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Abstract The Space Group Visualizer (SGV) for all 230 3D space groups is a stan-
dalone PC application based on the visualization software CLUCalc. We first ex-
plain the unique geometric algebra structure behind the SGV. In the second part
we review the main features of the SGV: The GUI, group and symmetry selection,
mouse pointer interactivity, and visualization options. We further introduce the joint
use with the International Tables of Crystallography, Vol. A [7]. In the third part
we explain how to represent the 162 socalled subperiodic groups of crystallography
in geometric algebra. We construct a new compact geometric algebra group repre-
sentation symbol, which allows to read off the complete set of geometric algebra
generators. For clarity we moreover state explicitly what generators are chosen. The
group symbols are based on the representation of point groups in geometric algebra
by versors.

1 Introduction

Crystals are fundamentally periodic geometric arrangements of molecules. The di-
rected distance between two such elements is a Euclidean vector in R3. Intuitively
all symmetry properties of crystals depend on these vectors. Indeed, the geomet-
ric product of vectors [4] combined with the conformal model of 3D Euclidean
space [1, 5, 16, 21–24, 36] yields an algebra fully expressing crystal point and space
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groups [6, 10, 28–30]. Two successive reflections at (non-) parallel planes express
(rotations) translations, etc. [2, 3] This leads to a 1:1 correspondence of geometric
objects and symmetry operators [25] with vectors and their products, ideal for cre-
ating a suite of interactive visualizations using CLUCalc [34] and OpenGL [28–30].

For crystallographers the subperiodic space groups [42] in 2D and 3D with only
one or two degrees of freedom for translations are also of great interest.

We begin in Section 2 by explaining the representation of point and space groups
in conformal geometric algebra. Next we explain the basic functions of the software
implementation, called Space Group Visualizer [35] in Section 3. Finally in Section
4 we show how to construct a new compact geometric algebra group representation
symbol for subperiodic space groups (Frieze groups, rod groups and layer groups),
which allows to read off the complete set of geometric algebra generators. For clarity
we moreover state explicitly what generators are chosen.

2 Point groups and space groups in Clifford geometric algebra

2.1 Cartan-Dieudonné and geometric algebra

Clifford’s associative geometric product [4] of two vectors simply adds the inner
product to the outer product of Grassmann

ab = a ·b+a∧b . (1)

Under this product parallel vectors commute and perpendicular vectors anti-commute

ax‖ = x‖a , ax⊥ =−x⊥a . (2)

This allows to write the reflection of a vector x at a hyperplane through the origin
with normal a as

x ′ =−a−1xa , a−1 =
a

a 2 . (3)

The composition of two reflections at hyperplanes, whose normal vectors a,b sub-
tend the angle α/2, yields a rotation around the intersection of the two hyperplanes
by α

x ′ = (ab)−1xab , (ab)−1 = b−1 a−1 . (4)

Continuing with a third reflection at a hyperplane with normal c according to the
Cartan–Dieudonné theorem [38–41] yields rotary reflections and inversions

x ′ =−(abc)−1xabc , x ′′ =− i−1x i , i .
= a∧b∧ c, (5)

where .
= means equality up to non-zero scalar factors (which cancel out in (6)). In

general the geometric product S of k normal vectors corresponds to the composition
of reflections to all symmetry transformations [10] of 2D and 3D crystal cell point
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groups
x ′ = (−1)kS−1 xS = Ŝ−1 xS = S−1 x Ŝ, (6)

where Ŝ = (−1)kS is the grade involution or main involution in Clifford geometric
algebra. We call the product of invertible vectors S in (6) versor [10, 11, 22, 25, 26],
but the names Clifford monomial of invertible vectors, Clifford group element, or
Lipschitz group element are equally in use [22, 37].

2.2 Two dimensional point groups

2D point groups [10] are generated by multiplying vectors selected [28–30] as in
Fig. 1. The index p can be used to denote these groups as in Table 1. For example
the hexagonal point group is given by multiplying its two generating vectors a,b

6 = {a,b,R = ab,R2,R3,R4,R5,R6 =−1,aR2,bR2,aR4,bR4}. (7)

The rotation subgroups are denoted with bars, e.g. 6̄. The identities a2 = b2 = 1 and
R6 =−1 directly correspond to relations in the group presentation [8] of 6.

