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Abstract 

A method to quantify the error probability at the Kirchhoff-law-Johnson-noise (KLJN) secure 
key exchange is introduced. The types of errors due to statistical inaccuracies in noise voltage 
measurements are classified and the error probability is calculated. The results are demonstrated 
with practical considerations.  

 

Introduction 

1.1 The KLJN secure key exchange 

In today’s era, network security has become one of the most important aspects in everyday life.  
Whether it is a large, small, private, or a government organization, it is very important to focus 
on security, especially when the data being sent, received, or stored contain confidential, 
sensitive information, such as personal information.  

In private-key based secure communication, the two communicating parties (Alice and Bob) 
generate and share a secure key, which is typically represented by a random bit sequence. It is 
important to note that the security of a communication cannot be better than the security of the 
exchange of the key it uses. During this key exchange, the eavesdropper (often referred to as 
Eve) is continuously monitoring the related data. In today’s Internet-based secure 
communications, typically a software–based key generation and distribution is utilized. 
However, in this method the whole information about the secure key is publicly available [1] and 
Eve’s access to this information is limited only by her computational power. In other words, this 
method provides only a (computationally) conditional security level, which represents a non-
future-proof-security [2-4]. It means that with a sufficiently enhanced computation power or an 
efficient future algorithm, Eve may be able to crack the key and all the information in the 
communication may become accessible. 



Therefore, scientists and researchers have been working on exploring proper laws of physics to 
find new key exchange schemes where the information that can be measured by Eve is zero. 
Particularly, they have been exploring key exchange schemes where the amount of information 
extracted by Eve does not depend on her computational power. When the security measures are 
determined at Eve's maximal ability (limited only by the laws of physics and the protocols 
working conditions), that is referred as unconditional security, a term that is often interchanged 
with information theoretic security [1]. Information theoretic (unconditional) security can be 
perfect if Eve can extract no information, or imperfect, if Eve can extract only a small, 
commonly accepted amount of information. (This is allowed for practical purpose because this 
small information leak can further be decreased by privacy amplification, if the fidelity of the 
key exchange between Alice and Bob is good enough.) These terms are often misunderstood, and 
it is a frequent mistake in claims to misuse unconditional security and imply perfect security by 
that.  

It is important to emphasize that the goal to generate/distribute a perfectly secure key is similar 
to approaching infinity. Perfectly secure key distribution of a key of finite length can never be 
reached with a real physical system within a finite duration of time. However, it is one of the 
goals of physical informatics to find out schemes that can arbitrarily approach (though never 
reach) perfect security [2].  

The earliest and most famous scheme based on the laws of physics that is claiming unconditional 
security is the Quantum Key Distribution (QKD) [5]. The information theoretic security of this 
scheme is usually based on the assumption that Eve's actions will disturb the system (in 
accordance with the theory of quantum measurements and the no-cloning theorem) and cause 
errors, which uncover the eavesdropping. Note, there are some promising non-QKD initiatives 
that involve new types of quantum effects [6, 7].  

At the fundamental side, there are ongoing debates between experts about the reachable levels of 
security in QKD [8-12]. At the practical side, there are some issues associated with this scheme, 
such as range, price, and robustness. Moreover, it is interesting to note that recently all the 
commercial QKD devices and many laboratory devices have been cracked by quantum-hacking 
[13-27]. While most of these practical weaknesses seem to be design flaws, not fundamental 
security problems; they still mean that current practical QKD has yet conditional security: the 
conditions are that Eve is not knowledgeable enough or she does not have the proper hardware to 
utilize the design flaws for an attack. The impressive list of papers [13-27] shows that there are 
enough knowledgeable Eves out with sufficient resources at the moment. 

