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Abstract 

This paper suggests new physics. In a different approach, it proposes fundamental particles 

formed from infinite superpositions with mass borrowed from a Higgs type scalar field. 

However energy is also borrowed from zero point vector fields. Just as the Standard Model 

divides the fundamental particles into two types…those with mass and those without, with 

the Higgs mechanism providing the difference…infinite superpositions seem also to divide 

naturally into two sets: (a) those with  “infinitesimal” mass, and (b) those with significant 

mass (from micro electron volts upwards). In the infinitesimal set (a), photons, gluons and 

gravitons (to fit with cosmology and the expansion of the cosmos) all have
3410 eV mass, 

approximately the inverse of the causally connected horizon radius. These values are so close 

to zero the symmetry breaking of the Standard Model remains essentially valid. These 

particles travel so close to the speed of light they have virtually fixed helicity, with the Higgs 

mechanism increasing their mass from infinitesimal type (a) to significant or measureable 

type (b) values. Also the energy in the zero point fields (borrowed to build the fundamental 

particles) is limited, particularly at the extreme wavelengths of virtual gravitons interacting at 

near horizon radii. Any causally connected region grows with time after the big bang and the 

number of virtual gravitons with wavelengths similar to the size of the causally connected 

region increases approximately as the square of the causally connected mass. Space has to 

expand exponentially with time in an accelerating manner after the big bang to make 

available the zero point energy to meet this increased requirement. For similar reasons the 

extra gravitons near mass concentrations change the metric in proportion to /m r , in 

accordance with the Schwarzschild solution of Einstein’s equations. It suggests possible 

spacetime boundaries at the event horizons of black holes in line with one of the current 

Firewall Paradox implications. Approximately the first two thirds of this paper look at 

building and analysing the fundamental particles formed from infinite virtual superpositions. 

The final portion looks at the expanding Universe and connections with General Relativity; 

but only after attempting to show that infinite superpositions can be equivalent to the 

Standard Model fundamental particles, apart from infinitesimal differences.  
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1 Introduction 

 

Since the weak and electromagnetic forces were unified in the 1960’s physicists have wished 

to somehow unite all the fundamental forces. Initially it seemed that three of the forces 

(excluding gravity) could unite near Planck scale. High energy experiments however ruled 

out the possibility of single energy unification. Some type of Supersymmetry is seen by many 

as the solution to several current Standard Model problems; one version modifying the high 

energy running constants of the three forces in such a manner they unite near the Planck 

scale. The particles predicted however have yet to been seen. String theory is also seen by 

many as the future path, but not all physicists are comfortable with its non-testability and 

need for 10 or 11 dimensions. The enormous landscape of different universes or multiverse it 

proposes is also widely regarded as the solution to the minute amount of dark energy 

proposed to explain the current accelerating expansion of the universe. Some recent 

cosmological surveys [1] however have not so far supported dark energy as the cause of this 

acceleration. This all suggests some important and relevant questions, for example: 

1. Is it possible that the fundamental forces may connect in some different way?  

2. Are the extra dimensions of String Theory really necessary? 

3. Is “The Multiverse” the only explanation of accelerating cosmic expansion? 

4. Can the problems these theories solve be addressed differently?  

Approaching all this in a completely new direction, this paper explores possible solutions to 

these puzzles in a different way, but still using basic principles of quantum mechanics and 

relativity. Apart from infinitesimal differences it seems to be consistent with the Standard 

Model. It requires the universe to expand exponentially after the big bang in an accelerating 

manner. It changes the metric around mass concentrations in accordance with General 

Relativity. It requires photons, gluons and gravitons to have mass of 3410 ,eV close to some 

recent proposals [2] [3] giving gravitons a mass of 3310 eV to explain the accelerating 

expansion of the universe. It argues General Relativity cuts off at Black Hole event horizons, 

one of the possible implications of the current Firewall paradox.[14] [15] [16] [17] [18].  

 

1.1 Summary 

Papers modifying the Standard Model are too numerous to list, however we briefly touch on a 

small number of some early versions of these in section 1.1.2. The approach in this paper is 

very different from that in most of these earlier papers. The main differences are summarized 

below. 
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1.1.1 General Relativity as our starting point 

General Relativity tells us that all forms of mass, energy and pressure are sources of the 

gravitational field. Thus to create gravitational fields all spin ½ leptons & quarks, spin 1 

gluons, photons, 0W & Z particles etc. emit virtual gravitons, except possibly gravitons 

themselves (section 6.2.3), as gravitational energy is not part of the Einstein tensor.  

The starting point of this paper assumes there is a common thread uniting these fundamental 

particles making this possible. Equations are developed that unite the amplitudes of the 

colour and electromagnetic coupling constants with that of gravity. The precision required by 

quantum mechanics for half integral and integral angular momentum allows gravity to be 

included, despite the vast disparity in magnitude between gravity and the other two. This 

combination of colour, electromagnetic and gravitational amplitudes in the same equation is 

possible because of a radically different approach taken in this paper: An approach using 

infinite superpositions of positive and negative integral  angular momentum virtual 

wavefunctions for spin ½, spin 1 and spin 2 particles. The final result is almost identical to 

the Standard Model, with infinitesimal but important differences.  

The total angular momentum can be summed over all wavenumbers ;k  from 0k   to some 

cutoff value
cutoffk . We will assume (as with many unification theories) that the cutoff for 

these infinite superpositions is somewhere near Planck scale. Firstly imagine a universe 

where the gravitational constant 0G  . As 0G  , the Planck length 0PL  , the Planck 

energy  andPE 
cutoffk  also. If we sum the angular momentum of these infinite 

superpositions when 0G  (i.e. from 0k   to )cutoffk  we get precisely half integral or 

integral  for the fundamental spin ½, spin 1 & spin 2 particles in appropriate m  states. If we 

now put 0G   the infinitesimal effect of including gravity can be balanced by an equal but 

opposite effect due to the non-infinite cutoff value in .k  A near Planck scale superposition 

cutoff requires gravity to be included to get precisely half integral or integral . (Section 4.2) 

These infinite superpositions have another very relevant property relating to the fact that all 

experiments indicate that fundamental particles such as electrons behave as point particles. 

Each wavefunction with wavenumber k , which we label as k , has a maximum radial 

probability at 1/r k  and they all look the same (Figure 1.1. 1.)  Every wavefunction k  of 

these infinite superpositions, interacts only with virtual photons (for example) of the same ;k

if superpositions representing say an electron are probed with such photons (that interact only 

with wavefunction k ) the resolution possible is of the same order as the dimensions of ,k

both have 1/ .r k  The higher the energy of the probing particle the smaller the k
 
it 
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interacts with, the resolution of an observing photon can never be fine enough to see any k

dimensions. Even if this energy approaches the Planck value, with a matching k  radius near 

the Planck length it is still not possible to resolve it. This behaviour is consistent with the 

quantum mechanical properties of point particles.  

                                     

Figure 1.1. 1  The radial probability of the dominant 6n   for spin ½ wavefunction 6k . 

1.1.2 Primary interactions and Secondary interactions 

Supposing that superpositions can in fact build the fundamental spin ½, spin 1, and spin 2 

particles, then what builds the superpositions? Before answering that question, this paper can 

only make sense if we divide the world of all interactions into two categories. 

Secondary Interactions are those we are familiar with and are covered by the Standard 

Model, but with the addition of gravity, which is not included in the Standard Model. They 

take place between the fundamental spin ½, spin 1 and spin 2 particles formed from infinite 

superpositions. They are the QED/QCD etc, interactions of all real world experiments. 

Primary Interactions we conjecture on the other hand are those that build infinite 

superpositions and are hidden to the real world of experiments.  

The majority of this paper is about these primary interactions, and the superpositions they 

build representing the fundamental spin ½, spin 1 and spin 2 particles. Primary interactions 

are between spin zero particles borrowed from a Higgs type scalar field and the zero point 

vector fields. In the 1970’s models were proposed with preons as common building blocks of 

leptons and quarks [4] [5] [6] [7]. In contrast with the virtual particles in this paper some of 

these earlier models used real spin ½ building blocks. Real substructure has difficulties with 

large masses if compressed into the small volumes required to approach point particle 

behaviour. On the other hand with virtual substructure borrowing energy from zero point 

fields the mass contribution at high k  values can be cancelled (section 3.2.1). As in earlier 

models this paper also calls the common building blocks preons, but here the preons are both 

4
*R R

k


  

kr   
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virtual and spin zero. They also now build all spin ½ leptons and quarks, spin 1 gluons, 

photons, W & Z particles, plus spin 2 gravitons in contrast to only the leptons and quarks in 

the earlier models. (See Table 2.2. 1.) 

As these preons have zero spin they possess no weak charge, primary interactions (section 

2.2.1) can take place only with the zero point colour, electromagnetic and gravitational fields. 

The three primary coupling constants for each of these three zero point fields are different 

from, (but related to) the secondary coupling constants. The behaviour of primary coupling is 

also entirely different from secondary coupling. Secondary coupling strengths vary (or run) 

with wavenumber k  (the electromagnetic increasing with k  and colour decreasing with k ). 

In contrast, we conjecture primary coupling strengths (or constants) do not run. In this paper 

virtual preons are continually born with mass out of a Higgs type scalar field, existing only 

for time / .t E   At their birth, they interact while still bare with zero point vector fields at 

this instant of birth 0t  . The primary coupling constants consequently are fixed for all :k  

there is no time for charge canceling or reinforcing, which in secondary interactions forms 

around the bare charge progressively after its birth. The equations work only if this is true, 

and they also work only if the primary colour coupling constant is 1.  This does not seem 

implausible as it simply means that primary colour coupling is certain (sections 2.2.2). The 

ratio between the primary and secondary colour coupling constants labelled c  is thus (if 

primary colour coupling is 1) the inverse of the secondary (or usual 1

3
 of QCD) colour 

coupling constant at the superposition cutoff @ Planck Energy. (Sections 3.3 & 4.2.2)  

To enable the primary coupling to colour, electromagnetic and gravitational zero point fields, 

preons need colour, electric charge and mass. Red green or blue coloured preons have 

positive electric charge; anticolour red, green or blue preons have negative electric charge. 

Their mass which is borrowed from some type of scalar Higg’s field must always be non-

zero, which is discussed further in section 1.1.3.  As there are 8 gluon fields, superpositions 

are built with 8 virtual preons for each virtual wavefunction k . The nett sum of these 8 

electric charges is 0, 2, 4, 6   , and never 6  . This leads to the usual 0, 1/ 3, 2 / 3, 1    

electric charge seen in the real world. Various combinations of these 8 preons in appropriate 

superpositions can build leptons and quarks, colour changing and neutral gluons, neutral 

photons, neutral massive 0Z  photons and the charged massiveW   photons. (Table 2.2. 1) 
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1.1.3  Photons, gluons and gravitons with infinitesimal mass ( 3410 eV ).  