Fig. 1 Regular polygons (p = 1,2,3,4,6) and point group generating vectors a,b subtending an-
gles π/p shifted to center.

Table 1 Geometric [10, 11] and international [7] notation for 2D point groups.

Crystal Oblique Rectangular Trigonal Square Hexagonal

geometric 1̄ 2̄ 1 2 3 3̄ 4 4̄ 6 6̄
international 1 2 m mm 3m 3 4m 4 6m 6
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2.3 Three dimensional point groups

The selection of three vectors a,b,c from each crystal cell [10, 28–30] for gener-
ating all 3D point groups is indicated in Fig. 2. Using ∠(a,b) and ∠(b,c) we can
denote all 32 3D point groups (alias crystal classes) as in Table 2. For example the
monoclinic point groups are then (int. symbols of Hermann-Maugin: 2/m, m and 2,
respectively)

22̄ = {c,R = a∧b = ic, i = cR,1}, 1 = {c,1}, 2̄ = {ic,1}. (8)

Fig. 2 7 crystal cells with vector generators a,b,c: triclinic, monoclinic, orthorhombic, tetragonal,
trigonal (rhombohedral), hexagonal, cubic.

Table 2 Geometric 3D point group symbols [3,10] and generators with θa,b = π/p, θb,c = π/q,
θa,c = π/2, p,q ∈ {1,2,3,4,6}.

Symbol p = 1 p 6= 1 p̄ pq p̄q pq̄ p̄q̄ pq

Generators a a, b ab a, b, c ab, c a, bc ab, bc abc
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Table 3 Computing with reflections and translations. The vectors a,b are pictured in Fig. 1.

∠(a,b) 180◦ 90◦ 60◦ 45◦ 30◦

Ta b = bT−a bTa bTa−b bTa−b bTa−b
Tb a = aT−b aTb aTb−a aTb−2a aTb−3a

2.4 Space groups

The smooth composition with translations is best done in the conformal model [1,5,
12–15,17–21,23,24,26,27,36] of Euclidean space (in the GA of R4,1), which adds
two null-vector dimensions for the origin e0 and infinity e∞

X = x+
1
2

x2e∞ + e0, e2
0 = e2

∞ = X2 = 0, X · e∞ =−1. (9)

The +e0 term integrates projective geometry, and the + 1
2 x2e∞ term ensures X2 =

0. The inner product of two conformal points gives their Euclidean distance and
therefore a plane m equidistant from two points A,B as

X ·A =−1
2
(x−a)2 ⇒ X · (A−B) = 0, m = A−B ∝ p−d e∞, (10)

where p is a unit normal to the plane and d its signed scalar distance from the
origin. Reflecting at two parallel planes m,m′ with distance t/2 we get the so-called
translator (translation operator by t )

X ′ = m′mX mm′ = T−1
t XTt, Tt = 1+

1
2

te∞. (11)

Reflection at two non-parallel planes m,m′ yields the rotation around the m,m′-
intersection by twice the angle subtended by m,m′.

Group theoretically the conformal group C(3) is isomorphic to O(4,1) and the
Euclidean group E(3) is the subgroup of O(4,1) leaving infinity e∞ invariant [10,11,
22]. Now general translations and rotations are represented by geometric products
of vectors. To study combinations of versors it is useful to know that (cf. Table 3)

Tt a = aTt ′ , t ′ =−a−1ta . (12)

Applying these techniques one can compactly tabulate geometric space group sym-
bols and generators [11]. Table 4 implements this for the 13 monoclinic space
groups. All this is interactively visualized by the Space Group Visualizer [35].
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Table 4 Monoclinic space group versor generators, T A = T 1/2
b+c, int. = international [7], geo. =

geometric, alt. = alternative, columns 3 and 4: [11]. Ta,Tb,Tc suppressed.