Until 2005 QKD was the only accepted scheme that was able to offer a key exchange with 
information theoretic security in the ideal (mathematical) situation. In 2005, the Kirchhoff-Law-
Johnson-(like)-Noise (KLJN) secure key distribution was introduced [28], where the term 
"totally secure" was used instead of the correct "perfectly secure" expression. Later (2006), the 
KLJN system had been built and demonstrated [29]. KLJN is also a key exchange scheme with 



information theoretic security [3] and it is based on Kirchhoff’s Loop Law of quasi-static 
electrodynamics and the Fluctuation and Dissipation theorem of statistical physics. Its security 
against passive attacks is ultimately based on the Second Law of Thermodynamics [28], which 
means that it is as hard to crack the key exchange as to build a perpetual motion machine (of the 
second kind). At practical conditions it uses enhanced (electronically generated) Johnson noise 
with high noise temperature, where quasi-static and thermodynamic aspects must be emulated as 
exactly as possible in order to approach perfect security.  

First, we present a brief description (based on [2-4, 28]) of the working principle of the KLJN 
system. The core KLJN system, without the defense circuitry against invasive attacks and 
vulnerabilities represented by non-ideal building elements is shown in the following figure. 

 

 
Figure 1. Outline of the core KLJN secure exchange scheme [2-4, 28] without the defense elements against 

active (invasive) attacks or attacks utilizing non-ideal components and conditions. 
 

 
The core KLJN channel, see Fig. 1, is a wire line to which Alice and Bob connect randomly 
selected resistors  RA  and  RB , respectively, where RA ,RB ∈ R0,R1{ } .   R0  represents the low (0) 

bit and   R1  the high (1) bit, respectively [28]. At the beginning of each bit exchange period, BEP, 

(also called KLJN clock period), Alice and Bob, who possess identical pairs of the resistors   R0  
and   R1 , randomly select and connect one of these resistors. The Gaussian voltage noise 
generators represent either the Johnson noises of the resistors or external noise generators 
delivering band-limited white noise with publicly known bandwidth and effective noise 
temperature effT  [2, 3, 28, 29]. The noise voltages of Alice and Bob are   U A(t)  and   U B(t) , 

respectively, where   
U A(t)∈ U0,A(t),U1,A(t){ }  and   

U B(t)∈ U0,B(t),U1,B(t){ }  yield a channel noise 

voltage   Uch(t)  between the wire line and the ground and a channel noise current   Ich(t)  in the 
wire.  

Alice and Bob measure the mean-square noise voltage and/or current amplitudes, that is 
2 ( )chU t and/or 2 ( )chI t , within the BEP in the line. Thus, by applying Johnson’s noise formula 



and Kirchhoff’s loop law the theoretical prediction is that the mean-square noise voltage and 
current (i.e. the integral of the corresponding power spectral densities [2,28]) for a given channel 
noise bandwidth KLJNB  and temperature effT are given as follows: 
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where  represents ideal (infinite-time) time average,   
Su,ch( f )  is the power density spectrum 

of channel voltage noise,   
Si,ch( f )  is the power density spectrum of channel current noise, k  is 

the Boltzmann constant,   
R|| = RARB / (RA + RB )  and  

Rloop = RA + RB .  

Ideally, by comparing the result of the accurate measurement of the mean-square channel voltage 
or current with the corresponding theoretical value in Eq. 1, the total loop resistance will be 
publicly known. Alice and Bob know their own resistor values and thus they can deduce that 
resistance value from the loop resistance to learn the resistance at the other end. Consequently, 
they can distill the actual bit value at the other side of the wire.  

If Alice and Bob use the same resistance values, Eve can also recognize that bit situation because 
the total resistance is either the lowest or the highest value of the three possible resistance values.  
Thus, the resistor situations (  R0 ,  R0 ) and (  R1 ,  R1 ) represent a non-secure bit exchange since Eve 
can also find out the resistors values, their exact locations, and the status of the bits. On the other 
hand, the cases (  R0 ,  R1 ) and (  R1 ,  R0 ), which yield identical mean-square noise in the line, 
represent a secure bit exchange situation because Eve is unable to locate the resistors, therefore, 
she cannot decide if Alice (and Bob) has a bit 1 or 0. This security is provided by the Second 
Law of Thermodynamics, which prohibits any directional information concerning the resistors at 
the two sides in thermal equilibrium [2,28]. In other words, it is as difficult to extract these 
secure bits by Eve as to build a perpetual motion machine (of the second kind). In conclusion, on 
average, 50% of the bits can be kept because they are secure. The other 50% of the bits 
representing the non-secure situations is discarded by the protocol.  

