Alternative Classical Mechanics

Alejandro A. Torassa

Creative Commons Attribution 3.0 License (2013) Buenos Aires, Argentina atorassa@gmail.com

Abstract

This paper presents an alternative classical mechanics, which can be applied in any reference frame (rotating or non-rotating) (inertial or non-inertial) without the necessity of introducing fictitious forces.

Universal Reference Frame

The universal reference frame is a reference frame fixed to the center of mass of the universe.

The universal position $\mathring{\mathbf{r}}_a$, the universal velocity $\mathring{\mathbf{v}}_a$, and the universal acceleration $\mathring{\mathbf{a}}_a$ of a particle A relative to the universal reference frame $\mathring{\mathbf{S}}$, are given by:

$$\mathbf{\mathring{r}}_a = (\mathbf{r}_a)$$

$$\mathbf{\mathring{v}}_a = d(\mathbf{r}_a)/dt$$

$$\mathbf{\mathring{a}}_a = d^2(\mathbf{r}_a)/dt^2$$

where \mathbf{r}_a is the position of particle A relative to the universal reference frame $\mathring{\mathbf{S}}$.

The dynamic position $\check{\mathbf{r}}_a$, the dynamic velocity $\check{\mathbf{v}}_a$, and the dynamic acceleration $\check{\mathbf{a}}_a$ of a particle A of mass m_a , are given by:

$$\mathbf{\check{r}}_a = \int \int (\mathbf{F}_a/m_a) dt dt$$

$$\mathbf{\check{v}}_a = \int (\mathbf{F}_a/m_a) dt$$

$$\mathbf{\check{a}}_a = (\mathbf{F}_a/m_a)$$

where \mathbf{F}_a is the net force acting on particle A.

General Principle

The total position $\tilde{\mathbf{R}}_i$ of a system of particles of mass M_i $(M_i = \sum_i m_i)$, is given by:

$$\tilde{\mathbf{R}}_i = \sum_i \frac{m_i}{M_i} (\mathring{\mathbf{r}}_i - \check{\mathbf{r}}_i) = 0$$

Therefore, the total position $\tilde{\mathbf{R}}_i$ of a system of particles is always in equilibrium.

Observations

Applying the general principle to a particle A, it follows:

$$m_{a}\mathring{\mathbf{r}}_{a} - m_{a}\mathring{\mathbf{r}}_{a} = 0 \qquad \rightarrow \qquad \frac{1}{2}m_{a}\mathring{\mathbf{r}}_{a}^{2} - \frac{1}{2}m_{a}\mathring{\mathbf{r}}_{a}^{2} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$m_{a}\mathring{\mathbf{v}}_{a} - m_{a}\mathring{\mathbf{v}}_{a} = 0 \qquad \rightarrow \qquad \frac{1}{2}m_{a}\mathring{\mathbf{v}}_{a}^{2} - \frac{1}{2}m_{a}\mathring{\mathbf{v}}_{a}^{2} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$m_{a}\mathring{\mathbf{a}}_{a} - m_{a}\mathring{\mathbf{a}}_{a} = 0 \qquad \rightarrow \qquad \frac{1}{2}m_{a}\mathring{\mathbf{a}}_{a}^{2} - \frac{1}{2}m_{a}\mathring{\mathbf{a}}_{a}^{2} = 0$$

Substituting $\check{\mathbf{r}}_a$, $\check{\mathbf{v}}_a$ and $\check{\mathbf{a}}_a$ from page [1] into the above equations, we obtain:

$$m_{a}\mathring{\mathbf{r}}_{a} - \int \int \mathbf{F}_{a} dt dt = 0 \qquad \rightarrow \qquad \frac{1/2 m_{a}\mathring{\mathbf{r}}_{a}^{2} - 1/2 m_{a} (\int \int (\mathbf{F}_{a}/m_{a}) dt dt)^{2} = 0}{\downarrow}$$

$$m_{a}\mathring{\mathbf{v}}_{a} - \int \mathbf{F}_{a} dt = 0 \qquad \rightarrow \qquad \frac{1/2 m_{a}\mathring{\mathbf{v}}_{a}^{2} - \int \mathbf{F}_{a} d\mathring{\mathbf{r}}_{a} = 0}{\downarrow}$$

$$\downarrow \qquad \qquad \downarrow$$

$$m_{a}\mathring{\mathbf{a}}_{a} - \mathbf{F}_{a} = 0 \qquad \rightarrow \qquad \frac{1/2 m_{a}\mathring{\mathbf{a}}_{a}^{2} - 1/2 m_{a} (\mathbf{F}_{a}/m_{a})^{2} = 0}{\downarrow}$$

Where
$$\frac{1}{2} \mathbf{v}_a^2 = \int \mathbf{a}_a d\mathbf{r}_a \rightarrow \frac{1}{2} m_a \mathbf{v}_a^2 = \int m_a \mathbf{a}_a d\mathbf{r}_a \rightarrow \frac{1}{2} m_a \mathbf{v}_a^2 = \int \mathbf{F}_a d\mathbf{r}_a \quad (\mathbf{r}_a = \mathbf{r}_a)$$