Int.# Int. name Geo. name Geo. generators Int. generators Alt. generators

3 P2 P2̄ ic = a∧b
4 P21 P2̄1 icT 1/2

c
5 C2 A2̄ ic, T A

6 Pm P1 c
7 Pc Pa1 cT 1/2

a
8 Cm A1 c, T A

9 Cc Aa1 cT 1/2
a , T A

10 P2/m P22̄ c, ic i, ic i, c
11 P21/m P22̄1 c, icT 1/2

c i, icT 1/2
c i, cT 1/2

c
12 C2/m A22̄ c, ic, T A iT A, icT A,T A i, c, T A

13 P2/c Pa22̄ cT 1/2
a , ic i, icT 1/2

a i, cT 1/2
a

14 P21/c Pa22̄1 cT 1/2
a , icT 1/2

c i, icT 1/2
a+c i, cT 1/2

a+c
15 C2/c Aa22̄ cT 1/2

a , ic, T A i, icT 1/2
a ,T A i, cT 1/2

a ,T A

3 Interactive Software Implementation

The realization in software relies on the visual multivector software CLUCalc [34].
The excellent graphics rendering is based on OpenGL graphics. The space group
symmetry definitions described in the previous sections are denoted for each space
group in the form of an XML input file. The XML files serve as input for a CLUCalc
script named Space Group Visualizer (SGV) [35].

3.1 The Space Group Visualizer GUI

Fig. 3 shows the SGV GUI. The SGV toolbar is magnified and annotated in Fig. 4.
Depending on the displayed space group, basis vector lengths and (or) angles may
be fixed (i.e. they may not be changed by the user). This is indicated by toolbar
elements shaded in gray.

3.2 Space group and symmetry selection

Figure 5 shows the interactive (hyperlink like) space group selection. Clicking blue
text elements in the browser panel on the left of the GUI allows to access crystal
systems, crystal classes (point groups), and individual space groups.
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Fig. 3 GUI of the Space Group Visualizer.

Fig. 4 Toolbar of the Space Group Visualizer.

Figure 6 illustrates the selection of symmetries from the complete list of Sym-
metries (left SGV GUI browser panel), which are present in the currently selected
space group. Symmetries that are to be displayed can be selected according to their
properties (angle, orientation, location, translation component). Several properties
selected together will display only those symmetries that satisfy all properties. An-
other way is to open the generator product list of a certain type of symmetry and
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Fig. 5 Space group selection from the Space Group Visualizer browser panel.

Fig. 6 Space group selection of individual symmetries or groups of symmetries to be displayed.

select individual geometric algebra generator products to be displayed (or to be re-
moved from the display).

3.3 Mouse pointer interactivity

The mouse pointer allows a variety of visual interactions and animations, depending
over which part of the visualization it is placed. Moving the mouse pointer over a
symmetry element visualization both animates the symmetry and displays detailed
information about this symmetry group element in the lower right corner. Animation
means dynamic color and size changes; and the motion of general elements along
a trajectory tracing the symmetry operation incrementally. Placement of the mouse
pointer over a general element (locus) selector activates it (blinking). The mouse
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pointer over the rotation center (of view) selector allows to change the rotation cen-
ter of the mouse activated view rotation (described below).

The mouse pointer can be placed anywhere inside the visualization window.
Holding down the left (right) mouse button and moving the mouse will rotate (trans-
late) the visualization. Alternative rotation axes (translation directions) are activated
by additionally holding the SHIFT key. With a 3D-mouse (3Dconnexion) one can
rotate and translate the view along all axes simultaneously.

First placing the mouse pointer over a general element (locus) selector permits
to translate and rotate it (together with all its symmetric partners). This provides an
excellent way to grasp how one general element and the 3D symmetry represented
in the space group determine the whole crystal structure.

A special feature of the SGV is the direct 3D graphics interaction. Simply placing
the mouse pointer over a symmetry activates it and allows to:

• Select only the activated symmetry (left mouse button). All other symmetries
disappear from the view.

• Holding the CTRL key at the same time (while pressing the left mouse button)
shows all symmetries (and only these) of the same type.