Note: the securely exchanged bits have opposite values at Alice and Bob, thus they must publicly 
agree which one of them will invert the exchanged bit to have identical keys at the two ends. 

The fully armed KLJN system is secure even against the man-in-the-middle-attack [30]. One of 
the important potential applications [32] is to integrate the KLJN system on computer chips and 
provide unconditional security within computers and high-security instrumentations where the 
processors, hard drives, keyboards, etc. would secure their communications by keys shared via 
the KLJN protocol. Another, potential application is, at a much greater scale, to build a network 

(1) 



of KLJN systems utilizing already existing wire lines [4, 33, 34], particularly, realizing and 
unconditionally secure "smart grid" [4] (advanced electrical power distribution network). 

 

1.2 Known attack types 

Below, based on [2], we briefly survey all the published attack types. Due to the simplicity of the 
KLJN system, there are very few attack types available. The method of comparing the 
instantaneous values of voltage and current at the two ends and discarding risky 01/10 bits [28, 
30, 31] (not discussed here in details) protects against all these types of attacks. But even without 
discarding the risky bits, passive attacks by Eve utilizing non-idealities suffer from weak signal-
to-noise ratio due to poor statistics, see below. 

A practically unimportant but theoretically valid type of attack was shown by Hao [36] who 
pointed out that the non-ideal situation of different temperatures could separate the noise levels 
of the 01 and 10 bit situations, thus they could give out some information to Eve. In a response 
by Kish [37], it was pointed out that practical problems of accuracy do not challenge the 
conceptual security of ideal schemes and was estimated that, even at practical situations, the 
information leak is negligible due to this attack. Later, it was shown in the experimental paper of 
Mingesz et al. [29] that a modest 14-bit accuracy of temperatures (noise generators) practically 
prohibit Eve to extract any useful information (with information leak less than 10-10) by utilizing 
the Hao attack. 

Scheuer and Yariv [38] analyzed the case of non-zero wire resistance where the mean-square 
voltages are different at the two ends in the case of the 01 and 10 bit situations. However, their 
calculation was incorrect including the physical units of some of the main results. Kish and 
Scheuer [39] carried out new, correct calculations and showed that the actual effect is about 1000 
times weaker than predicted by Scheuer and Yariv. Earlier, Kish pointed out [37] in his response 
to [36] that at similar conditions Eve's statistic was very poor and the extracted information was 
practically miniscule even without the defense of discarding the risky bits. This claim was 
experimentally verified by Mingesz et al. [29], who showed that at clock period of 50 times of 
the noise correlation time,   R0 = 2000 Ω , R1 = 9000 Ω , and wire resistance 200 Ω , the 
information leak of exchanged raw bits to Eve was 0.19% while the fidelity between Alice and 
Bob was 99.98%. These results indicate that the key exchange has excellent fidelity even without 
error correction and that the security can be made reasonably good even without dropping the 
risky 01/10 bits (after current/voltage comparison at the two ends) and without privacy 
amplification [29]. 

Liu [41] used a cable simulator to evaluate the impact of delays and reflections on the security. 
He obtained the surprising results that, with the experimental parameters [6], Eve successfully 
guessed 70-80% of the key bits. In a critical study of Lui's simulations, Kish and Horvath [31] 



pointed out that the chosen wave impedances of the simulated cable to reach these results were 
unphysical: for example, a center wire diameter of 1 millimeter implies a coaxial cable with 
outer diameter of 28000 times greater than the size of the known universe.  

Observing transients after switching the resistors has been mentioned as a potential source of 
information leak; however, so far they have never been utilized. During the experimental studies, 
the noise was ramped up at the beginning of the clock period and ramped down at the end, thus 
the switching of resistors took place when the voltage and currents were zero in the line.  

Note, a fully transient-free protocol is described in a recent work [48]. 

According to [40], one of the most efficient attack types would be utilizing capacitive currents 
via the cable capacitance, though it has never been tested. Mingesz et al. [29] showed a hardware 
based defense "capacitance killer" against this attack. Ultimately, the method of discarding the 
risky bits after current/voltage comparison at the two ends [28, 30, 31] and/or, in the case of 
negligible error probability, privacy amplification [35] are the tools to approach perfect security. 

