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Abstract: In computational complexity, the Decision version of the Directed Hamiltonian Path Problem is 
known to be NP-complete (Nondeterministic-Polynomial complete). There are no known efficient algorithms 
for its resolution in Polynomial time. In three papers, the author shows that this problem can be resolved in 
Polynomial time under two special conditions relating to the determinant of a matrix: the absence of zero rows 
(columns) and similar rows (columns). In this paper, the author gives a brief overview of the proposed solution 
and the P vs NP problem.
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I. INTRODUCTION

What do these three problems in biology have in common?

 The Multiple sequence alignment problem (Carrillo and Lipman, 1988)

 The Interval constrained colouring problem (Althaus et al, 2008)

 The Double digest problem (Goldstein and Waterman, 1987)

The perhaps astonishing answer is that they are NP-complete (Nondeterministic-Polynomial complete) and this shows 

the relevance of computational complexity outside the core field of computer science and especially in the biological 

sciences. The P vs NP question has been described as among “the most central open problems in mathematics” (Fortnow 

and Homer, 2003) and one of “the most important problems in contemporary mathematics and theoretical computer 

science” (Sipser, 1992). Briefly stated, the P vs NP question asks whether every algorithmic problem with efficiently 

verifiable solutions also have efficiently computable solutions. That is, the class P refers to the class of problems with 

efficiently computable solutions while class NP the class of problems with efficiently verifiable solutions.

Cook (1971) and Levin (1973) further introduced the concept of NP-completeness. An NP-complete problem is a 

problem in NP to which all other problems in NP can be reduced to. Karp (1972) in his seminal paper showed that 
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several computationally hard problems are NP-complete. Today we know that there are thousands of NP-complete 

problems (see Garey and Johnson, 1979). Some of the more common NP-complete problems include:

(1). The Hamiltonian Cycle: Given a graph, is there a cycle which visits all vertices exactly once?

(2). Clique: Given (G, k) a graph and integer: Are there k nodes in G that are all connected to each other?

(3). Independent Set: Given (G, k) a graph and an integer, are there k nodes in G none of which are connected to each 

other?

(4). Travelling Salesman Problem: Given a list of cities and pairwise distances between them, is there a tour which visits 

each city exactly once and has length at most k?

An efficient solution (i.e. in polynomial time) to any of these problems of considerable industrial and technological 

importance would imply P=NP.

II. RESOLVING THE DECISION VERSION OF THE DIRECTED HAMILTONIAN PATH PROBLEM
UNDER TWO SPECIAL CONDITIONS BY METHOD OF MATRIX DETERMINANT

A method of resolving NP complete problems is to find solutions which are fast on average with respect to a natural 

distribution on inputs. The notion of “average case completeness” is attributable to Levin (1986). The goal is to find 

solutions to hard optimization problems which are useful in many practical real world applications. Earlier attempts at 

resolving NP-hard problems included methods such as brute force (Yablonski, 1959; Edmonds, 1965) and reductions to 

linear programming (Khachiyan, 1979; Yannakakis, 1991).

The author in resolving the decision version of the Directed Hamiltonian cycle problem used the unconventional method 

of representing the directed graph as an adjacency matrix (Okunoye 2012 a,b,c). The special scalar – the determinant of 

the matrix was used to ascertain whether any given adjacency matrix encodes a Directed Hamiltonian Path. Crucially, 

the determinant of a matrix is efficiently (in polynomial time) resolved using techniques including Gaussian elimination 

(Fang and Havas, 1997; Lipschutz and Lipson, 2009) and as such presents a route in the resolution of the problem under 

two special conditions relating to the determinant of a matrix: the absence of a zero row (column) and the absence of 

similar rows (columns). The theorems from (Lipschutz and Lipson, 2009) establishing the conditions are given below 

with proofs (see Shilov, 1977; Lancaster and Tismenetsky, 1985; Kolman and Hill, 1993; and Bronson and Costa, 2007 

for similar proofs).

Theorem 1: For a matrix A, if A has a row (column) of zeros, then |A| is zero.
Proof: Each term in |A| contains a factor from every row (column), and so from the row (column) of zeros. Thus each

term of |A| is zero, and so |A| = 0.