• Clicking the right mouse button removes an activated symmetry from the view.
• Holding the CTRL key at the same time (while pressing the right mouse button)

removes all symmetries of the same type.

3.4 Visualization options in detail

The visualization drop down menu allows to toggle (activate and deactivate) the
following visual functions

• Full screen mode.
• Orthographic view. The orthographic view allows the most direct comparison

with ITA orthographic projections [7].
• Animation of the origin locus when a symmetry is activated (animated).
• Rotation animation of the whole view when it is pushed with the (left) mouse

button.
• Reset the crystal view to visualizer default values.
• Reset general element (loci) positions.

The special visualization lighting menu provides a relative position light source.
It is positioned relative to the visualization coordinate frame and moves with the
visualization. Deselecting this option fixes the light source relative to the observer.
The light source can optionally be positioned at the center of the coordinate frame,
which is relative (or absolute) depending on the (de)selection of the relative position
option. The ambient light submenu allows to adjust the brightness of the ambient
light, leading to more dramatic effects for darker settings.

The color scheme menu item allows to select the current color scheme. For exam-
ple a scheme with black background is more suitable for use in presentations, while
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a white background is better for publications, etc. It is possible via an XML file to
individually define further color schemes. A color stereo option allows to specify
cinema type stereo colors, which are best viewed with corresponding cinema color
glasses in order to perform the full spatial 3D effect akin to virtual reality.

The cell type menu allows to select between different cell choices in the IT,
Volume A [7], and (if different) a special geometric algebra type cell, which has the
generating vectors a,b,c as cell axis attached to the cell origin. Details are given
in [46].

3.5 Integration with the online International Tables of
Crystallography

Through the window menu an additional window can be opened for displaying the
pages of a space group from the online version of the International Tables of Crys-
tallography, Volume A (ITA) [7]. For this the user must hold a valid user ID and
password. When the online ITA can be accessed, the SGV and the online ITA win-
dow will always show the same space group. The user can synchronously navigate
from space group to space group either in the SGV or in the online ITA window (cf.
Fig. 7).

4 Subperiodic groups represented in Clifford geometric algebra

Now we begin to explain the details of the new geometric algebra based represen-
tation of so-called subperiodic space groups. These include the seven frieze groups
(in 2D space, 1 DOF for translation), the 75 rod groups (in 3D space, 1 DOF for
translation), and the 80 layer groups (in 3D space, 2 DOF for translations).

Compared to the geometric 2D and 3D space group symbols in [11] we have
introduced dots: If one or two dots occur between the Bravais symbol (p , p, c) and
index 1, the vector b or c, respectively, is present in the generator list. If one or two
dots appear between the Bravais symbol and the index 2 (without or with bar), then
the vectors b,c or a,c, respectively, are present in the generator list.

In agreement [11] the indices a,b,c,n (and g for frieze groups) in first, second
or third position after the Bravais symbol indicate that the reflections a,b,c (in this
order) become glide reflections. An index n indicates diagonal glides. The dots also
serve as symbolic a,b,c position indicators. For example rod group 5: p c1 has glide
reflection aT 1/2

c , rod group 19: p .c2 has bT 1/2
c , and layer group 39: pb2a2n has aTb

1
2 ,

bT 1/2
a and cTa+b

1/2.
The notation np indicates a right handed screw rotation of 2π/n around the n-

axis, with pitch T p/n
t where t is the shortest lattice translation vector parallel to the
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Fig. 7 Synchronous space group selection in the SGV window and the online ITA [7] space group
window.

Fig. 8 Generating vectors a,b of oblique and rectangular cells for 2D frieze groups.

Fig. 9 From left to right: Triclinic, monoclinic inclined, monoclinic orthogonal, orthorhombic, and
tetragonal cell vectors a,b,c for rod and layer groups.
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Fig. 10 Generating vectors a,b,c of trigonal (left), hexagonal (center) and hexagonally centered
(right, Bravais symbol: H or h) cells for 3D rod and layer groups.

axis, in the screw direction. For example the layer group 21: p2̄2̄12̄1 has the screw
generators bcT 1/2

a and acT 1/2
b .