 

1.3 Bit errors in the KLJN key exchange 

Due to the finite duration τ  of the bit exchange period BEP, the measurement results of mean-
square amplitudes have statistical inaccuracies. The duration τ  of the BEP must be long-enough 
compared to the correlation time of the noise (approximately the reciprocal noise-bandwidth

  BKLJN
−1 ) to achieve a satisfactory statistics and safely distinguish between the different resistor 

situations. Still, with a low probability, these uncertainties can trigger a bit error.  

In the experimental demonstration Mingesz et al. [29] were able to optimize the system to have a 
fidelity of 99.98% (error probability 0.02%) however no mathematical analysis or design tools 
have been shown to address this problem. Therefore, our goal in this paper is to classify the 
different types of bit errors in the ideal KLJN system and analyze their impact.  

 

Discussions and Results 

2.1 KLJN Errors 

In this "startup" paper about error analysis, we assume the ideal situation of the KLJN system 
where all the non-ideal features of real systems are neglected. The error analysis of non-ideal 
systems will be done in future works. 

Bit errors occur when the actual value of the mean-square noise results in an incorrect bit 
interpretation. Figure 2 represents the mean-square channel noise voltage levels, where 

τ
 



indicates finite (τ ) time average implying random fluctuations (statistical errors) around the real 
mean-square value.  

The 11 bit situation (when Bob’s and Alice’s chosen resistors are   R1  and their noise voltages are 

  
U1,A(t)  and   

U1,B(t) , respectively) results in the mean-square channel noise voltage 
  

u11
2 (t)

τ
. 

Similarly the 01/10 situations yield 
  

u01/10
2 (t)

τ
 and the 00 bit arrangement results in 

  
u00

2 (t)
τ

. 

The threshold value 1Δ  provides the boundary between interpreting the measured mean-square 

values as 2
00( )u t  

when   
Uch

2 (t) < u00
2 (t) + Δ1 ; or 2

01/10 ( )u t  
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Uch
2 (t) ≥ u00
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Similarly, the threshold value  Δ2  provides the boundary between interpreting the measured 

mean-square values as   
u11

2 (t)  when   
Uch

2 (t) > u11
2 (t) − Δ2 ; and 2

01/10 ( )u t  when

  
Uch

2 (t) ≤ u11
2 (t) − Δ2 .  

 

Figure 2. Illustration of the fluctuations of the finite-time mean-square voltage levels around their exact value 
and thresholds for interpretation (the scale is arbitrary). 

 



An example for a bit error is the rare occurrence when the finite-time mean-square voltage of the 
00 case, 

  
u00

2 (t)
τ
≥ u00

2 (t) + Δ1 , is interpreted as the 01/10 bit situation, which is incorrect and 

an example of a bit error. 

 

The different types of errors are shown in Table 1.  

 

Table 1. Types of errors in the KLJN bit exchange.  

  Actual Situation 
  00 11 01/10 
 
 
 
 

Measurement 
Interpretation (Decision) 

 
 

00 

 
Correct 

(no error) 
 

 
Error, Removed 
(automatically) 

 

 
Error, Removed 
(automatically) 

 
 
 

11 

 
Error, Removed 
(automatically) 

 

 
Correct 

(no error) 
 

 
Error, Removed 
(automatically) 

 
 

 
01/10 

 
Error * 

(probability?) 

 
Error * 

(probability?) 

 
Correct 

(no error)       
 

*The rest of the paper addresses these errors and their probability. 

 

Some of the errors situations, as shown in Table 1, are considered to be self-corrected by the 
protocol. This is because, as aforementioned, the 00 and 11 bit situations are discarded.  

The rest of the paper is dealing with the analysis of errors indicated with * in Table 1. 

 

2.2 Error probabilities in the KLJN scheme 

Alice and Bob can calculate the total resistance in the system by measuring the mean-square 
noise voltage and/or current amplitudes, that is, 

  
Uch

2 (t)
τ

 and/or 
  

Ich
2 (t)

τ
. Below we evaluate 

the errors in the former case while the case of current-based evaluation can be done in a very 
similar fashion. 
 
