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In their article, Montero-Campillo et al. [1] use the
B3LYP density functional with the 6-311+G(d,p) basis
set to calculate the relative thermodynamic stabilities of
the 89 linear and branched perfluorooctane sulfonic acid
(PFOS) isomers in their molecular acid and dissociated an-
ionic forms for the gas phase and aqueous and n-octanol
solvent phases. A substantial body of work over the past
decade has clearly demonstrated the inability of the B3LYP
functional (and the majority of other widely employed
density functionals) to accurately represent the relative
thermodynamic stabilities of linear and branched alkanes
(including perhydro, poly- and perhalogenated, and other
functionalized derivatives) [2–13].

In prior [14, 15] and more recent [16, 17] work, we
have specifically demonstrated using a range of theoret-
ical methods (semiempirical, Hartree-Fock [HF], various
density functionals, and second order Moller-Plesset per-
turbation theory [MP2]) that the B3LYP branching error
for perhydroalkane isomerizations also applies to perfluo-
roalkanes, and particularly to classes of compounds such
as the 89 PFOS isomers, as well as the perfluoroalkanoic
acids and perfluoralkyl sulfonyl/acyl fluorides in their acid
and (where applicable) anionic forms. Consequently, the
relative thermodynamic stabilities of the molecular acid
and anionic PFOS isomers at the B3LYP/6-311+G(d,p)
level of theory in ref. [1] are in substantial error, and the
authors and readers are referred elsewhere to more accu-
rate calculations.
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