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Abstract
A correct time translation operator must have an unbounded spectrum. Here we propose that there 
exists a mass operator with this property that replaces the conventionally used Hamiltonian. Simple 
consequences are a negative gravitational mass for anti-particles, a zero-energy vacuum and a prospect 
of benign modifications of quantum field theory, including a quantum theory of gravitation. The advent 
of negative gravitational mass might help to overcome some of the most fundamental problems in 
cosmology, but it also questions whether General Relativity is the appropriate theory of gravitation.

Introduction
There is a growing evidence that many of the very basic problems in Cosmology [1] and Physics in 
general may find a simple explanation by accepting that matter and anti-matter have gravitational mass-
values of different sign, i.e. anti-matter has a negative mass [2]. This note is an attempt to dwell on this  
idea, which has probably been discussed in almost all Theoreticians rooms around the world in the past.

General Remarks
Translational invariance of physical laws in 4-d space-time manifests itself in the conserved  energy-
momentum 4-vector, p = (p0, p1, p2,  p3). In quantum mechanics p is an operator conjugated to the time-
space position operator, x, which is expressed by the commutation relations

[ x  , p]=i
 , (1)

and the fact that pμ are the generators of infinitesimal translations of observables, O:

∂O

∂ x=−i[O , p] . (2)

The Hamiltonian H is conjugated to time and the momentum to position in space. However, as Pauli 
already pointed out [3], the Hamiltonian is actually an inappropriate choice because its spectrum is  
bounded from below, i.e. it is essentially a positive operator.

Here we propose to replace H by a mass operator, p0 = M, which can assume unlimited positive and 
negative values. The states of negative mass values are associated with anti-particle states. For 
particles, H and M are identical for anti-particles opposite. This may be expressed by

H=signM M , (3)
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which is to be understood by going to the (common) diagonal representation. Thus, anti-particles are 
associated with negative-frequency states, an assignment which is invariant under proper 
orthochronous Lorentz transformations.

Quantum-Field Theoretical Considerations
Standard Quantum Field Theory takes the Hamiltonian as time translation operator, although its  
bounded spectrum is at variance with the above mentioned fundamental requirement. The boundedness 
from below is heavily used in the definition of the vacuum state, in the development of scattering 
theory, in the form of the Feynman propagator etc. Here, we propose a mass operator with unbounded 
spectrum with the consequence of negative masses for anti-particles. Though we are not in a position to 
fully develop a quantum field theory with the mass operator as generator of infinitesimal translation in  
time here, there are a couple of  features that can e derived relatively easily and which look very 
interesting with respect to difficulties with which the standard theory is plagued.

Scalar field

A field has a continuous number of degrees of freedom labeled by the points in 3-d space or 
equivalently by the points in wave-number (Fourier) k-space. Thus, a free scalar field, ψ, which 
satisfies the Klein-Gordon equation

∂∂m2x =0 (4)

can be written as a sum over all possible k-vectors. For simplicity we assume a compact x-space and 
thus an enumerable k-set:

x = ∑
k

k 0=±k

k e
−i k x , (5)

where k= k 2m
2 . (6)

In usual fashion, ψk and its adjoint (designated by a hat) are replaced by the annihilation operator

ak=ki k (7)

and its adjoint creation operator âk. These operators satisfy the commutation relations

[ak ,a l ]=0 , and [ak , a l ]=k , l
4 . (8)

In these variables the mass operator, M, takes the form:

M =∑
k

k

2
ak ak a k ak . (9)

It has exactly the form of the Hamiltonian in the conventional treatment. The difference lies in the  
definition of the vacuum and correspondingly in the matrix elements of ak and âk,.These annihilation 
and creation operators, reduce (augment resp.) the number of particles in mode k by one, while the 
mass operator counts the number of particles of energy ωk in all modes.

For a single mode one can now start from the vacuum, |0>, and build up one-, two- etc. particle states 
by applying â once, twice etc. to the vacuum state (â|0> → |1>, â|1> → |2>, etc). Conventionally, 
arguing that the energy must be bounded from below, the condition a|0> = 0 is requested, i.e. all 
annihilation operators yield zero when applied to the vacuum.