 



2.2.1 Error probability due to inaccuracies in noise voltage measurements 
 
a) Probability of the 00 ==> 01/10 type errors 
 
Let 0R R=  and 1R Rα=  for 1α > . Then, the mean-square channel noise voltage for infinite-
time average at the 00 bit situation is given as: 
 

  
u00

2 (t) = S00( f )BKLJN ,                                                                                                              (2) 
 
where   

S00( f ) = Su,ch( f )  at the bit situation 00. Because   
R|| = R / 2 , from Eq. 1, we obtain: 

 

  
u00

2 (t) = 2kT
eff

RB
KLJN                            (3) 

 
During the BEP, only the duration τ  is available for Alice, Bob and Eve to determine the mean-
square channel noise because, after that, a new bit exchange begins. The block diagram of the 
measurement process is shown in Fig. 3. 

 
Figure 3. Illustration of the measurement process at 00. 

 
The channel voltage enters into a squaring unit. At its output, the signal is still voltage (because 
it is a voltage-signal-based electronics) and the numerical value of its instantaneous amplitude is 
equal to the square of the instantaneous amplitude of the input voltage. This fact is 



mathematically expressed by   Du00
2 (t) , where 

  
D = 1

Volt
 is the transfer coefficient of the device 

to provide a Volt unit also for the square [42]. After averaging for the finite-time τ  duration, the 
obtained measurement result is 

  
uτ (t) = Du00

2 (t)
τ
 , where the averaging can be represented by a 

low-pass filtering with cut-off frequency fB ≈1/τ  . 
 
While   u00

2 (t)  is not Gaussian,   uτ (t)  is Gaussian with high accuracy, due to the Central Limit 

Theorem, because τ  is much longer than the correlation time of the noise-component of   u00
2 (t) , 

that is, fB << BKLJN . Thus, the 00 ==> 01/10 error probability, which is the probability of 
uτ (t) > Δ1  can exactly be given by the error function. However, the evaluation of the error 
function requires numerical integration, which implies that the final result is not an analytic 
formula.   
 
To have an analytic formula, which is a good approximation and has the exact scaling in the 
small error probability limit (that is, when uτ2 (t) << Δ1 ) we use Rice's formula [43, 44] of 
threshold crossing frequency, see similar solutions for estimating the probability of thermal noise 
induced switching errors [45-47].  According to Rice, the mean frequency ν  of crossing the 
level Δ1  by a Gaussian with power density spectrum Sτ ( f )  is given as: 
 

  
ν(Δ1) = 2

ûτ

exp
−Δ1

2

2ûτ
2

⎛

⎝⎜
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               (4) 

 
where Sτ ( f )  is the power density spectrum of uτ  while    ûτ  is its RMS value,  

  
ûτ = uτ

2(t) = Sτ ( f )df
0

∞

∫  . 

 
The estimation of error probability is based on the fact that, in the small error limit, the 
probability of repeated threshold crossings within the correlation time of the band-limited noise 
converges to zero. Moreover, the correlation time of uτ  is approximately equal to τ  thus each 
threshold crossing (in a chosen but fixed direction) will indicate an independent error and the 
ratio of the mean threshold crossing frequency  ν(Δ1)  and τ  yields the approximate error 
probability in this limit [45, 46]. Below, we proceed in this way. 
 
Let us specify the 1Δ  threshold level as a fraction of the measured mean-square channel noise, 
where the transfer coefficient D of the squaring unit is also taken into the account: 
 

  
Δ1 = β Du00

2 (t) = βDS00 ( f )BKLJN  ,   where  0 < β <1   .            (5) 
 



According to [42], the power density spectrum,   
S2,00( f ) , of the AC component of   u00

2 (t)  is given 
as (note typos of missing "2" in Eqs. 6 and 7 of [42]), see Fig. 4: 
 

  
S2,00( f ) = 2D2BKLJN S00

2 ( f )(1− f
2BKLJN

)
  
 for    0 ≤ f ≤ 2BKLJN   and    

S2,00( f ) = 0   otherwise     (6) 

 

 
Figure 4. Power Spectral Density (PSD) of the product of two independent noises. 