To prove theorem 2 (If A has two identical rows (columns), then |A| = 0) it is necessary first to prove a related theorem:
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Theorem 3: If two rows (columns) are interchanged, then |B| = - |A|

Proof: The theorem is proven for the case that the two columns are interchanged. Let τ be the transposition that 

interchanges the two numbers corresponding to the two columns of A that are interchanged. If A = |ܽ | and B = |ܾ |, 

then ܾ = ܽఛ().
Hence, for any permutation σ,

…(2)(ߪߧ߬)2ܽ (1)(ߪߧ߬)1ܽ =(݊)ߪܾ݊…(2)ߪ2ܾ (1)ߪ1ܾ                                                         (݊)(ߪߧ߬)݊ܽ

                                 Thus |B| = ∑ ܾଵఙ(ଵ) ఙఢௌn ܾଶఙ(ଶ)…ܾఙ()ୀ ∑ ఙఢௌ(ߪ ݊݃ݏ) ܽଵ(ఛఖఙ)(ଵ) ܽଶ(ఛఖఙ)(ଶ)… ܽ(ఛఖఙ)()

                                                               

Because the transposition τ is an odd permutation, (ߪߧ߬) ݊݃ݏ = (ߪ ݊݃ݏ)(߬ ݊݃ݏ) = ߪ ݊݃ݏ− 
It follows then, ߪ ݊݃ݏ = (ߪߧ߬) ݊݃ݏ−  and so

|B| = − ∑ ఙఢௌ[(ߪߧ߬ ݊݃ݏ)] ܽଵ(ఛఖఙ)(ଵ) ܽଶ(ఛఖఙ)(ଶ)… ܽ(ఛఖఙ)()
      

As ߪ runs through all the elements of ܵ ,  .also runs through all the elements of ܵ ߪ ߧ ߬

Hence,

|B| = -|A|.

Theorem 2: If A has two identical rows (columns), then |A| = 0.

Proof: Suppose 1 + 1 ≠ 0 in K. If we interchange the two identical rows of A, we will still obtain the matrix A. 

Hence by Theorem 3, |A| = -|A| and so |A| = 0.

Now suppose 1 + 1 = 0 in K. Then sgn σ = 1 for every σ�Sn. Because A has two identical rows, we can arrange the 
terms 

of A into pairs of equal terms. Because each term is zero, the determinant of A is zero.

These theorems imply that in a matrix where there are no zero rows (columns) and no similar rows (columns), the 

determinant value is non-zero. It seems clear that since a directed graph can be represented by an adjacency matrix, these 

theorems and the two conditions they specify could lead to a method for deciding whether an arbitrary adjacency matrix 

encodes a Hamiltonian path. In a separate paper (Okunoye, 2012c); based on these theorems, the author gave a proof (by 

deduction) of a proposition as follows:
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Proposition 1: In an adjacency matrix which encodes for a directed Hamiltonian Path, a non-zero determinant value 

certifies the existence of a directed Hamiltonian Path when no zero rows (columns) and no similar rows (columns) exist 

in the adjacency matrix.

Proof

1. An adjacency matrix is a square matrix representing the combination of edges of a directed graph. 

2. The determinant of a square matrix gives a non-zero value when there no zero rows (columns) and no similar rows 

(columns).

3. A directed Hamiltonian path is a sequence of one-way compatible edges in an adjacency matrix, a representation of a 

directed graph.

4. A sequence of one-way compatible edges is applied in an arbitrary adjacency matrix ensuring that there are no zero 

rows (columns) and no rows (columns) are similar.

5. In this adjacency matrix, a non-zero determinant value verifies the existence of a directed Hamiltonian path.

A similar proof is provided for the directed Hamiltonian cycle.

Proposition 2: In an adjacency matrix which encodes for a directed Hamiltonian cycle, a non-zero determinant value 

certifies the existence of a directed Hamiltonian cycle when no zero rows (columns) and no similar rows (columns) exist 

in the adjacency matrix.

Proof

1. An adjacency matrix is a square matrix and a representation of a directed graph.

2. The determinant of a square matrix is non-zero if there are no zero rows (columns) and no similar rows (columns) in 

the adjacency matrix.

3. A Hamiltonian cycle is applied in the adjacency matrix in such a way that there are no zero rows (columns) and no 

similar rows (columns).

4. In this adjacency matrix, a non-zero determinant value certifies the existence of a Hamiltonian cycle.

III. CONCLUSION: IS P = NP?

The P vs NP question has been open for four decades. In a poll (Gasarch, 2002) conducted on a sample of 100 experts, a 

majority (61) thought P ≠ NP and only 9 thought P = NP. A few noted that a solution might lie in the application of 

unconventional wisdom.

In using a non-zero determinant value to decide whether an adjacency matrix (a representation of a directed graph) 

encodes a directed Hamiltonian path under the two conditions stated above, a solution is found albeit restrictive. There is 

merit, I suppose, even in solutions that work in restrictive conditions: not least they often deepen our insights into aspects 



.

5

of the problem. Reductions to the particular instances of some other NP-complete problems might however prove 

daunting. 

This solution does not imply P = NP, indeed, a solution which works in restrictive conditions might indicate that P ≠ NP. 