Reference Frame

The universal position $\mathring{\mathbf{r}}_a$, the universal velocity $\mathring{\mathbf{v}}_a$, and the universal acceleration $\mathring{\mathbf{a}}_a$ of a particle A relative to a reference frame S, are given by:

$$\mathring{\mathbf{r}}_{a} = \mathbf{r}_{a} + \widecheck{\mathbf{r}}_{s}$$

$$\mathring{\mathbf{v}}_{a} = \mathbf{v}_{a} + \widecheck{\omega}_{s} \times \mathbf{r}_{a} + \widecheck{\mathbf{v}}_{s}$$

$$\mathring{\mathbf{a}}_{a} = \mathbf{a}_{a} + 2\widecheck{\omega}_{s} \times \mathbf{v}_{a} + \widecheck{\omega}_{s} \times (\widecheck{\omega}_{s} \times \mathbf{r}_{a}) + \widecheck{\alpha}_{s} \times \mathbf{r}_{a} + \widecheck{\mathbf{a}}_{s}$$

where \mathbf{r}_a , \mathbf{v}_a , and \mathbf{a}_a are the position, the velocity, and the acceleration of particle A relative to the reference frame S; $\mathbf{\check{r}}_s$, $\mathbf{\check{v}}_s$, $\mathbf{\check{a}}_s$, $\mathbf{\check{o}}_s$, and $\mathbf{\check{c}}_s$ are the dynamic position, the dynamic velocity, the dynamic acceleration, the dynamic angular velocity and the dynamic angular acceleration of the reference frame S.

The dynamic position $\check{\mathbf{r}}_s$, the dynamic velocity $\check{\mathbf{v}}_s$, the dynamic acceleration $\check{\mathbf{a}}_s$, the dynamic angular velocity $\check{\boldsymbol{\omega}}_s$, and the dynamic angular acceleration $\check{\boldsymbol{\alpha}}_s$ of a reference frame S fixed to a particle S, are given by:

$$\mathbf{\check{r}}_s = \int \int (\mathbf{F}_0/m_s) dt dt$$

$$\mathbf{\check{v}}_s = \int (\mathbf{F}_0/m_s) dt$$

$$\mathbf{\check{a}}_s = (\mathbf{F}_0/m_s)$$

$$\mathbf{\check{\omega}}_s = \left| (\mathbf{F}_1/m_s - \mathbf{F}_0/m_s) / (\mathbf{r}_1 - \mathbf{r}_0) \right|^{1/2}$$

$$\mathbf{\check{\alpha}}_s = d(\mathbf{\check{\omega}}_s) / dt$$

where \mathbf{F}_0 is the net force acting on the reference frame S in a point 0, \mathbf{F}_1 is the net force acting on the reference frame S in a point 1, \mathbf{r}_0 is the position of the point 0 relative to the reference frame S (the point 0 is the center of mass of particle S and the origin of the reference frame S) \mathbf{r}_1 is the position of the point 1 relative to the reference frame S (the point 1 does not belong to the axis of rotation) and m_s is the mass of particle S (the vector $\boldsymbol{\omega}_s$ is along the axis of rotation)

The magnitudes $\check{\mathbf{r}}$, $\check{\mathbf{v}}$, $\check{\mathbf{a}}$, $\check{\omega}$, and $\check{\alpha}$ are invariant under transformations between reference frames.

A reference frame S is inertial if $\breve{\omega}_s = 0$ and $\breve{\mathbf{a}}_s = 0$, but it is non-inertial if $\breve{\omega}_s \neq 0$ or $\breve{\mathbf{a}}_s \neq 0$.

In this paper it is assumed that the dynamic position $\check{\mathbf{r}}_{cm}$, the dynamic velocity $\check{\mathbf{v}}_{cm}$, the dynamic acceleration $\check{\mathbf{a}}_{cm}$, the dynamic angular velocity $\check{\mathbf{\omega}}_{cm}$, and the dynamic angular acceleration $\check{\mathbf{\alpha}}_{cm}$ of the universal reference frame $\mathring{\mathbf{S}}$ fixed to the center of mass of the universe are always zero.

In addition, the universal position $\mathring{\mathbf{r}}_{cm}$, the universal velocity $\mathring{\mathbf{v}}_{cm}$, and the universal acceleration $\mathring{\mathbf{a}}_{cm}$ of the center of mass of the universe are always zero.

Kinetic Force

The kinetic force $\mathbf{K}_{a|b}$ exerted on a particle A of mass m_a by another particle B of mass m_b , caused by the interaction between particle A and particle B, is given by:

$$\mathbf{K}_{a|b} = \frac{m_a m_b}{m_{cm}} (\mathring{\mathbf{a}}_a - \mathring{\mathbf{a}}_b)$$

where m_{cm} is the mass of the center of mass of the universe, $\mathring{\mathbf{a}}_a$ and $\mathring{\mathbf{a}}_b$ are the universal accelerations of particles A and B.

From the above equation it follows that the net kinetic force \mathbf{K}_a acting on a particle A of mass m_a , is given by:

$$\mathbf{K}_a = m_a \mathbf{\mathring{a}}_a$$

where $\mathbf{\mathring{a}}_a$ is the universal acceleration of particle A.

From page [2], we have:

$$m_a \mathring{\mathbf{a}}_a - \mathbf{F}_a = 0$$

That is:

$$\mathbf{K}_a - \mathbf{F}_a = 0$$

Therefore, the total force $(\mathbf{K}_a - \mathbf{F}_a)$ acting on a particle A is always in equilibrium.

This paper considers that Newton's first and second laws are false, since there is no relation between the acceleration of a particle A and the total force acting on particle A.

Bibliography

- A. Einstein, Relativity: The Special and General Theory.
- **E. Mach**, The Science of Mechanics.
- R. Resnick and D. Halliday, Physics.
- J. Kane and M. Sternheim, Physics.
- H. Goldstein, Classical Mechanics.
- L. Landau and E. Lifshitz, Mechanics.