In contrast to this view, we argue that the mass operator (9) is allowed to assume unlimited negative 
values. Thus, we consider that a promotes the vacuum |0> to a  the state with particle number minus 
one, i.e. to the state of a single antiparticle, a|0> → |-1>. In this definition of the vacuum, the operators 
have the (single mode) matrix elements

 am ,n=an ,m=n1
2
n ,m1 . (10)

The number operator (aâ + âa)/2 is diagonal with integer eigenvalues, n. The vacuum state is the 
eigenstate with zero eigenvalue, the state with n particles has eigenvalue n, the one with n antiparticles  
has eigenvalue -n.

It is clear that  ak and âk must be adjoint to each other rather than hermitian conjugate. The latter 
relationship is connected to a probabilistic (non-negative) interpretation of wave-functions. However, 
here adjointness allows for either sign, which is interpreted as a mass density which is positive for 
particles and negative for antiparticles.

The Hamiltonian is simultaneously diagonal with M but, in accordance with (3), the negative 
eigenvalues of M are to be multiplied by -1 to yield corresponding energy eigenvalues. The vacuum has 
exactly zero energy and is not plagued with the embarrassingly large zero-point energy that follows 
from the conventional choice of the vacuum and corresponding matrix elements for the operators a 
(and â) [5].

For a self-adjoint (real) field we have to identify ak and â-k.

General Bosons

The treatment for scalar fields, transforming according to the identity representation of the Lorentz  
group, carries in principle over to general fields obeying the commutation relations (8), though there 
are tedious extras owing to the additional degrees of freedom associated with the higher dimensionality 
of their representations. We will not elaborate on these complications, but for a single remark on 
photons.

Photons are zero-mass particles that transform under the little group of inhomogeneous Lorentz 
transformations according to one-dimensional representations characterized by helicity which can take 
values of ±1. The +1 and -1 helicity representations are conjugate, which means that we have to 
identify creation- and annihilation operators according to â+

k, = a-
-k, and correspondingly â-

k, = a+
-k,. 

Thus, the electromagnetic field is not self-adjoint and there must exist anti-photons [9]. Why do we not 
see those? The explanation follows from considering the conserved quantities, mass and energy. In a 
matter island of the universe, two states of a certain energy difference always have a mass difference of 
the same sign. However, for an anti-photon these signs are opposite. Thus, matter cannot absorb an 
anti-photon because in such a process mass- and energy-conservation cannot be fulfilled 
simultaneously.

Fermions

Fermions fields can also be represented in a form analogous to (7), However, the creation and 
annihilation operators now obey anti-commutation rules:

{ak ,a l }=0 , and {ak , al }=k , l
4 . (11)

The mass operator for this free field takes the form



M =∑
k

k

2
ak ak− ak ak  (12)

for a single mode the matrix elements between the states are

am ,n=an ,m= 1
2
−1nn, m1 . (13)

Now, the number operator (aâ - âa)/2 is diagonal with eigenvalues 1, 0, or -1. All states with even n, 
have eigenvalue zero and are identified with the vacuum. The states with 'n modulo 4' = 1 are identified 
with the one-particle state, while the ones with 'n modulo 4' = -1 are identified with the one-anti-
particle state. Satisfyingly, the vacuum has again no energy.

As in the case of non-scalar Bosons, one has to take care of possible identifications of representations 
which, however, is rather more delicate here due to the two-valuedness of Fermion representations.

Remark on the Dirac Equation

In the treatment of the Dirac equation

−i∂t=H =−i k ∂km , (14)

the occurrence of negative-energy states was a puzzle for a long time, which was solved in the field-
theoretical approach semi-satisfactorily by the introduction of separate sets of creation and annihilation  
operators for particles and antiparticles. In our interpretation, the generator of time translations in (14)  
is not to be viewed as the Hamiltonian, H, but as the mass operator, M, that is correctly allowed to 
assume unbounded negative values. Consequently a single set of “creation” and “annihilation” 
operators is able to generate particle and anti-particle states as shown in (13).