For many decades after the discovery of the neutrino in the 1930s it was thought to be 

massless, and to travel at velocity c .  Towards the end of last century however evidence 

slowly accumulated that this may not in fact be true, and that the family of 3 neutrinos have 

masses in the electron volt range. Due to this very low mass, and their normal emitted 

energies, they invariably travel at virtually the velocity of light c .  Photons also have always 

been seen as massless traveling precisely at velocity ,c  except in the case of the massive W 

& 0.Z  Massless virtual photons have an infinite range, which has always been seen as an 

absolute requirement of the electromagnetic field. On the other hand, this paper requires 

some rest frame (even if this frame normally moves virtually at c) in which to build all the 

fundamental particles. Table 6.2 1 suggests photons, gluons and gravitons have 3410 eV

mass with a range of approximately the inverse of the causally connected horizon radius, and 

velocities sufficiently close to that of light their helicity remains essentially fixed. This allows 

some form of Higgs mechanism to increase this infinitesimal mass to the various values in 

the massive set. These infinitesimal masses are in line with some recent proposals [2] [3] 

where gravitons have a mass of 3310 eV  to explain accelerating expansion. 

The virtual wavefunction we use is 3 2 2 2exp( /18) ( , )nk nkC r n k r Y   
 

an 3l 

wavefunction. This virtual 3l  property is normally hidden. In the same way as scattering 

experiments on spin 0 pions show spin 0 properties, and not the properties of the two 

canceling spin ½ component particles, this 3l   property of the virtual components of 

superpositions is not visible in the real world. Scattering experiments can exhibit only the 

spin properties of the resulting particle. The individual angular momentum vectors 

2 3L  of the infinite superposition all sum to a resulting: ( 3 / 2)Total L , 2  or 6  

for spin ½ , spin 1 or spin 2 respectively, in a similar way to two spin ½ particles forming 

spin 0 or spin 1 states.  

The wavefunction 3 2 2 2exp( /18) ( , )nk nkC r n k r Y     has Eigenvalues 2 2 2 2

nk n kP with

nk n kP , suggesting it borrows n  parallel k quanta from zero point vector fields provided 

n  is integral. We can see this by letting k  allowing energy E n   by absorbing n  

quanta   from the zero point vector fields (section 2.3.2). As spin 3 needs at least 3 spin 1 

particles to create it, the lowest integral number n  can be is 3. The virtual 3l   property can 

however be used to derive the magnetic moment of a charged spin ½, 1/ 2m    state as a 

function of n . Section 3.5 shows 2g   Dirac electrons need an average (over integral n  

states) of 6.0135n  . Three member superpositions k n nkc 
 

with 5,6,&7n   achieve 
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this, creating Dirac spin ½ states. We also find that 6n   is the dominant member and each 

superposition k needs at least 3 members to make all the equations consistent for Dirac 

particles. Secondary interactions at any wavenumber k  can occur with k  if integers n  

change by 1 , thus changing the Eigenvalues n kP  by k  where this can be only a 

temporary rearrangement of the triplets of values of n . This is true, whether the interaction is 

with leptons, quarks, photons, gluons, W & Z particles, or gravitons. (Section 3.3) 

1.1.4 Superpositions require only squared vector potentials  

The wavefunction 3 2 2 2exp( /18) ( , )nk nkC r n k r Y     also requires a squared vector 

potential to create it: 2 2 4 2 4 2 / 81Q A n k r . There are no linear potential terms in contrast 

with secondary interactions. The primary interaction operator is 2 2 2 2 2ˆ ,P Q A     with no 

linear potential terms included and Q  simply represents a collective symbol for all the 

effective charges concerned. As an example, the dominant 6n   wavefunction of a spin ½ 

Dirac k  requires a squared vector potential of 2 2 4 2 4 2 / 81Q A n k r 2 4 216 k r  (section 

2.3.1).  Primary coupling between the 8 virtual preons and the colour, electromagnetic and 

gravitational zero point fields produces a vector potential squared value for all infinite 

superpositions which can be expressed as: 

 
2

2 4 2

02 2
8 8 / (2 ) ( )

 
(1 )

(1 )

( )

( )3

EMP pim G s c k r ds

ksN

k
Q A

N 



     


  

 


 

(Where the length of the complex vector is squared here.) The significance of the cancelling 

top and bottom factors ( )sN  is explained in section 2.1.2. Also the cancelling (1 ) factors 

are due to gravity and explained in section 4.2. The primary colour coupling amplitude is 

conjectured to be 1 to each of the eight preons, and EMP the primary electromagnetic 

coupling. This equation applies regardless of the individual preon colour or electric charge 

signs, whether positive or negative (section 2.2.3). The primary gravitational coupling is to 

the particle mass 0.m
 
The primary gravitational constant is PG  divided by c  to put it in the 

same form as the other two coupling constants. The magnitude of the total angular 

momentum vector of the infinite superposition is ( 1)Total s s L . ) This 2 2Q A  without the 

gravity term generates superpositions with probability ( ) / kN s dk  where s is the 

superposition spin, 1N   for massive spin ½ fermion & massive boson superpositions but 

2N   for infinitesimal mass boson superpositions (Table 4.3. 1, section 6 and its subsections 

cover this more fully). Section 4.2  includes gravity raising the superposition probability to 

/1 )( )(N ks d k  where the infinitesimal  (not to be confused with infinitesimal mass) is 
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2

02 /m spin   (in Planck units 1)c G   457 10  for electrons, and 3410  for a 0Z . 

The k superpositions require at least three integral n  members. The following three 

member superpositions fit the Standard Model best (see Table 4.3. 1) 

 

        Spin ½ massive 1N   fermion superpositions                              
5,6,7n

k n nkc 


  .  

        Spin 1 massive 1N   boson superpositions                                  
4,5,6n

k n nkc 


  .  

        Spins 1 & 2 infinitesimal mass 2N   boson superpositions       
3,4,5n

k n nkc 


  .                                      

                  

Below are infinite superpositions 
, ,s m

for only spins ½ & 1. The symbol   refers to the 

infinite sum, s  the spin of the resulting real particle, m  its angular momentum state, and ss  

a spherically symmetric state. Section 3.1.3 explains this format. Also square cutoffs in 

wavenumber k are used here for simplicity.  Infinitesimal mass superpositions are introduced 

in section 6.2. (Complex number factors are not included here for clarity.) 

 

 

 

1/2, 4

( )

,1
, ,2

0

( )

,

5,6,7

1, 2

3

,

,4,

,

05

( ) 1
Massive              Spin , ( )

2

( ) 2 1
Infinitesimal mass Spin 1, ( )

1

2 

k cutoff

nk ss

n nk nk

nk

k cuto

m m

n

m

ff

nk ss

n n

nkn

nk mk

c dk
k

c dk

N

k
N

 
  



 
  











  
  

 






  

 


 

 

 

(1.1. 1) 

 

In these infinite superpositions the probability that the wavefunction is spherically symmetric 

is 2 21/ 1nk nk    and the probability that it is an m state is 2

nk where nk is the magnitude 

of the velocity of the centre of momentum of the primary interactions that generate each nk .  

This is similar to the superposition of time and spatially polarized virtual photons in QED. 

For example spin ½ has probabilities of 2 21/ 1nk nk    spherically symmetric nk  

wavefunctions, and 2

nk   ( , 2)nk m    wavefunctions. Each k is normalized to 1 but the 

infinite superpositions , ,s m are not normalized, diverging logarithmically with k ; the same 

logarithmic divergence that applies to virtual photon emission.  (Real wavefunctions have to 

be normalized to one as they refer to finding a real particle somewhere but this need not 

apply here.) Each member of these spin ½ superpositions has probability (1 ) / 2 ,dk k and if 

electrically charged emits virtual photons with probability 4 / .   Ignoring the factor of 

(1 ) 441 10 ,    the overall virtual scalar photon emission probability is the usual

 2 / / .dk k 
 
(Possible implications of the infinitessimal  are discussed in section 6.6 ) 

We also find in section 3.1 that 2m   virtual wavefunctions have 2

nk  probability of leaving 
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an 2m    debt in the zero point fields. Integrating this over all k  produces a total angular 

momentum for a spin ½ state of  2( / 2)(1 1/ ) 1Cutoff   , (section 3.2.2). When 1/
Cutoffk  is 

near the Planck length
2(1 1/ ) 1/ (1 )Cutoff    . A similar integration over all k  for the rest 

energy of the infinite superposition also leads to  2 2

0 (1 1/ ) 1Cutoffm c     , (section 3.2.1). 

The infinitesimal quantity  vanishes in a zero gravity, zero Planck length universe where 

& .Cutoff Cutoffk  
 
In this paper each preon borrows virtual rest mass from a Higgs type 

scalar field. The superposition mass/energy is obtained by summing squared momenta over 

all k . The equations are based on probabilities of these in a similar manner to those for 

angular momentum. This suggests the superposition or equivalent particle mass is both 

energy borrowed from zero point vector, and mass borrowed from Higgs type scalar fields. 

The final sections of this paper (5 & 6) argue that the limited zero point energies (required to 

generate virtual gravitons) available at causally connected cosmos wavelengths require it to 

expand exponentially in an accelerating manner (Figure 5.3. 3). Sections 5.2 & 5.2.2  argue 

that the warping of spacetime around mass concentrations is consistent with local observers 

measuring a constant background density of virtual gravitons.  This can only happen if at any 

radius r around a mass m, space expands proportionally to m/r in accordance with the 

Schwarzschild solution. We argue that this implies General Relativity (in an infinitesimally 

modified form effective only at cosmic scale) and the warping of spacetime is a consequence 

of Quantum Mechanics. The first two thirds of this paper is about the primary interactions 

between spin zero preons and spin one quanta that build the fundamental particles. The 

Standard Model is about the secondary interactions between them. (The weak force is only 

between spin ½ particles and thus a secondary interaction. It can not be involved in primary 

interactions.) Apart from infinitesimal effects, such as infinitesimal masses, the properties of 

fundamental particles covered in this paper seem consistent with their Standard Model 

counterparts. All 1& 2N N   superpositions as in Table 4.3. 1 are conjectured to cutoff at 

the Planck energy .PE   If this is so both colour and electromagnetic interaction energies must 

cutoff at /PE n 182.03 10 .,GeV   or  1/ 6  of the Planck energy. (The expectation value

 is 6.0135n   for spin ½ leptons and quarks Eq. (3.5. 16)). The electromagnetic and colour 

coupling constants predicted at this cutoff are consistent with Standard Model predictions 

assuming three families of fermions and one Higgs field. (See Figure 4.1. 1 & Figure 4.1. 2). 