 
The low-pass filtering effect of the time averaging cuts off this spectrum for  f > fB  but keeps 

the   
S2,00( f )  spectrum for  f < fB . Because fB << BKLJN , the value of   

S2,00( f )  within the fB  

frequency band can be approximated by its maximum,   
Sτ ( f ) ≈ S2,00(0) . Figure 5 summarizes 

these findings. 
 



 
 

Figure 5. Spectra at the 00 bit situation. 
 
Let us suppose that   BKLJN / fB = γ . Then,  
 

  
ûτ = Sτ ( f )

0

∞

∫ df ≈ fBS2,00(0) = 2D2γ fB
2S00

2 ( f )               (7)  

 
The frequency  ν↑(Δ1)  of unidirectional level crossings is half of the level crossing frequency 
predicted by the Rice formula: 
 

  
ν↑(Δ1) = 1

ûτ

exp
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2
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where 
 

1 00 ( ) BDS f fβ γΔ =                  (9) 
 
From Eqs. 7 and 9, we obtain 
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           (10) 

 
In the high threshold situation the errors follow a Poisson statistics, thus the error probability 
during a time interval is equal to the expected numbers of errors within this interval provided this 
number is much less than 1.  
 



Thus the probability  ε00  of  00==>01/10 type of errors in the case of  ε00 <<1  is: 
 

  
ε00 ≈ν↑(Δ1)τ ≈

ν↑(Δ1)
fB

= 1
3

exp −β 2γ
4

⎛
⎝⎜

⎞
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             (11) 

  
It is important to realize that the error probability is an exponential function of the parameters. 
The γ parameter (which is proportional to the length of time average) is particularly important 
because it is not limited in size.   
 
 
b) Probability of the 11 ==> 01/10 type errors 
 
 
We can follow the same procedure as above. Instead of β  we introduce δ  with similar meaning, 
see Fig. 2 and Eq. 5: 
 

  
Δ2 = δ Du11

2 (t) = δ DS11( f )BKLJN = δγ DS11( f ) fB  ,   0 1δ< <          (12) 
 
where 2Δ  is the threshold for the 11==>01/10 type errors and   S11( f )  is the channel noise 
spectrum at the 11 bit situation.  
 
The same type of calculations as given above yields the probability 11ε  of 11==>01/10 type 
errors: 
 

  
ε11 =

ν(Δ2 )
fB

= 1
3

exp −δ 2γ
4

⎛
⎝⎜

⎞
⎠⎟

  for 0 1δ< <                                    (13)  

The error probability is again an exponential function of the parameters. 

 

2.3 Illustration of the results with practical parameters 

To demonstrate the results, we assign possible practical values to the parameters. 

For 100γ =  and 0.5β =   the bit error probability 00ε  is: 

 

 
ε00 =

1
3

exp −β 2γ
4

⎛
⎝⎜

⎞
⎠⎟
≈ 0.001               (14) 

 



This value may look too large, however, just by increasing the γ  parameter (and the time 
average window τ ) by a factor of 2, and in this way slowing down the bit exchange by the same 
factor, will result in the square of the above error probability value:  
 

 ε00 ≈10−6  ,               (15) 
 
which is satisfactory for many application. It is important to note that no error correction 
algorithm is used for this error reduction. 

 

Methods and Conclusions 
We have classified and analyzed the types of errors of bit exchange between Alice and Bob in 
the KLJN secure key exchange. Some types of errors are automatically removed by the original 
protocol. We mathematically analyzed the error probabilities and their dependence on the KLJN 
parameters of the errors that are not removed by the protocol. We identified the important 
parameters and the results show that the error probability decays exponentially by increasing 
these parameters. The most important of such parameters is the duration τ  of key exchange 
because its value is not limited. The results indicate that it is reasonable to achieve error 
probabilities that are small enough to avoid the need for error correction algorithms.  

Further open questions are how to combine current and voltage measurements to further reduce 
these errors and what is the error situation in the new advanced KLJN protocols proposed 
recently [48]. 
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