It is hoped this work is a contribution towards solving the problem in some instances of practical importance.

REFERENCES

[1] H. Carrillo and D. Lipman. “The multiple sequence alignment problem in biology”. SIAM Journal on Applied 
Mathematics, 48(5):1073–1082, 1988.

  [2] E. Althaus, S. Canzar, A. Karrenbauer, K. Elbassioni, J. Mestre. “Approximating the interval constrained coloring    

problem”, In Proceedings of the 11th Scandinavian Workshop on Algorithm Theory, 2008.

   [3] L. Goldstein and M. S. Waterman, “Mapping DNA by Stochastic Relaxation”, Adv. Appl.    Math., 8, 1987, pp.
194-207.

[4] L. Fortnow and S. Homer, “A short history of computational complexity”, Bulletin of the European Association for   
Theoretical Computer Science, 80, June 2003. Computational Complexity Column. 

[5] M. Sipster, “The History and status of the P versus NP question”, STOC ’92 Proceedings of the twenty-fourth annual 
ACM symposium on theory of computing, 603-618.

[6] S. Cook, “The complexity of theorem-proving procedures”, in Conference Record of Third Annual ACM 
Symposium on Theory of Computing, ACM, New York, 1971, 151–158.

    [7] L. Levin, “Universal sequential search problems”, Probl. Pered. Inform. IX 3, 1973; translation in Problems of 
Information Trans 9, 3, 265-266; corrected translation in ‘Trakhtenbrot [TY84].

    [8] R.M. Karp, “Reducibility among combinatorial problems”, in Complexity of Computer Computations, R. E. Miller 
and J. W. Thatcher, eds., Plenum Press, New York, 1972, 85–103.

   [9] M.R. Garey and D.S. Johnson, “Computers and Intractability”, A Guide to the Theory of NP-Completeness. W.H. 
Freeman and Company, New York, 1979.

[10] L. Levin, “Average case complete problems”, SIAM J. Computing 15 (1986), 285–286. 

[11] S. Yablonski, “The algorithmic difficulties of synthesizing minimal switching circuits”, Problemy Kibernetiki 2, 
Moscow, Fizmatgiz, 75–121, 1959; translation in Problems of Cybernetics 2,  Pergamon Press, 401-457, 1961.

[12] J. Edmonds, “Paths, trees, and flowers”, Canadian Journal of Mathematics, 17, 449-467, 1965.

[13] L.G. Khachiyan, “A Polynomial algorithm in linear programming”, Soviet Mathematics Doklady, Vol. 20. 1979, 
pp. 191-1 94.

[14] M. Yannakakis, “Expressing Combinatorial Optimization Problems by Linear Programs”, Journal of Computer and 
System Sciences, Vol. 43, 1991, pp. 441-466.

[15] B. Okunoye, “Matrix determinant as a verifier of a path in the directed Hamiltonian cycle problem under two 
special conditions: implications for online security in Africa and beyond”, Afr J Comp & ICT – special issue on ICTs in 
the African environment Vol. 5 No. 4 Issue 2 pp. 95-98, 2012.



.

6

[16] B. Okunoye, “Matrix determinant as a verifier of a path (cycle) in the directed Hamiltonian cycle problem under 
two special conditions: a formal proof”, Afr J Comp & ICTs , Vol. 5 No. 5 September, pp. 72-73, 2012.

[17] B. Okunoye, “In an adjacency matrix which encodes for a directed Hamiltonian path, a non-zero determinant value 
certifies the existence of a directed Hamiltonian path when no zero rows (columns) and no similar rows (columns) exist 
in the adjacency matrix”. International Journal of Electrical, Electronics and Computer Systems. Vol: 11 Issue: 01, 2012.

[18] XG Fang and G. Havas. “On the worst-case complexity of integer Gaussian elimination”, In Proceedings of the 
1997 International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 28-31.

[19] S. Lipschutz, M. Lipson, “Schaum’s Outlines of Linear Algebra”, McGraw Hill, 2009.

[20] E.G. Shilov, “Linear Algebra”, Dover Publications, Inc., New York, 2007.

[21] P. Lancaster, M. Tismenetsky, “The theory of Matrices 2nd Edition with applications: a volume in computer science 
and applied mathematics, a series of monographs and textbooks”, Ed: Werner Rheinboldt, Academic Press, 1985.

[22] B. Kolman, R.D. Hill, “Introductory Linear Algebra with applications”, 5th Edition, Macmillan, 1993.

[23] R. Bronson, B.G. Costa, “Linear Algebra, an Introduction”, 2nd Edition, Academic Press, Elsevier, 2007.

[24] W. Gasarch. “The P =? NP Poll”. SIGACT News Complexity Theory Column 36, 2002.