Only after attempting to show that infinite superpositions can be equivalent to the Standard 

Model fundamental particles do we try to connect them with General Relativity. 
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2 Building Infinite Virtual Superpositions 

2.1 The possibility of Infinite Superpositions 

 

2.1.1 Early ideas 

After World War II there was still much confusion about QED. In 1947 at the Long Island 

Conference the results of the Lamb shift experiment were announced [8]. Some of the first 

early explanations that gave approximately correct answers used simple semi classical 

thinking to get a better understanding of what seemed to be going on. These early ideas 

helped to eventually lead to the QED of today, perhaps in a similar manner to the way Bohr’s 

original simple semi classical explanation of quantized atomic energy levels played such a 

large part in the eventual development of full three dimensional wavefunction solutions of 

atoms, and quantum mechanics. We start this paper with an example of a semi classical Lamb 

shift explanation that seems to lead into the possibility of fundamental particles and infinite 

virtual superpositions being one and the same.  

The density of transverse modes of waves at frequency   is 2 2 3/d c    and the zero point 

energy for each of these modes is / 2 . The electrostatic and magnetic energy densities in 

electromagnetic waves are equal, thus for electromagnetic zero point fields:  

 

2 2 2 2

0 0

2 32 2 2

E c B d

c

    



 
   

    

 and    
4

2 2 2

0 0 2 3
.

2

d
E c B

c

 
 

 
 

 

For a fundamental charge e  using 2

0/ 4 ,e c   and provided 1,   this gives an 

 

                                 

2 4
2 2 2

2

2
Average force squared of    

d
F e E

c

  

 
   

(2.1. 1)  

                           

Thinking semi classically, for an electron of rest mass m  this can generate simple harmonic 

motion of amplitude r , where 2 2 4 2F m r  (if 1  ). Solving for 2r  (where 2r  is 

superimposed on the normal quantum mechanical electron orbit, c / mc  is the Compton  

 

wavelength, and / ) :k c           

2
2 2

2 2

2 2
      .c

d dk
r

m c k

  

  

 
      

   
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Integrating 2r (directions are random) : 
max

2 2 2

max min

min

2 2
  log( / )

k

Total c c

k

dk
r k k

k

 

 
  . 

The minimum and maximum values for k  are chosen to fit atomic orbits, and a root mean 

square value for r  can be found. Combining this with the small probability that the electron 

will be found in the nucleus, this small root mean square deviation shifts the average potential 

by approximately the Lamb shift. This can also be thought of as simple harmonic motion of 

amplitude ,c  occurring with probability (2 / ) /dk k  . It can also be interpreted as the 

electron recoiling by c (provided 1recoil  ) in random directions due to virtual photon 

emission with a probability of (2 / ) /dk k  .   

 

2.1.2 Dividing probabilities into the product of two component parts 

This probability (2 / ) /dk k  can be thought of as the product of two terms &A B , where A  

includes the electromagnetic coupling constant , B  includes /dk k , and (2 / ) / .AB dk k   

This suggests that this same behaviour is possible if we have an appropriate superposition of 

virtual wavefunctions occurring with probability B , which emits virtual photons with 

probability A  (by changing Eigenvalues nk n kp
 
by 1n   ).  For example, if a virtual 

superposition occurs with probability B  ( ) / kN s dk , and has a virtual photon emission 

probability for each member of these superpositions of A 
1( ) (2 / )N s   , then the overall 

virtual photon emission probability remains as above at AB  (2 / ) /dk k  . This applies 

equally whether it is virtual gluon/photon/W&Z/graviton etc. emission. Provided A includes 

the appropriate coupling constant this same logic applies regardless of the type of boson 

emitted. As is usual to get integral or half integral total angular momentum 2s has to be 

integral and section 6.2 argues that N must also be integral.  (This paragraph is simplified to 

illustrate the principle and will later be modified in section 3.3.) 

In section 1.1.4 we said that these wavefunctions are built with squared vector potentials. If 

superpositions of them are to represent real particles they must be able to exist anywhere. 

This is possible only if they are generated by uniform fields. The only fields uniform in 

space-time are the zero point fields, and looking at the electromagnetic field first we can use 

section 2.1.1 above. Consider a vector r  from some central origin O  and a magnetic field 

vector B  through origin ,O  then the vector potential at point r  is   / 2 A B r and the 

vector potential squared is  2 2 2 2sin / 4A B r  where the angle between vectors &B r is  .   
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2 2 2 2As  averages 2/3 over a spheresin  : / 6  A B r 

  

                (2.1. 2) 

 

Here 2B  is the magnetic field squared at any point due to the cubic intensity of zero point 

EM also as in section 2.1.1. Putting Eq’s. (2.1. 1) & (2.1. 2) together the vector potential 

squared is 

 

                                               
2 2e A

2 2 2 2 4 2
2 4 2

46 3 3

e B r r d dk
k r

c k

   

  
    

 

                    (2.1. 3) 

 

As in section 2.1.2 we can divide this into two parts, noting the inclusion of spin s and integer 

N in the numerator and denominator:  
  

                                                            
2 2 2 4 2 .

3

dk
e

s

s
A k r

k

N

N





   
    
   

                       

(2.1. 4) 

But here a vector potential squared term  2 4 2

3
k r

sN





 
 
    

occurs with probability
sN dk

k

 
 
 

. 

Another way of looking at this is that a wavefunction k  that is generated by a vector 

potential squared term 2 4 2

3
k r

sN





 
 
 

 can occur with 
sN dk

k

 
 
 

probability.  

This is similar reasoning to that used in the semi classical Lamb shift explanation of section 

2.1.1. In the first bracketed term of Eq. (2.1. 4),  is the electromagnetic coupling constant, 

but the same logic applies for the eight gluon and gravitational zero point vector fields where 

we will sum appropriate amplitudes of these and square this total as our effective coupling 

constant in Eq. (2.1. 4). But first we need to look at groups of spin zero preons that could 

build these wavefunctions. What mixtures of colours and electrical charges end up with the 

appropriate final colour and electrical charge for each of the fundamental particles or at least 

the ones we know of? 
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2.2 Spin Zero Virtual Preons from a Higgs type Scalar Field 

 

2.2.1 Groups of eight preons that form superpositions 

In this paper preons have zero spin and can have no weak charge. The only fields they can 

interact with (via Primary Interactions that build superpositions as in section 1.1.2) are 

colour, electromagnetic and gravity. In the simplest world there would be just one type of 

preon that comes in three colours, always positively charged say, with their three anti colours 

all negatively charged. We will assume that this is true unless it does not work. Looking at 

Table 2.2. 1 we see that a minimum of 6 preons is required to get the correct charge ratios of 

3:2:1 between electrons, and up and down quarks. To get vector potential squared values that 

make all our equations work however, we need to couple to all 8 gluon fields requiring a total 

of 8 preons. Table 2.2. 1 has all the basic properties required to build infinite superpositions 

for the fundamental particles. We need to remember when looking at this table that from 

section 1.1.2 the effective secondary charge is much less than the primary charge and we 

have no idea yet of just what effective value the primary preon electric charge is.  

Particles only are addressed in the groups of preons in Table 2.2. 1. To get anti particles it 

would seem that we can just change the signs of each preon in the groups of 8, excepting 

those that are already their own antiparticle. The first point to notice however is that both the 

electron and the W 
are predominantly anti preons, yet they are both defined as particles. 

Have we got something wrong? When we look at relativistic masses in section 3.2.1 we get 

the usual plus and minus solutions and Feynman showed us how to interpret the negative 

solutions as antiparticles. If this also applies in anti preons then because they are zero spin, 

and the weak force discriminates between particles and antiparticles by their helicity, this 

discrimination can apply only in secondary interactions. The preon anti preon content of the 

groups in Table 2.2. 1 does not necessarily tell us whether they produce particles or 

antiparticles. We will discuss this further in section 3.2.1, also as of now there is still no good 

understanding of the predominance of matter over antimatter in our universe.  In Table 2.2. 1 

only one example of colour is given for quarks and gluons. Different colours can be obtained 

by simply changing appropriate preon colours. Various combinations of 8 preons in this table 

are borrowed from a scalar field for time /T E   , this process continually repeating in 

time. Conservation of charge normally allows only opposite sign pairs of electric charges to 

appear out of the vacuum. Let us imagine that these virtual preons are building an electron for 

example whose electric charge exists continually unless it meets a positron and is annihilated.  
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Fundamental 

Particles 

Preon colour Preon electric 

charge. 

Group 

colour 

Group electric 

charge. 

 

Spin ½  

Neutrino family. 

Spin 1  

Photons, 0Z &  

Neutral gluons.  

Spin 2 Gravitons. 

Any colour +          

its Anticolour     

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

 

 

Colourless 

 

 

0 

                         

Spin ½  

Electron family.  

 

Spin 1 .W 
 

Any colour +          

its Anticolour     

Antired 

Antired 

Antigreen 

Antigreen 

Antiblue 

Antiblue 

 1 

-1 

-1 

-1 

-1 

-1 

-1 

-1 

 

Colourless 

 

-6 

 

 

Spin ½  

Blue up quark 

family. 

Red     

Antired      

Green 

Antigreen 

Green 

Blue 

Blue 

Red 

 1 

-1 

 1 

-1 

 1 

 1 

 1 

 1 

 

 

Blue 

 

 

+4 

 

Spin ½  

Red down 

quark family. 

 

Green     

Antigreen     

Red 

Antired 

Green 

Antigreen 

Antiblue 

Antigreen 

 1 

-1 

 1 

-1 

 1 

-1 

-1 

-1 

Red 

 

-2 

 

Spin 1 

Red to green 

Gluons. 

 

Red     

Antigreen     

Red 

Antired 

Green 

Antigreen 

Blue 

Antiblue 

 1 

-1 

 1 

-1 

 1 

-1 

 1 

-1 

Red plus 

antigreen 

 

0 

 

Table 2.2. 1  Groups of 8 virtual preons forming the fundamental particles. The Higgs boson 

is discussed in section 6.5. If it is a superposition it would be in the neutral group at top. 
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This charged electron is thus due to a continuous appearance out of and back into the vacuum 

of virtual charged preons in a steady state process existing for the life of the superposition, 

and not conflicting with conservation of charge. If the electron itself does not conflict then 

neither do the borrowed preons that build it. 

2.2.2 Primary coupling constants behave differently and actually are constant 

Q.E.D. tells us that the bare (electric) charge of an electron for example increases 

logarithmically inversely with radius from its centre. Polarizations of the vacuum (of virtual 

charged pairs) progressively shield the bare charge from a radius of approximately one 

Compton radius c inwards towards the centre. When an electron (for example) is created in 

some interaction the full bare charge is exposed for an infinitesimal time. Instantaneously 

after its creation, shielding due to polarization of the vacuum builds progressively outward 

from the centre of its creation at the velocity of light.  For radii ≥ c we measure the usual 

fundamental charge e . There are similar but more complicated processes that occur to the 

colour charge. Camouflage is the dominant one where the colour charge grows with radius as 

the emitted gluons themselves have color charge. At the instant of their birth the preons are 

bare and at this time 0t   say, all the zero point vector fields can act on these bare colour and 

electric charges as there is simply no time for shielding and other effects to build. The 

primary coupling constants that we use must consequently be the same for all values of k in 

complete contrast to those for secondary interactions. We don’t know what this primary 

electromagnetic coupling constant is so we will just call it EMP . Also we will find that to get 

any sense out of our equations the primary colour coupling has to be very close to 1. A 

coupling of 1 is a natural number and simply reflects certainty of coupling. Provided the 

secondary colour coupling can be in line with the Standard Model and there does not seem to 

be any other good reason to pick a number less than 1, we will make the (apparently 

arbitrary) assumption that the bare primary colour coupling is exactly 1. (In section 4.1.1 we 

will find that this seems to be consistent with the Standard Model.) 