Path Integrals

In the Dirac-Feynman derivation of the path integral [7] the mass operator, M, now replaces the 
Hamiltonian as generator of time translations. Correspondingly, the action functional takes the form

S=∫ dx ̇ −M  ,  , (15)

with the time derivative of the field given by the commutator

 i ̇=[ , M ] (16)

In standard theory where M is replaced by the Hamiltonian with its positive spectrum, convergence of 
the path integral is considered a limiting process whereby a infinitesimally small imaginary “mass”-
term is added to the Hamiltonian to obtain convergent integrals by closing contours in the negative or 
positive imaginary plane in frequency space, depending on whether a positive or negative value of time 
is considered. This leads to the use of the Feynman propagator in the evaluation of Feynman diagrams 
of generic form [7]:

DF  x=−i∫ d 3 k

23 2k

e−i kx[−x0eik x
0

x0e−ik x
0

] , (17)

where Θ(x) is the conventional (0,1) step function, and where we have switched to the conventional 
continuous representation in k-space.

However, when the mass operator M, with its unbounded spectrum, governs time propagation, no 
closure of any integration path is possible and one has to rely on the assumption that ever faster 



oscillations of bounded amplitude lead to convergence of the path integral.

In this situation the following propagator may be more appropriate

DM x =i sign x0∫ d 3 k

23 4k

e−i kx[ eik x
0

−e−ik x
0

] , (18)

which is obtained from taking the principal-value of particle and anti-particle poles on the frequency 
axis instead of the residue of the positive-frequency pole alone.

Obviously, DM(x) = 0 for x0 = 0. From the Lorentz-invariance of the integral it follows, that DM(x) = 0 
for all space-like vectors x, as appropriate for a speed-limited world.

Gravitation Field
We tentatively propose, that the gravitational field is a real mass-less scalar, φ. Interaction with other 
fields is through current coupling with the action integral of the generic form

S int=G∫d
4
x∂J =G∫d

4
x∂

J  , (19)

where Jμ is the current of any field in question and G the gravitational constant. The current of the 
scalar field is suggested by Lorentz invariance to be of the generic form ∂μφ. Obviously, coupling 
occurs to any field through the “mass” operator ∂μ, as we would expect. In addition, the scalar field 
leads to attraction of like 'charges' [7], which here means matter attracts matter, and anti-matter attracts  
anti-matter, while matter (positive frequency states) and anti-matter (negative frequency states) repel  
each other.

In this view, gravitational waves consist of an oscillating scalar, with the gravitational force field  
pointing along its gradient and, thus, along the wave vector, which corresponds to longitudinal 
polarization.

Conclusion
We have presented, in a rather sketchy fashion, first steps towards a field theory that leads to a negative 
gravitational mass of anti-matter. Ideas to attribute a negative mass to anti-matter have been around  
since its discovery, but have been rejected on the grounds of General Relativity Theory [8], which does 
not allow for positive and negative curvature in a symmetric fashion. However, there are cosmological 
riddles of very fundamental nature which would find very simple explanations with the concept of 
matter-anti-matter repulsion, MAR [2], namely:

– Matter-anti-matter asymmetry (Baryogenesis)

– Horizon problem

– Flatness problem

– Accelerated Expansion (Dark Energy problem)

– Dark Matter problem

– Anti-matter islands must be expected in cosmos, but cannot be seen optically. It is a quite nice 
speculation that they are located in the huge void regions which make up just about half of all  
space [9].

Here we suggest in addition that problems in General Physics  are made to also disappear with the 



concept of a negative mass.

– An unbounded mass operator M  provides a proper conjugate to the time operator.

– The Vacuum Energy becomes zero, instead of the large (divergent) values in conventional 
theory, that cannot be properly accounted for in cosmological models.

– Propagators of the form (18) are exactly zero for space-like distances (compare Ref. 7, p24). 
Furthermore, they may provide conditionally convergent integrals (of principal-value type) for 
loop diagrams instead of divergent ones which have to be kept finite by small-scale cutoffs and 
renormalization.

It is clear, that our proposal poses more questions than it answers in this paper. There is a host of 
situations which will have to be reconsidered in this light. However, the prospect of getting answers to 
the above list of fundamental problems certainly makes it worthwhile to follow up on this approach.
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