In the following we discuss specific issues for frieze groups, rod groups and
layer groups. In the current publication we restrict ourselves to the new symbols
for triclinic and monoclinic rod and layer groups. The full tables will be published
elsewhere.

4.1 Frieze groups

Figure 8 shows the generating vectors a,b of oblique and rectangular cells for 2D
frieze groups. The only translation direction is a. Table 5 lists the seven frieze groups
with new geometric symbols and generators. The abbreviations SG# and SGN mean
space group number and space group name (symbol), respectively.

4.2 Rod groups

Figure 9 shows the generating vectors a,b,c of triclinic, monoclinic, orthorhombic
and tetragonal cells for 3D rod and layer groups. Figure 10 shows the same for trig-
onal and hexagonal cells. For rod groups the only translation direction is c. There is
a total of 75 rod groups in all 3D crystal systems. Table 6 lists the triclinic and mon-
oclinic rod groups with new geometric symbols and generators: Rod group number
(col. 1), intern. rod group notation [42] (col. 2), related intern. 3D space group num-
bers [7] (col. 3), and notation [7] (col. 4), related geometric 3D space group notation
[11] (col. 5), geometric rod group notation (col. 6), geometric algebra generators
(col. 7).
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Table 5 Table of frieze groups. Group number (col. 1), intern. frieze group notation [42] (col. 2),
related intern. 3D space group numbers [7] (col. 3), and notation [7] (col. 4), geometric 3D space
group notation [11] (col. 5), related intern. 2D space group numbers [7] (col. 6), and notation [7]
(col. 7), related geometric 2D space group notation [11] (col. 8), geometric frieze group notation
(col. 9), geometric algebra frieze group versor generators (col. 10). The pure translation generator
Ta is omitted.

Frieze Intern. 3D Intern. Geom. 2D Intern. Geom. Geom. Frieze Group
Group # Notat. SG# 3D SGN 3D SGN SG# 2D SGN 2D SGN Notat. Generators

Oblique

F1 p1 1 P1 P1 1 p1 p1 p1
F2 p211 3 P2 P2 2 p2 p2 p2 a∧b

Rectangular

F3 p1m1 6 Pm P1 3 pm(p1m1) p1 p1 a
F4 p11m 6 Pm P1 3 pm(p11m) p1 p .1 b
F5 p11g 7 Pc Pa1 4 pg(p11g) pg1 p .g1 bTa

1/2

F6 p2mm 25 Pmm2 P2 6 p2mm p2 p2 a,b
F7 p2mg 28 Pma2 P2a 7 p2mg p2g p2g a,bTa

1/2

Table 6 Table of triclinic and monoclinic rod groups. The pure translator Tc is omitted.

Rod Intern. 3D Space Intern. Geom. Geom. Rod Group
Group # Notat. Group # 3D SGN 3D SGN Notat. Generators

Triclinic

R1 p1 1 P1 P1̄ p 1̄
R2 p2 2 P1̄ P22 p22 a∧b∧ c

Monoclinic/inclined

R3 p211 3 P112 P2̄ p . 2̄ b∧ c
R4 pm11 6 Pm P1 p1 a
R5 pc11 7 Pc Pc1 p c1 aT 1/2

c
R6 p2/m11 10 P2/m P22̄ p22̄ a,b∧ c
R7 p2/c11 13 P2/c Pa22̄ p c22̄ aT 1/2

c , b∧ c

Monoclinic/orthogonal

R8 p112 3 P112 P2̄ p 2̄ a∧b
R9 p1121 4 P21 P2̄1 p 2̄1 (a∧b)T 1/2

c
R10 p11m 6 Pm P1 p ..1 c
R11 p112/m 10 P2/m P2̄2 p 2̄2 a∧b,c
R12 p1121/m 11 P21/m P2̄12 p 2̄12 (a∧b)T 1/2

c ,c
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4.3 Layer groups

For layer groups the two translation directions are a,b. There is a total of 80
layer groups. Tables 7, list the triclinic and monoclinic 3D layer groups with
new geometric symbols and generators: Layer group number (col. 1), intern. layer
group notation [42] (col. 2), related intern. 3D space group numbers [7] (col. 3),
and notation [7] (col. 4), related geometric 3D space group notation [11] (col.
5), geometric layer group notation (col. 6), geometric algebra generators (col.
7). The layer groups are classified according to their 3D crystal system/2D Bra-
vais system. The monoclinic/oblique(rectangular) system corresponds to the mono-
clinic/orthogonal(inclined) system of Fig. 9. Figure 10 shows the hexagonally cen-
tered cell with Bravais symbols H (space group) and h (layer group).