2.2.3 Primary interactions also behave differently 

Let us define a frame in which the central origin of the wavefunctions k of our infinite 

superposition is at rest: The laboratory or rest frame we will refer to as the LF. The preons 

that build each k are born from a Higg’s type scalar field with zero momentum in this 

frame. This has very relevant consequences as their wavelength is infinite in this rest frame at 

time 0t  , and after they become wavefunction k their wavelength is of the order1/ k  for 



18 

 

times 0 / 2t E  .  This implies that there could possibly be significant differences in the 

way amplitudes are handled between primary and secondary interactions. 

Let us consider secondary interactions first with an electron and positron for example located 

approximately distance r  apart. For photon wavelengths r  both the electron and the 

positron each emit virtual photons with probabilities proportional to  , but for wavelengths 

r  their amplitudes cancel. Returning to primary interactions, zero momentum preons must 

always have an infinite wavelength which is greater than the wavelengths (or1/ k values) of 

the zero point quanta they interact with, for all 0.k  This implies that we cannot simply add 

or subtract amplitudes algebraically as the charged preons can be always further apart than 

the wavelength of the interacting quanta (except when 0,k   but we will see there is always a 

minimum k value, ie min 0k   in sections 5 & 0). In fact if algebraic addition of amplitudes 

did apply in primary interactions, infinite superpositions for colourless and electrically 

neutral neutrinos would be impossible. So how can infinitely far apart preons of differing 

charge generate wavefunctions of all dimensions down to Planck scale? This can happen only 

if the amplitudes of all 8 preons are somehow linked over infinite space, all at the same time

0t   contributing to generating the wavefunction k . This non-local behaviour is not new. 

Recent experiments have confirmed that what Einstein struggled to come to terms with is in 

fact true; he called it “spooky action at a distance”.  While these experiments are so far 

limited in the distance over which they demonstrate entanglement, there is now wide 

acceptance that it can reach across the Universe. In the same manner wavefunctions covering 

all space can instantly collapse. We want to suggest that this same non-locality applies in 

primary interactions: our 8 virtual preons all unite instantaneously at time 0t   across 

infinite space in generating each k . Also the vector potential squared equations that they 

generate must always be the same for all the preon combinations in Table 2.2. 1. This can 

happen only if the amplitudes of all 8 are added regardless of charge sign for primary 

interactions. This applies to both colour and electric charge.  

The opposite is true for the secondary interactions. At time 0t   all 8 preons instantaneously 

collapse into some sort of virtual composite particle that for times 0 / 2t E  obeys 

wavefunction k . The dimensions of k are of the same order as the wavelength of the 

interacting quanta, and the usual algebraic total electric charge and nett colour charge must 

now apply as in the group charges in Table 2.2. 1. All of this may seem contrary to current 

thinking which has gradually been built up over several centuries of secondary interaction 

experiments; however it may not be so out of place when viewed in the context of the counter 
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intuitive results of entanglement experiments. The key point to bear in mind is that the 

predictions of this paper must agree or at least be able to fit the Standard Model, or 

secondary interaction experiments; as we may never be able to look into virtual primary 

interactions, but only observe their effects.   

Amplitudes to interact are complex numbers which we can draw as a vector. This applies to 

both colour and electric coupling, where these two vectors can be at the same complex angle 

or at different angles. The simplest case is if they are in line and we will assume this is true 

for both colour and electromagnetic primary interactions which are both spin 1. This seems to 

work and when we later include gravity, a spin 2 interaction, we find that the spin 2 vector 

only works if it is at right angles to the two in line spin 1 vectors. Let us start in a zero 

gravity world by simply adding the 8 preon colour vectors of amplitude 1 and the eight 

primary electromagnetic vectors of amplitude EMP  together, as all this only works if they 

are all in line.         
   

         The total colour plus electromagnetic primary amplitude is   8 8 EMP       

                    

           (2.2. 1) 

This equation is always true regardless of signs as in section 2.2.3  

         
2

The colour plus electromagnetic primary coupling constant is        8 8  EMP    (2.2. 2) 

Inserting this into Eq. (2.1. 4) we get                                       

  

                                   

2

2 2 2 4 2
8 8

.
3

EMP dk
Q A k r

sN

s kN





           
  

  

                 (2.2. 3) 

 

 

Again we interpret this just as we did in section 2.1.2 and Eq. (2.1. 4) as a vector potential 

squared term  

                

2

2 2 2 4 2  occurring with probability
8

3
 

8
   

EMP dk
Q A

s
k r

k

N

sN





      

  (2.2. 4) 

 

     

                       

                     

  

Where Q  is a symbol representing the entire 8 colour and 8 electric amplitudes combined, 

with s the spin and 1N   for massive superpositions, but 2N   for infinitesimal mass 

superpositions. (Table 4.3. 1, section 0 and its subsections cover this more fully.) 
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2.3 Virtual Wavefunctions that form Infinite Superpositions  

 

2.3.1 Infinite families of similar virtual wavefunctions 

Consider the family of wave functions where ignoring time:   

                                               

                                                          
2 2 2

( ) ( )

( ) exp( /18)

nk

l

nk

U nrk Y

U nrk C r n k r

 

 
  

                             

                                 (2.3. 1) 

    

 U nrk  is the radial part of nk ,  Y  the angular part, nkC a normalizing constant, and we 

will find that l  is the usual angular momentum quantum number. There is an infinite family 

of nk , one for each value k  where 0 k   in a zero gravity world.    

  

                                      
1 2 2 2( ) ( ) exp( /Now put 18 )l

nkR nrk rU nrk C r n k r                         (2.3. 2) 

 

As we are dealing with zero spin preons we use Klein-Gordon equations [9]. The Klein-

Gordon equation is based on the relativistic equation 2 2 2 2 2

0/E c m c p  and in a squared 

vector potential the Time Independent Klein Gordon Equation is 

 

                                         

2
2 2 2 2 2 2 2
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   
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(2.3. 3) 

Using                                   
2 2

2 2

1 ( 1)R l l

R r r





  
 


        we get the Time Independent  

                

2 2 2 2
2 2 2

02 2
2

Radial Klein Gordon Equation   
( 1)R l l E

Q A m c
R r r c

  
    

  
  

    

   (2.3. 4) 

    

For each nk the energy is nkE a function of &n k , and we will label the rest mass as 0snkm
 
a 

function of spin s , & ,n k  but also a function of the particle rest mass 0m  and this becomes  
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                  (2.3. 5) 
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Differentiating ( )R nrk ( )rU nrk
2 2 2

1 exp( )
18

l

nk

n k r
C r  

  twice with respect to r , multiplying 

by 2 and dividing by R            
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2 2
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1 (2 3)nR l l

R r

lr k
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nk  
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
                        

 

 (2.3. 6) 

 

Comparing Eq’s. (2.3. 5) & (2.3. 6) we see that l  is the usual angular momentum quantum 

number and the vector potential squared required to generate these wavefunctions is      
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 (2.3. 7) 

2 2 2 2
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The momentum squared i   
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(2.3. 8) 

 

2 2 2 2For  3 wavefunctions this beco &   me  s nk nkn k nl k  p p   

 

(2.3. 9) 

 

2.3.2 Eigenvalues of these virtual wavefunctions and parallel momentum vectors 

From Eq.’s (2.3. 8) & (2.3. 9) as k  , the energy squared
2 2 2

nk nkE cp 2 2 2n  and thus 

 

  energy  considering onlyIf  3  the positive soluti when  on . nkl k E n          (2.3. 10)         

This suggests that n must be integral. If it is integral when k   we will conjecture that it 

must be integral for all values of k. (This is a virtual process where the energy exchanged 

does not need to obey
2 2 4 2 2

0X X XE m c c p and 
2 2 2

X nkE c p  or 2 2 2 2

XE n  when k  .) 

We can also perhaps think of Eq.(2.3. 9) as integral n  parallel momentum vector kp  

quanta, transferring total momentum nk n kp and energy XE n   from the zero point 

fields
 
to generate the virtual wavefunction .nk  Thus provided 2 2 4 2 4 2( / 3)Q A n k r  as in 

Eq. (2.3. 7) the operator 2 2 2 2 2ˆ ( )P Q A     applied to the vitual wavefunction  

3 2 2 2exp( /18) ( )nk nkC r n k r Y    produces 2 2 22 2 2 2 2ˆ
nk nk nk nkP Q A n k       , 

where n is integral but k is continuous as for free particles. Thus we conjecture that: 

 
3 2 2 2

2 2 2 2Eigenvalues  

exp( /18) ( ) are Eigenfunctions with

 with continuous  but integral  .  

nk nk
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C r n k r Y

n k k n

  

p
                  

            (2.3. 11) 
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Also there are no scalar potentials involved, only squared vector potentials, so this is a 

magnetic or vector type interaction. Particles in classical magnetic fields have a constant 

magnitude of linear momentum which is consistent with the squared momentum Eigenvalues 

of Eq. (2.3. 11).This also implies that each nk is formed from quanta of wave number k  

only and that secondary interactions with nk emit or absorb k virtual quanta if n changes 

by 1.  The wavefunction nk is virtual and in this sense both the energy nkE and rest mass 

0snkm  in Eq. (2.3. 8) are also virtual quantities borrowed from zero point vector fields and a 

scalar Higgs type field. We use these virtual quantities to calculate the amplitude that nk is 

in an m state of angular momentum in section 3.1, and in section 3.2 to calculate the total 

angular momentum and rest mass. As in section 2.3.2 above, we can think of nk n kp  as n  

parallel momentum vectors kp . As spin 3 (or 3l  ) needs at least 3 spin 1 quanta to 

build it n  must be at least 3. When 3n   we can think of this as 3 of the 8 preons each 

absorbing quanta k  at time 0.t   We will find that a spin ½ state has a dominant 6n   

Eigenfunction where 6 of the 8 preons each absorb quanta k . It needs at least two smaller 

side Eigenfunctions 5n   & 7n   with either 5 or 7 of the 8 preons each absorbing quanta

k  respectively at 0t  . (Figure 3.1. 4 illustrates the three n modes of a positron 

superposition.) 

From Eq. (2.3. 7)  
2 2Q A 

4

2 4 2

3

n
k r

 
 
 

 2 4 216 k r  for this dominant 6n   mode. 

