
to Ŷ , where T n and T̂ n are locally iso-morphic.

• Lemma 2.2: An Inopin n-sphere HR T n and its corresponding (iso-
topically lifted) iso-n-sphere HR T̂ n are locally iso-morphic because:

1. T n and T̂ n share the same center O ∈ Y, Ŷ for O = 0 + 0i+ 0j;

2. there is a one-to-one mapping of mathematical location elements
between Y and Ŷ ; and

3. Y and Ŷ are locally iso-morphic.

Now, the iso-morphic characterization of Y , T 1, and T 2 in Lemmas
1.1–1.2 and 2.1–2.2, which is one initial outcome of applying Santilli’s iso-
number framework [2, 57, 58, 59, 60], is fundamentally compliant with the
fact that Inopin’s 2-sphere HR topology can be equipped with various config-
urations of complex and triplex order parameter fields to encode topological
deformations for a wide spectrum of physical features [52]. In other words,
the order parameter field is a powerful tool that enables us to define topo-
logical quantities and functions for states and transitions associated with,
for example, iso-morphism and/or stereo-graphic projections [52, 56]. Addi-
tionally, Santilli [57, 58] proved that the infinite set of all possible ellipsoids
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arising from topologically-preserving deformations of a sphere in conven-
tional Euclidean space over a conventional field are mapped to a correspond-
ing Santilli iso-sphere in a Euclidean-Santillian iso-real space. More specif-
ically, Santilli [57, 58] demonstrated that the mechanism for this is quite
simple: the procedure consists of embedding all deformations κ̂δ of Euclid’s
metric in the iso-unit r̂ = 1

κ̂
> 0, such that δ = Diag.(1, 1, 1)—any observer

who looks at the resulting image of the ellipsoid under this map will see only
one object: the perfect sphere with an amplitude-radius of r̂. Therefore,
given Lemmas 1.1–1.2 and 2.1–2.2, the infinite set of all possible ellipsoids
arising from topologically-preserving deformations of T 2 ⊂ Y are mapped
to the corresponding T̂ 2 ⊂ Ŷ , where the positive-definite amplitude-radius
is r = r̂ and the corresponding curvature is κ = κ̂ = 1

r̂
. To interpret this

enlightening result in the case of, for example, Riemann geometry, we select
a geodesic of Y with the 3x3 iso-metric ĝ for Inopin’s 2-sphere HR topology,
then all infinitely possible Riemannian metrics G can be factorized in the
form

G = κ̂× ĝ. (41)

Thus, for T 2’s great circle geodesic of T 1, the reformulation of Y in terms
of Ŷ with iso-unit r̂ can be reduced to the analysis of only one circular
element—namely Inopin’s T 1 for T̂ 1—with a geodesic characterized by ĝ
because all infinitely possible circular elements in Y are obtained via (stereo-
graphic) projection! Immediately, we observe the resemblance of Santilli’s
interior and exterior dynamical systems [57, 58, 59, 60] to Y− and Y+,
respectively, in terms of the iso-multiplicative unit r̂ for the corresponding
Ŷ− and Ŷ+. Thus, we’ve defined an iso-2-sphere HR topology of Ŷ . At this
point, we identify:

• Lemma 3.1: An Inopin 1-sphere HR T 1 ⊂ Y (the great circle of the
Inopin 2-sphere HR T 2 ⊂ Y ) that is iso-metrically embedded in the
Euclidean triplex space Y is one non-linear structure that satisfies the
strict iso-curvature and iso-duality constraints of the iso-2-sphere HR
topology, where Y− ⊂ Y and Y+ ⊂ Y correspond to Santilli-Inopin
interior and exterior dynamical systems, respectively, such that the
complete Y (with its said topological sub-spaces) are iso-morphic to
their respective iso-topic liftings.
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• Lemma 3.2: If a Euclidean triplex space Y that is iso-metrically
equipped with the Inopin 2-sphere HR T 2 ⊂ Y and its great circle,
namely the Inopin 1-sphere HR T 1 ⊂ Y , is locally iso-morphic to its
iso-topic lifting Ŷ (iso-metrically equipped with the iso-2-sphere HR
T̂ 2), then all forms of the iso-1-sphere HR T̂ 1 may be unified into one
single iso-circular form on Ŷ , where Ŷ− ⊂ Ŷ and Ŷ+ ⊂ Ŷ are iso-dual
because they are simultaneously dual to T̂ 2 for which T̂ 1 is the great
circle.

The said geometric and non-linear unifications are parallel to that for
Lie algebras because all possible, simple Lie algebras (compact and non-
compact) of dimension d can be unified into one single Lie-Santilli iso-tope
of dimension d (with the sole exclusion of exceptional algebra currently being
investigated from other perspectives). Moreover, we achieve the capability
of dealing with non-linear, non-local, and non-Hamiltonian systems at the
Lie-Santilli level, which currently remains unattainable for the conventional
Lie.

4 Conclusion
In this work, we started by briefly discussing the importance and de-

velopment of number systems in terms of science. We touched on the five
original number field axioms [2, 3], the abundance of fractals and chaos in
nature, and acknowledged the significance of identifying a universal number
classification system. Subsequently, we identified Santilli’s four distinct data
structure classes, namely the iso-numbers, the geno-numbers, the hyper-
numbers, and the iso-dual numbers, [2, 57, 58, 59, 60], which are pertinent
to an application assessment of the triplex numbers [52], triplex fractals,
and Inopin’s HR topology [52, 56].

Next, we conducted a preliminary upgrade to the triplex numbers and
Euclidean triplex space of Inopin’s 2-sphere HR topology [52] by engaging
Santilli’s four iso-number classes [2, 57, 58, 59, 60]. In doing so, we identi-
fied and defined the Santilli iso-triplex numbers to construct the Euclidean
iso-triplex space for 3D iso-fractals, and subsequently demonstrated the ex-
istence of geno-triplex numbers, hyper-triplex numbers, and iso-dual-triplex
numbers in a preparatory context. Afterwards, we provided a preliminary
explanation on how Santilli’s iso-mathematics [57, 58, 59, 60] apply to the
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Inopin HR [52, 56] by defining the iso-2-sphere HR (with the iso-1-sphere
HR as its great circle) to assemble the iso-2-sphere HR topology. Con-
sequently, we stated an array of lemmas that aim to characterize these
emerging mathematical structures.

In total, the resulting constructions of this venture are significant be-
cause they are cutting-edge, and therefore advance the frontiers of iso-
mathematics to new realms of exploration and application. Hence, with the
objective of further implementing these developments in the disciplines of
science, technology, and engineering, we propose that a thorough and rigor-
ous iso-mathematical investigation should be conducted along this research
trajectory to challenge, upgrade, and generalize this emerging framework.
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