Table 7 Table of triclinic and monoclinic layer groups. The pure translators Ta,Tb are omitted.

Layer Intern. 3D Space Intern. Geom. Geom. Layer Group
Group # Notat. Group # 3D SGN 3D SGN Notat. Generators

Triclinic/oblique

L1 p1 1 P1 P1̄ p1̄
L2 p1̄ 2 P1̄ P22 p22 a∧b∧ c

Monoclinic/oblique

L3 p112 3 P2 P2̄ p2̄ a∧b
L4 p11m 6 Pm P1 p..1 c
L5 p11a 7 Pc Pa1 p..a1 cTa

1
2

L6 p112/m 10 P2/m P2̄2 p2̄2 a∧b, c
L7 p112/a 13 P2/c Pa22̄ p2̄2a a∧b, cTa

1
2

Monoclinic/rectangular

L8 p211 3 P2 P2̄ p.2̄ b∧ c
L9 p2111 4 P21 P2̄1 p.2̄1 (b∧ c)Ta

1
2

L10 c211 5 C2 A2̄ c.2̄ b∧ c, T 1/2
a+b

L11 pm11 6 Pm P1 p1 a
L12 pb11 7 Pc Pa1 pb1 aTb

1
2

L13 cm11 8 Cm A1 c1 a, T 1/2
a+b

L14 p2/m11 10 P2/m P22̄ p22̄ a, b∧ c
L15 p21/m11 11 P21/m P22̄1 p22̄1 a, (b∧ c)Ta

1
2

L16 p2/b11 13 P2/c Pa22̄ pb22̄ aTb
1
2 , b∧ c

L17 p21/b11 14 P21/c Pa22̄2 pb22̄1 aTb
1
2 , (b∧ c)Ta

1
2

L18 c2/m11 12 C2/m A22̄ c22̄ a, b∧ c, T 1/2
a+b
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5 Conclusion

We have briefly reviewed the geometric algebra representation of three dimensional
Euclidean space R3 in the so-called conformal model in the GA of R4,1, and its use
for the representation of 2D and 3D point groups and space groups. The key point
is to only use physical crystal lattice vectors for the group generation. The second
part introduced the interactive software visualization of 3D space group symmetries
based on the established geometric algebra representation. This implementation uses
the conformal model both for generating the graphics itself and for internally com-
puting with space group transformations.

Future options are the visualization of non-characteristic space group orbits [43]
and magnetic space groups [44]. The latter seems particularly attractive as it may
nicely integrate the bivector representation of spin [9] in the real Dirac-Hestenes
equation of relativistic quantum physics. Based on CLUCalc [34] a first rudimentary
geometric algebra protein visualizer has been programmed recently for proteins of
several thousand (up to 10 000) atoms. A possible future molecule (or ion group)
toolbox may therefore be able to display complex biomolecule crystals as well.

We have further devised a new Clifford geometric algebra representation for the
162 subperiodic space groups using versors. In the future this may also be extended
to magnetic subperiodic space groups [45]. We expect that the present work forms
a suitable foundation for interactive visualization software of subperiodic space
groups similar to the SGV visualization of the 3D space groups of section 3. Fig.
11 shows how the rod groups 13: p 2̄2̄2̄ and 14: p 2̄12̄2̄, and the layer group 11: p1
might be visualized in the future, based on [33, 35].

Fig. 11 How a future subperiodic space group viewer software might depict rod groups 13: p 2̄2̄2̄
and 14: p 2̄12̄2̄, and the layer group 11: p1, based on [33, 35].
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