Thus using Eq.  (2.2. 4) 

2

2 2 2 4 2
8 8

3

EMP

s
Q A k r

N





 
  2 4 216 k r for an 6n  mode. 

Now 1/ 2& 1s N   for spin ½ fermions and 

2

2 8 8
16

3

EMP



 
    if we have only an 6n   

mode. 

Thus 8 8 24EMP     and
1

EMP  137.1, but this is true for an 6n   Eigenfunction 

only, and we have a superposition where the amplitudes of the smaller side Eigenfunctions 

5n   & 7n   determine the ratio between the primary to secondary (colour and 

electromagnetic) coupling amplitudes or the value of 
1

3 @ cutoffk 
 (Section 3.3).  The 

2 2Q A

required to produce this superposition with amplitudes nc is, using Eq. (2.3. 7) 

 

                                                                         

5,6,7

4 2 4 2
2 2 *

81
n

n

n

n k r
Q A c c



   

                                         (2.3. 12)                                                                               
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Repeating the same procedure as above for three member superpositions using Eq. (2.3. 12) 

we find the strength of EMP  required increases considerably (see section 4.1 & Table 4.1. 1.)  

As the secondary electromagnetic coupling 
1 @EMS cutoffk 

must be constant for all spin ½ 

leptons and quarks the amplitudes of the smaller side Eigenfunctions 5n   & 7n   that 

determine this must also be constant for all the fermions, implying that Eq. (2.3. 12) must be 

the same for all fermions. The same arguments apply to the other groups of fundamental 

particles but we return to this in sections 3.3 where we see that the same also applies with 

graviton emission. 

 

3 Properties of Infinite Superpositions 

3.1 What is the Amplitude that nk  is in an m state?  

3.1.1 Four vector transformations 

The rules of quantum mechanics tell us that if we carry out any measurement on a real 

spherically symmetric 3l   wavefunction it will immediately fall into one of the seven 

possible states 3, 0, 1, 2, 3l m      [10]. But nk is a virtual 3l   wave function so we 

cannot measure its angular momentum. During its brief existence it must always remain in 

some virtual superposition of the above seven possible states and we can describe only the 

amplitudes of these. So is there any way to calculate these amplitudes as they must relate to 

the amplitudes of the angular momentum states of the spin 1 quanta it absorbs from the zero 

point vector fields? First consider the 4 vector wavefunction of a spin 1 particle and start with 

a time polarized state which has equal probability of polarization directions. It is thus 

spherically symmetric, which we will label as ss .  Using 4 vector (t, x, y, z) notation: 

 

                  In frame A, a time polarized or ss  spin 1 state is (1,0,0,0). 

Let frame B move along the z  axis at velocity /v c   in the z direction. 

                  In frame B the polarization state transforms to ( ,0,0, ).   

But this is 2 time polarized ( ss states) minus 2 2   z  polarized ( 0m   states).      

                  In frame B there are 2 ss  states 2 2 0m     states.  

Now 2 2 2 2 2(1 ) 1         is an invariant probability in all frames and in removing 

2 2  ( 0)m   states from 2 ss  states, the new ratio of spherical symmetry is 
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2 2 2 2 2( ) / 1       . Thus a spherically symmetric state is transformed from probability 

1 in frame A, to 21   in frame B. Also removing 0m   states from spherically symmetric 

states leaves a surplus of 1m   states, as spherically symmetric states are equal 

superpositions of 1,m    0,m  & 1m   states.  

 

2 2Thus in Frame B the probabilities ar (1 )  states 1 ste a tes.ss m             (3.1. 1) 

  

We can describe this as a virtual supe
1

(rp , 1) states.osition of ss m

       

                                                                 

(3.1. 2) 

 

As 2 1   we have transverse polarized states, the same as real photons. Now transverse 

polarized spin 1 states can be either left ( 1),m   or right ( 1)m    circular polarization, or 

equal superpositions of (1/ 2) (1/ 2)L R  as in &x y  polarization.  If we think of 

individual spin zero preons absorbing these spin 1 quanta at 0t   they must also have this 

same 2 probability of transversely polarized spin 1 states.  If they then merge into some 

composite 3l  particle (as in Figure 3.1. 4) for time 0 / 2 ,t E   the probability of it being 

in some particular state ( 3, 0),l m  ( 3, 1),l m   ( 3, 2)l m   or ( 3, 3)l m   , must be 

the same 2 . If we look at Eq.’s (1.1. 1) we can see what is behind them. We initially write 

the amplitudes in these three equations in terms of nk  & nk as this is the most convenient 

way to express them. Velocity operators are momentum operators over relativistic masses. 

Our Eigenvalues are 
2 2 2 2

nk n kp for each &n k , and this allows the velocity operators to 

give constant
2.nk  Later in Eq’s. (3.1. 11) &  (3.1. 12) we write nk & nk in momentum 

terms. Even though the mass in these operators is virtual, we can still use it to calculate nk . 

For each k  and integral n  there will be a constant nk  and 
2 1/2(1 ) .nk nk      As we will 

see, nk  can be thought of as the magnitude of the velocity of an imaginary centre of 

momentum frame in which these interactions take place. We will also draw our Feynman 

diagrams of these interactions in terms of &nk nk  for convenience, even though this is 

unconventional. To proceed from here we define two frames as follows: 

 

1) The Laboratory Frame (LF) or Fixed Frame as in section 2.2.3 

The infinite superposition has rest mass 0m and zero nett momentum in this frame. Each nk is 

centered here with magnitude of momentum nk n kp . Even though we have no idea of the 

direction of this momentum vector we will define it as the z  direction. The eight preons are 

born in this frame with zero momentum, and can thus be considered here as being at rest or 
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with zero velocity and infinite wavelength at their birth. The Feynman diagram of the 

interaction in this frame that builds nk  is illustrated in Figure 3.1. 3.  

 

2)  The Center of Momentum Frame (CMF)  

This (imaginary) frame is the center of momentum of the interaction that builds nk . The 

CMF moves at velocity nk relative to the laboratory frame in the z  direction or parallel to 

the unknown momentum vector direction .nkp  In this CMF the momenta and velocities of the 

preons at birth and after the interaction are equal and opposite. This is illustrated in Figure 

3.1. 2  again in terms of 0 , ,&nk nkm   . In the LF the velocity of the preons at birth is zero, in 

the CMF this is nk and after the interaction nk  , where both nk and nk  are in the 

unknown z direction. In the LF the particle velocity ( )nk nkpparticle   is the simple 

relativistic addition of the two equal velocities nk  as in Figure 3.1. 1. 

 

                                                               Figure 3.1. 1 

 

3.1.2 Feynman diagrams of primary interactions 

Let us start with   

          
2 1/2 2 2

2

2
( )  and (1 ) (1 )

1

nk
nk nkP nkP nkp nk nk

nk

Particle


     


     


  
(3.1. 3) 

 

If the particle rest mass is 0m let each preon have a virtual rest mass 0 / (8 2 ).nkm s   

         

0
0The eight preons are effectively a virtual particle of rest m s  

2
as snk

nk

m
m

s
   

 

             (3.1. 4) 

 

The particle momentum in the LF is zero at birth. After the interaction using these equations 

              nk n kp  0snk nkP nkPm c  0

2nk

m

s

 
  
 

21

2

nk

nk








 
 

2 2(1 )nnk k c  
 

  

    

Laboratory Frame Centre of Momentum Frame Virtual Particle 
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0The particle momentum after the interaction in the F 
2

2
L nk nk

nk

m c
n k

s

 
 p   

   (3.1. 5) 

 

Using Eq. (3.1. 4), in the LF the particle energy at birth is 

                                                               

2
2 0

0
2

snk

nk

m c
m c

s
   

                                                             

(3.1. 6) 

 

In the LF the particle energy after the interaction is using Eq’s. (3.1. 3)  

2 2 2 2 2 20 0
0 (1 ) (1 )

2 2

nk
snk pnk nk nk nk

nk

m m
m c c c

s s


   


     

 

             (3.1. 7) 

 

In the CMF the momentum at birth is using Eq. (3.1. 4)                              

                                                                   0
0

2

nk
snk nk nk

m
m

s


 


                       (3.1. 8) 

 

In the CMF the momentum after the interaction is equal but in the opposite direction                            

                                                                                    0      
2

nkm

s


   

                   (3.1. 9) 

 

In the CMF the energy at birth, and after the interaction is 

                                                                      
2

2 0
0

2
snk nk

m c
m c

s
   

                      (3.1. 10) 

                                                                                               

These values are all summarized in Figure 3.1. 2 and Figure 3.1. 3 but with 1c  .  

From  Eq. (3.1. 5)      nk n kp 02

2

nk nkm c

s

 
   and   nk nk 

0

22

2 2

cnk sn k s

m c
    

(where c is the Compton wavelength). We can now express &nk nk  in momentum terms:   

  

                     
0

22
Let  

2 2

c
nk nk nk

nk sn k s
K

m c
     

             (3.1. 11)    

 

                          
2

2 2 2

2
:     and  In 1terms of 

1

nk
nk nk nk nk

nk

K
K K

K
   


 

             (3.1. 12) 

 

 

Each infinite superposition has fixed .c  Each wavefunction nk of this infinite superposition 

has fixed &n s , thus nkK k .  

                                    For example we can put    nk

nk

dK dk

K k
   

              (3.1. 13) 
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These simple expressions and what follows are not possible if 0 0 / 2snk nkm m s , and when 

we include gravity we find 0 0 / ( 2 )snk nkm m s is essential (section 4.2).  

 

 

 

Figure 3.1. 2  Feynman diagram in an imaginary centre of momentum frame. 

 

 

Figure 3.1. 3  Feynman diagram in the laboratory frame. 

The interaction in the Feynman diagrams above is with spin 1 quanta. The Feynman 

transition amplitude of this interaction tells us that the polarization states of these exchanged 

quanta is determined by the sum of the components of the initial, plus final 4 momentum

( )i fp p  . Ignoring all other common factors this tells us that the space polarized 

component is the sum of the momentum terms ( )i fp p and the time polarized component is 

the sum of the energy terms
0( )i fp p .  We have defined our momentum as in an unknown z

direction:  

      

0
The ratio of   polarization to time polarization amplitudes i

( )
s 

)
 
(

f

z

i f

ip
z

p p

p




    

 

        (3.1. 14) 

 

 8 preons at birth:   

After merging:  

     After merging:  

 8 preons at birth:  

 



28 

 

 

In the CMF ( ) 0z

i fp p  , thus an interaction in the CMF exchanges only time polarized, or 

spherically symmetric 1l   states.  In the LF the ratio of z (or 0)m   polarization, to time 

polarization in the LF is
2 ,nk             

                                      where    0

0

0

( ) 2

( ) 2
f

z

i f nk nk
nk

i nk

p p m

p p m

 





 


 

                                   
(3.1. 15) 

 
 

From section 3.1.1 these are probabilities of  
2

nk ss  
2 2

nk nk   ( 0)m  states,  or 

2(1 )nk  ss  +
2

nk  ( 1, 1)l m     states.  

            

In the LF this is a virtual superposi
1

( , 1) statetion of  s.nk

nk

ss m


              

                

               (3.1. 16) 

 

From section 3.1.1 as these quanta from the scalar and vector zero point fields build each nk

this implies that: 

          

In the LF  has virtual superposition amplitude
1

( ,  statess  )nk

nk

nk ss m


   

    

  
(3.1. 17) 

 

From section 3.1.1 appropriate 1, 1l m    superpositions can build any 3,   state.l m

Figure 3.1. 4 is an example of such a nk for 5,6,&7n  ( 3, 2)l m    states. 

 

3.1.3 Different ways to express superpositions 

We have expressed all superpositions here in terms of spherically symmetric and m states for 

convenience and simplicity. We could have expressed them in the form: 

    

  

 
1

( 3), ( 2), ( 1), ( 0), ( 1), 2), ( 3) ( 2)
7

nk

nk

m m m m m m m m


               

 

This is equivalent to (ignoring complex number amplitude factors for clarity)   

                  

1
, ( 2) where we have put m 2 for example.nk nk

nk

ss m 


         

Because all these wavefunctions are virtual they cannot be measured in the normal way that 

collapses them into any of these Eigenstates, it is more convenient to use the method adopted 

here which is similar to QED virtual photons superpositions. 
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Figure 3.1. 4  Eight preons forming 2m    states as part of a positron superposition. 

There is no significance in which preons absorb quanta in the above. 

 

 

 

 

 

 

0p   
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3.2 Mass and Total Angular Momentum of Infinite Superpositions 

 

3.2.1 Total mass of massive infinite superpositions 

We will consider first the total mass of an infinite superposition, and to help illustrate, 

consider only one integral n Eigenfunction nk  at a time; temporarily assuming that the 

amplitude nc of each nk has magnitude 1nc  . Each time nk  is born it borrows virtual mass 

from a scalar Higgs field and virtual energy from vector zero point fields. Each time nk  is 

born the virtual mass that it borrows is exactly cancelled by an equal debt in the Higgs scalar 

field so this should sum to zero for all k. But what about the momenta borrowed from the 

zero point fields, do these momenta also leave momentum debts in the vacuum? From section 

2.3.2 as k  , 
2 2 2

nk nkE cp 2 2 2n   or nkE n   and n  quanta of energy   and 

momentum k  are absorbed.  We know that in some unknown direction ,nk np k which 

implies these n  absorbed quanta must leave a cancelling debt in the opposite direction of 

( )nk debt n p k in the vacuum. But this is true only as k   &
2 1nk   and the virtual 

quanta energy transferred XE  . So what happens when
2 1?nk   Our wavefunctions 

nk  are generated from a vector potential squared term 2A  derived in section 2.1.2 which in 

turn came from a 2B  type term as in section 2.1.1. As discussed in section 2.3.2  the
 

Eigenvalues 
2 2 2 2

nk n kp  confirm the constant momentum squared feature of magnetic type 

interactions. Also in section 2.1.1 the scalar virtual photon emission probability is directly 

related to the force squared term 2 2 2.F E  Magnetic type coupling probabilities are related 

to a magnetic type force squared term 
2 2 2 2 2 2 2 2/F B c E     , where from section 3.1.2 

and Eq’s. (3.1. 14) & (3.1. 15) the ratio of this scalar to magnetic coupling is
2.nk  Thus when 

k  and the exchanged energy XE  , 
2

nk n  quanta k are absorbed from the vacuum 

and:       

                  
2  We can expect a momentum debt of ) (nk nkdebt n p k   (3.2. 1) 

 

We could sum 
2

nkp & 
2
( )nk debtp  but both vectors nkp and ( )nk debtp are antiparallel in 

the same unknown direction. We can pair them together giving a nett momentum per pair of:   

 

2

2 2
( ) ( ) ( at wavenumb . r ) e1 nk

nk nk nk nk

nk nk

n
nett debt n k

 
     

pk
p p p k   

(3.2. 2) 

 

We have said above that the mass of each virtual particle is cancelled by an equal and 

opposite debt in the Higgs scalar field so we can now use the relativistic energy expression

2 2 2

0

( )
k

n nk

k

E nett c




p times the probability of each pair at each wavenumber k.  
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We will initially look at only 1N   massive infinite superpositions in Eq. (2.2. 4).  

Thus using probability / /sN dk k s dk k   , also Eq’s. (3.1. 11), (3.1. 12),(3.1. 13),&(3.2. 2). 

 

            

2 2 2

0

( )

k

n nk

k

s dk
E c nett

k






  p

2 2 2
2

4

0 nk

n k s dk
c

k




 
2

2 4

0 2 2

0

4
(1 ) 2

nk nk

nk nk

K dK
m c

K K




  

                                          
2 2 4 2 4 2

0 0 02

0

1
 or  

1
n n

nk

E m c m c E m c
K



 
    

 
  

 

                (3.2. 3) 

 

This energy is due to summing momenta squared and it must be real, with a mass 0m  for 

infinite superpositions of Eigenfunctions .nk  These superpositions can form all the non 

infinitesimal mass fundamental particles.  The equations do not work if the mass 0m  is zero. 

(We will look at infinitesimal masses in section 6.2.)  Negative mass solutions in Eq. (3.2. 3) 

must be handled in the usual Feynman manner, and treated as antiparticles with positive 

energy going backwards in time. If they are spin ½ this also determines how they interact 

with the weak force.  

3.2.2 Angular momentum of massive infinite superpositions 

We will use the same procedure for the total angular momentum of 1N   type infinite 

superpositions with non infinitesimal mass in Eq. (2.2. 4).  

Wavefunctions nk 3 2 2 2exp( /18) ( , )nkC r n k r Y     have angular momentum squared 

Eigenvalues 2 212L and the various m  states have angular momentum Eigenvalues

z mL . We will treat both angular momentum and angular momentum debts as real just as 

we did for linear momentum. Even though m  state wavefunctions are part of superpositions 

they still have probabilities just as the linear momenta squared above and it seemed to work. 

Using exactly the same arguments as in section 3.2.1 , if nk  is in a state of angular 

momentum zk mL , then it must leave an angular momentum debt in the vacuum of
 

2( )zk nkdebt m L  (or as in section 3.2.1) ( ) ( )zk zk zknett debt L L L .  

   

     
2 2

2
( ) (1 ) (1 )   (if  is in state )zk

zk nk nk zk zk

nk

nett m m 


    
L

L L L   
     (3.2. 4) 

 

But from Eq. (3.1. 17) the probability that zkL is in an m  state is also
2

nk so that  

 

 
2

2

2
Including this extra probability term: ( )  at wavenumber .nk

nk zk

nk

nett m k





L   
   (3.2. 5)                                    
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For an 1N   type infinite superposition
0

( ) ( )

k

z zk

k

s dk
Total nett

k






 L L .  

2

2

0
2

nk

nk

dk
sm

k







   

Using Eq’s. (3.1. 11) to (3.1. 13) 
2

2 2

0

( )
(1 )

nk nk
z

nk nk

K dK
Total sm

K K




L  

2

0

1

2 1 nk

sm

K



 
  

 
  

                                          ( )       or    
2 2

z

sm s
Total m m m   L  

                 (3.2. 6)  

                     

Where m  is the angular momentum state of the infinite superposition and m  the state of nk .  

Thus for spin ½ particles with s 
 
½ in Eq.(3.2. 6) / 4m m   but mcan be only   ½, 

implying the m  state of nk that generates spin ½ must be 2m   . An 1N   massive spin 1 

particle has 1s   with / 2m m  . ( 2N   is covered in section 6.2.) This is summarized in 

the following three member infinite superpositions ignoring complex number factors. 
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  (3.2. 8) 

 

The spin vectors of each nk with 2 3L , and their spin vector debts in the zero point 

vector fields, have to be aligned such that the sum in each case is the correct value: 

3 / 2L  , 2L or 6L  for spins ½ , 1 & 2 respectively. Gravity (the   term) is 

included in Eq. (1.1. 1) in our summary also spin 1 in Eq. (3.2. 8) is for 1N  . 

Spherically symmetric massive 1N   spin 1 states are superpositions of the three states 

1 1 1
( 1), ( 0), ( 1),

3 3 3
m m m        and using Eq. (3.2. 8) can be formed as follows 
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3.2.3 Mass and angular momentum of multiple integer n superpositions  

In sections 3.2.1 & 3.2.2 for simplicity we looked at single integer n superpositions nk . For 

superpositions 
k n nk

n

c  , we replace 
2

nkK with
2

kK . Equation (2.3. 9) appears to 

suggest 
2 2 2 2 2 2 2*k n n

n

c c n k n k p  and 
2

k k np . In section (3.5.1) we 

discuss why
2

k k np but *k n n

n

k c c n k n  p . Thus using Eq. (3.1. 11) 

         
2 2 2 2

2 2 2 22
  &  but   

2 2 2

c c c
k k k

k s k s k s
K n K n K n     

(3.2. 10)  

Replacing
2

nkK with
2 22 2 / 2k cK k s n  in the key equations (3.2. 3) & (3.2. 6)  does not 

change the final results. The laws of quantum mechanics tell us the total angular momentum 

is precisely integral  or half integral / 2 .  Looking at the above integrals used to derive 

total angular momentum we see that N must be 1 (we discuss N=2 in section 6.2) also s  must 

be exactly ½ or 1 for spin ½ & spin 1 massive particles respectively, in Eq.  (2.2. 4) our 

probability formula. Also these integrals are infinite sums of positive and negative integral  

that are virtual and cannot be observed. If an infinite superposition for an electron is in a spin 

up state and flips to spin down in a magnetic field, a real 1m    photon is emitted carrying 

away the change in angular momentum.  This is the only real effect observed from this 

infinity of ( 3, 2)l m    virtual wavefunctions all flipping to ( 3, 2)l m   states, plus an 

infinite flipping of the virtual zero point vector debts. Also Eq’s. (3.2. 3) & (3.2. 6) are true 

only if our high energy cutoff is at infinity and the low frequency cutoff is at zero. We look at 

high frequency Planck scale cutoffs in section 4.2 and in section 6.1 low frequency cutoffs 

near the radius of the causally connected horizon.  

 

3.3 Ratios between Primary and Secondary Coupling 

3.3.1 Initial simplifying assumptions 

Section 3.3 is long and can be skipped if preferred. The key equations especially Eq’s.(3.3. 

19), (3.3. 21) & (3.3. 22) and the paragraph following can be referred back to later. It is based 

on a special case thought experiment to try and illustrate as simply as possible how 

superpositions interact with one another, in the same way as virtual photons interact with 

electrons for example. It is also important to remember here that because primary coupling 
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constants are to bare charges (section 2.2.2), and thus fixed for all k, while secondary 

coupling constants run with k, that the coupling ratios can be defined only at the cutoff value 

of k applying to the bare charge (sections 4.1.1 & 4.2.2). From Table 2.2. 1 there are 6 

fundamental primary charges for electrons and positrons. But electrons and positrons are 

defined as fundamental charges. In other words what we define as a fundamental electric 

charge is in reality 6 primary charges. Of course we can never in reality measure 6 as their 

effect is reduced by the ratio between primary and secondary coupling. Because 

electromagnetic and colour coupling are both via spin one bosons their coupling ratios are 

fundamentally the same but because of the above they are related simply as 26 36:1 .   

      

                                                   
1 36

          =      
Colour EM 

  
                (3.3. 1) 

               

 

We define the colour and electromagnetic ratios as follows (leaving gravity till section 6.2.3) 

  

              
(Secondary) (Secondary)3

(Primary) 3 (Primary)

1 1
         and       

Colour EMS EMS

Colour Colour P EM EM EMP

  

     
      

  (3.3. 2) 

 

 

 

The secondary coupling constants 3 &  EMS S 
 
are the bare charge values, both at the 

fermion interaction cutoff near the Planck length Eq. (4.2. 11). Also we assumed in section 

2.2.2  that 3 1;P   thus from Eq.(3.3. 2)  

 

                                       
1 1 18

3 3 @ 2.029 10C S cutoffk GeV               (3.3. 3) 

 

In other words provided 3 1,P   the ratio C (or )Colour  is also the inverse of the colour 

coupling constant 3  at the high energy interaction cutoff near the Planck length. In this 

respect C or Colour  is the fundamental ratio we will use mainly from here on. 

From the above paragraphs to find the coupling ratios we need secondary interactions that are 

between bare charges. But this implies extremely close spacing where the effects of spin 

dominate. If the spacing is sufficiently large the effects of spin can be ignored but then we are 

not looking at bare charges. However we can ignore the effects of shielding due to virtual 

charged pairs by imagining as a simple thought experiment, an interaction between bare 

charges even at such large spacing.  We can also simplify things further by considering only 



35 

 

scalar or coulomb type interactions at this large spacing. We are also going to temporarily 

ignore Eq. (3.3. 2) and imagine that we have only one primary electric and or one colour 

charge. Consider two infinite superpositions and (due to the above simplifying assumptions) 

imagine them as spin zero charges. QED considers the interaction between them as a single 

covariant combination of two separate and opposite direction non-covariant interactions (a) 

plus (b) as in the Feynman diagram of Figure 3.3. 1 below. The Feynman transition amplitude 

is invariant in all frames [9]. So let us consider a special simple case in a CM frame where we 

have identical particles on a head on collision path with spatial momenta:   

                                        

                                                        a a b b
      p p p p          (3.3. 4) 

     

    

 

Figure 3.3. 1 Feynman diagram of virtual photon exchange between two spin zero particles 

of charge e .   

From Eq. (3.3. 4) the initial and final spatial momenta are reversed with mirror images of 

each other at each vertex. Also in this simple special scalar case the transferred four 

momentum squared is simply the transferred three momentum squared.
  

    
  

                                         
2 2 2 2 2( ) ( ) 4 4 .a a b b a bq p p p p      p p   

           (3.3. 5)  

 

 

  

  

(a) (b) 

The Feynman diagram is drawn with 

a vertical photon line representing 

the superposition of two opposite 

direction and non covariant 

processes  (a)  plus  (b).  

The exchanged 4 momentum is:    

    . 
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If we look at Figure 3.3. 2 we see that at any fixed value of k, all modes nk  in the groups of  

three overlapping superpositions for the various spins ½, 1 & 2 occupy very similar regions 

of space (provided they are all on the same centre.) The directions of their linear momenta are 

unknown but let us imagine some particular vector k  that is parallel to the above vectors

a bp p . As we are considering only scalar interactions, all these modes must be spherically 

symmetric (as in section 3.2.2 for spins 1 & 2, and for spin ½ provided  or in turn nkk  is small 

enough the probability that it is not spherically symmetric can be extremely low) and at a 

fixed value of k  they have momenta n k . Also as they overlap each other we can imagine 

units of  k quanta somehow transferring between these superpositions so that the values of 

n  in each mode can change temporarily by 1  for times /T E   . The directions of these 

momentum transfers causing either repulsion or attraction depending on the charge signs of 

the superpositions at each vertex, whether the same or opposite. 

 

Figure 3.3. 2  All Eigenfunctions nk in the groups of three overlap at a fixed wavenumber k.  

3.3.2 Restrictions on possible Eigenvalue changes 

Before we look at changing these Eigenvalues by 1n    we need to consider what 

restrictions there are on these changes.  

From Eq. (2.3. 12) superposition k  requires 
2 2Q A

4 2 4 2

*
81

n n

n

n k r
c c  and Eq. (2.2. 4) tells 

us the available   

2

2 2 2 4 2
8 8

3

EMP

s
Q A k r

N





 
      occurs with probability   

k

sN dk
 .  

For very brief periods the required value of 
2 2Q A  can fluctuate, such as during these changes  

 

  

  

 
Spin ½ Fermion  

superpositions 

  

Infinitesimal mass 

spins 1 & 2  

Boson superpositions 

  

   

 
  

 

 

  

3 ( 3)k n    

Massive spin 1  

Boson superpositions 
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of momentum, but if its average value changes over the entire process then Eq.  (2.2. 4) tells 

us that probability /sN dk k changes also, and we have shown in section 3.2.1 that this is not 

allowed. For example in a spin ½ superposition 5 6 7, , ,k k k   the average values of 5c , 6c &

7c  must each remain constant. This can happen only if n  remains within its pre-existing 

boundaries of (5 7)n  . For example if 7 adds k , it can create 8 , but 8c  must average 

zero, which it can do only if it fluctuates either side of zero, and nc  cannot be negative. 

Similarly 4c  must average zero, thus 4  & 8  are forbidden states. Keeping the average 

values of nc  constant is also equivalent to a constant internal average particle energy (we 

have shown in section 3.2.1 that rest mass is a function of
2* .n n nkc c p ). By changing these 

Eigenvalues by 1n    there are only four possibilities; 6 & 7  can both reduce by  k

quanta, 6 & 5  can both increase by k quanta. If 6  becomes 7 , 7c  also increases and

6c decreases, but then 7 has to drop back becoming 6 ,  with 7c  decreasing back down and

6c increasing back up in exact balance. If we view this as one overall process the average 

values of both 6c and 7c remain constant but fluctuate continuously. We can use exactly the 

same argument if 5  increases which has to be followed by 6  dropping, where if we view 

this as one process again, the average values of both 5c and 6c  remain constant. This is 

similar to a particle not being able to absorb a photon in a covariant manner, it has to reemit 

within time / .T E   With spherical symmetry the momentum .n p k  If we change n  

by 1  the sign of n p k determines the direction of the momentum transfer .p  In the 

above if 5 6k k 
 
then returns 6 5 ,k k  and n p k  keeps the same sign during this 

process, there is no nett momentum transfer and there is a probability of this, but it is not the 

probability we need. However if this process is as in Figure 3.3. 3.   

 

6

 

5

  a







k

k
 produces  p k , but there is another  p k  if returning via 

5

    

6

  b

 



 

k

k

 

Figure 3.3. 3

 
To get a net momentum transfer the momenta have to be in opposite directions for each half 

of this process. (Conservation of momentum allows this only if there is an equal and opposite 

transfer of momentum at the other vertex of the interaction.) The problem with this is that a 

total transfer of 2  p k implies superpositions k interact with virtual 2k photons. Section 

3.5 shows that interactions only with virtual k photons give the correct Dirac spin ½ magnetic 

energy. However just as transversely polarized photons are equal left and right polarization  
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superpositions / 2 / 2,L R
 
we can perhaps regard the Figure 3.3. 3 process as a  

similar equal superposition / 2 2.a b     

 

The figure 3.3.3 process becomes the superposition 
2 2 2 2

a b  
  

k k
  

    (3.3. 6) 

 

 

We have two equal 50% probabilities of states a & b producing the required total .  p k  

Also as from the above paragraphs the average values of 5c and 6c remain constant:   

 

        5 6The probability of transitions  must be the same in either direction.              (3.3. 7) 

 

As spherically symmetric states have momentum n p k :       

We can also think of  as a superposition / 2 / 2.n n n    p k p k k         (3.3. 8) 

 

3.3.3 Looking at just one vertex of the interaction first 

In Table 4.3. 1 and section 6.2 we introduce infinitesimal rest mass photons and gluons as 

superpositions of 3 4 5, ,k k k    where 2N   in Eq.  (2.2. 4). Consider just one vertex of an 

infinitesimal rest mass spin 1 photon superposition 3 4 5, ,k k k   interacting with a spin ½ 

superposition 5 6 , 7,k k k   at the same .k  Looking at one possibility first, 4  5  &  k k  for spin 

1 and 6  7  &  k k  for spin ½, we can apply the Figure 3.3. 3 process to get a nett momentum 

transfer. For this combination of Eigenfunctions there are four possible ways of getting the 

momentum transfer as in Figure 3.3. 4. In each of these 4 cases the amplitude for this to 

happen includes the factors 4 5 6 7.c c c c  
 
Let us temporarily imagine 4 5 6 7. 1.c c c c    Then 

n p k as in a of Figure 3.3. 3 with an amplitude of 1/ 2  from Eq. (3.3. 8) transfers 

 p k also with an amplitude of 1/ 2 , which is the required first half of our 

superposition Eq.(3.3. 6)
 

/ 2 / 2.a b
 
Similarly n p k as in b  of Figure 3.3. 3 

gives the second half. It would thus seem that our amplitude is simply 5 6 6 7.c c c c  
 
However 

from Eq. (3.3. 7) there is a 50% probability of the transitions 5 6   in either direction, or 

an extra 1/ 2  amplitude factor for 5 6   in either direction, similarly an extra 1/ 2  

amplitude factor for 6 7.   These two extra 1/ 2  factors reduce the amplitude 

4 5 6 7  toc c c c  
4 5 6 7 / ( 2 2)c c c c    4 5 6 7 / 2.c c c c     Thus adding the four cases in 

Figure 3.3. 4 together and treating all other factors as 1: 

 

      Figure 3.3. 4 process amplitude factor is 4 5 6 7 4 5 6 7 4 ( ) / 2 2c c c c c c c c              (3.3. 9) 
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Figure 3.3. 4 

The four possibilities in Figure 3.3. 4 are all between the same sets of Eigenfunctions  

4 5&k k  for spin 1, 6 7&k k  for spin ½. But there are also four different sets of these A, B, 

C & D, between groups of four Eigenfunctions as in Figure 3.3. 5; with their amplitudes from 

Eq. (3.3. 9) below each relevant box, which we also label as A, B, C & D. (Subscripts a refer 

to spin ½ and b to spin 1.) 

 

                                  A                           B                         C                           D 

 

                

           

     

Amplitudes:  4 5 6 72 ,b b a aA c c c c  3 4 6 52 ,b b a aB c c c c
 4 5 6 52 ,b b a aC c c c c

  3 4 6 72 .b b a aD c c c c
  
 

Figure 3.3. 5 

3.3.4 Assumptions when looking at both vertexes of the interaction  

Because we are looking at an interaction between identical spin ½ fermions each vertex has 

the same groups of Eigenfunctions A,B,C&D as in Figure 3.3. 5. From section 2.2.2 and 

Figure 3.1. 4 the three Eigenfunctions forming each of the interacting particles are born 

simultaneously. It would thus seem reasonable to assume that the amplitudes of each group of 

three Eigenfunctions have the same complex phase angle. The two fermions and one boson 

can be at different complex phase angles to each other but each one individually is a 

superposition of three Eigenfunctions at the same complex phase angle. Thus the four 
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amplitudes A,B,C&D from Figure 3.3. 5 (A,B,C &D each comprising two fermion amplitudes 

and two boson amplitudes) must all have the same complex phase angle. Similarly the four 

amplitudes , , &A B C D    of vertex 2 in Figure 3.3. 6  also have a common phase angle.  

 

Eigenfunction 

Groups 

           A            B            C           D 

    Vertex 1  Amplitude  A   Amplitude  B  Amplitude  C  Amplitude  D 

    Vertex 2  Amplitude A     Amplitude B   Amplitude C    Amplitude D   

Figure 3.3. 6 

We are also going to assume that Eigenfunctions A of vertex 1 interact only with 

Eigenfunctions A of vertex 2 and Eigenfunctions B of vertex 1 interact only with 

Eigenfunctions B of vertex 2 etc. Eigenfunctions A of vertex 1 do not interact with 

Eigenfunctions B of vertex 2 etc. Thus if all other amplitude factors are 1: 

  

                     The total interaction amplitude AA BB CC DD           (3.3. 10) 

 

Apart from a different complex phase angle this is equivalent to: ( & , &A A B B   etc. all 

differ by the same complex phase angle.)   

  

                          
2 2 2 2Total interaction amplitude A B C D        (3.3. 11) 

 

 

 
2 2 2 2 2 2 2 2Interaction probability ( )*( )A B C D A B C D        

  

    (3.3. 12) 

 

Using 
2 2( * ) ( * )( * ) etc. this is equivalent toA A A A A A   

 

                                
2Interaction probability ( * * * * )A A B B C C D D       (3.3. 13) 

 

From Figure 3.3. 5 4 5 6 72 ,b b a aA c c c c  3 4 6 52 ,b b a aB c c c c
 4 5 6 52 ,b b a aC c c c c

  3 4 6 72 .b b a aD c c c c  

 

 

5 5 5 4

22
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4 4 4

6

5 6 7
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Putting   etc. &  etc.   this is equivalent to
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Then using 3 3 4 4 5 5 5 5 6 6 6 6* * * * * * 1b b b b b b a a a a a ac c c c c c c c c c c c       the interaction probability is 

                                      
 

      
2

4 4 4 4

4

6

2 2

6 6 6* (1 * (1*( * * * * ) 2 )) *b b b b a a a aA A B B C C c c c c cc c cD D      (3.3. 14)               

We have assumed to here that all other amplitude factors are 1. However at each vertex there 

are both fermion and boson superposition probabilities from Eq.  (2.2. 4). Writing the 

superposition probability at each vertex /sN dk k  as 1/2 1 / ,s N dk k  1 2 /s N dk k  for clarity 

where 1 1 spin 1 ,  1 is etc.s N N   Including these factors (if all other factors are one) in Eq. 

(3.3. 14) our overall probability at wavenumber k is  

 
2

1/2 1 6

2

1 2 4 4 46 6 462 * (1 * 2 (1) * * )b b ba ba a as N c c c c s N c c c c

kk

 


 









 

 

   
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1/2 1 6 1 2 4 4 4 46 6

4

6 2 *2 * (
.

(

(1 )1 * ) *

)

a a a b ba b bss N c c c c N c c c c

k


  

 

The momentum per transfer is a total of k and using Eq’s.   (3.3. 5), (3.3. 6) & Figure 3.3. 3 

we have 
4 4( ) q k  (then putting 1 ) the interaction probability:  
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2

1/2 1 6

2

1 2 4 4 46 6 4

4

6 2 *2 * ( )1 () 1* *a a b b ba a bs N c cs N c

q

c c cc c


 
   

     (3.3. 15) 

 

  

This is the scalar interaction probability between two spin ½ fermions exchanging 

infinitesimal rest mass spin 1 bosons at very large spacings, where the fermions  are 

effectively spin zero, imagining them as bare charges and all other factors being one. Going 

through exactly the same procedure but similarly exchanging spin 2 infinitesimal rest mass 

scalar gravitons (with 22N N  for clarity) the gravitational interaction probability 

between fermions becomes (using subscript c for spin 2) if all other amplitude factors are 1:  
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q
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


  

  (3.3. 16) 

 

 

And if for example two spin 1 photons exchange spin 2 gravitons (all infinitesimal rest mass  

with 22N N  ) the interaction probability becomes if all other amplitude factors are 1:
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(3.3. 17) 

 

 

If two massive 1N   photons (as in Figure 3.3. 2) exchange spin 2 gravitons the interaction 

probability becomes if all other factors are 1: 
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(3.3. 18) 

 

 

General Relativity (section 1.1.1) tells us the emission of gravitons is identical for both mass 

and energy. Keeping all other factors (such as mass/energy) in Eq’s. (3.3. 16), (3.3. 17) & 

(3.3. 18) constant, the exchange probabilities must be the same in each. We can thus put them 

equal to each other and cancel out the red terms:
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(3.3. 19) 

 

 

Now assume that all other factors (other than coupling constants) are 1, and remember that 

we are simplifying with a thought experiment by looking at spin ½ superpositions sufficiently 

far apart so we can treat them as approximately spherically symmetric or effectively spin zero 

even if they are supposed to be bare charges with spin. Under these same scalar exchange 

conditions QED tells us that with electrons for example:  

  

            The probability of scalar or coulomb exchange in Eq (3.3. 15). 
2

4

4
= .   

q


  

  (3.3. 20) 

 

Let us temporarily ignore the fact that gluons have limited range, and imagine our thought 

experiment applying to colour charges exchanging gluons. The   of Eq. (3.3. 20) becomes 

the usual colour coupling 3 . To get the fundamental coupling ratio labelled as C
1

3
  

@ cutoffk we substitute the  of Eq.  (3.3. 20) with
1

C   as we have assumed 
3Primary 1.    

Also substitute 1/2 12 1,  2 2,s s 
 1 21 & 2N N   and equate Eq’s. (3.3. 15) &  (3.3. 20) 
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(3.3. 21) 

 

 

But from Eq. (3.3. 19) the blue and green terms are equal (also the magenta terms) and we 

can solve for the fundamental coupling ratio by combining Eq’s. (3.3. 19) & (3.3. 21).  
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(3.3. 22) 

 

The coupling ratio is fundamentally the same for colour and electromagnetism apart from the 

six primary electric charges of Eq. (3.3. 1) because of the way electric charge is defined. 

Equations (3.3. 19), (3.3. 21) & (3.3. 22) tell us that for any interactions between two 

superpositions, the inverse coupling ratio always involves the product of the central 

superposition member probability by the probability of the other two members combined

N spin   of the first superposition, times the equivalent product for the other superposition.  

In section 4 we introduce gravity and solve these ratios. Despite all the simplifications the 

above equations are surprisingly consistent with the Standard Model provided there are only 

three families of fermions. Even though we used gravity to derive Eq.(3.3. 19) we leave 

discussing the gravity coupling ratio till section 6.2.3.  

 

3.4 Electrostatic Energy between two Infinite Superpositions 

3.4.1 Using a simple quantum mechanics early QED approach 

In section 3.3 we have shown that fermion superpositions can exchange boson superpositions 

in the same way as electrons can exchange virtual photons for example. Providing the 

superposition amplitudes are appropriate, the coupling constants can be just as in QED, 

though we will look further at this in section 4.1.1. So it might seem that evaluating 

electrostatic energy between superpositions is unnecessary. However when we look at gravity 

we find that spacetime warping around mass concentrations is consistent with constant 

cosmic wavelength virtual graviton probability densities. Now QED looks at particle 

scattering crossections due to virtual particle exchange probabilities, but as we later focus on 

virtual graviton probability densities we will use a simple, but only approximate, quantum 
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mechanical method based on virtual photon probability densities to find the scalar potentials 

between two charges (or infinite superpositions) that also allows a simple solution to 

magnetic energy between superpositions in Section 3.5 where we modify relevant equations 

in a simple manner. We also use some of these same equations when looking at why 

borrowing energy and mass from zero point fields requires the universe to expand after the 

Big Bang and distort spacetime around mass concentrations.  

We assume spherically symmetric 3l   superpositions emit virtual scalar photons in this 

section and 3, 2l m    superpositions emit virtual 1m    photons in section 3.5. As 

section 3.3 has shown that we can achieve the same electromagnetic coupling constant   we 

can use the scalar photon emission probability (2 / )( / )dk k  covered in section 2.1.1. From 

section 3.3 we can also see that the effective average emission point has to be the center of 

superpositions. The probability of finding this interacting virtual photon (or spin 1 

superposition) decays exponentially with radial distance travelled. The normalized 

wavefunction   for such a virtual scalar photon of wave number k emitted at 0r   is:  

 

( )2 2
 @ time 0.

4 4

kr i kr t kr ikrk e e k e e
t

r r




 

    

    

 

                          kr  

Figure 3.4. 1 Radial probability of 6k and the exponential decay with radius of its interacting 

virtual boson
2* 2 .krR R ke These curves are the same for all k , applying equally to virtual 

photons, gravitons and to large k  value gluons etc.  

 

Wavefunction   is spherically symmetric as scalar photons are time polarized. Figure 3.4. 1 

plots the radial probabilities of the exponential range of the virtual photon and the dominant  

4 *R R

k




  
Dominant fermion wavefunction 6k   

Interacting boson 
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6n   mode of its relating superposition .k  The effective range of the interacting photon is  

of a similar order to the radial probability dimensions of 6 .k  For simplicity in what follows 

we locate two superpositions (which we refer to as sources) in cavities that are small in 

relation to the distance between them. The accuracy of our results depends on how far apart 

they are in relation to the cavity size. Consider two spherically symmetric sources distance 

2C  apart emitting virtual scalar photons as in Figure 3.4. 2 where point P is 1r  from source 

1, & 2r  from source 2. Let 1  be the amplitude from source 1, and 2  be the amplitude from 

source 2 and for simplicity and clarity let 0t  .  
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  (3.4. 1) 

 

 

Consider    1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* * * *             

Now 1 1*    &   2 2*    are just the normal probability densities around sources 1 & 2 as 

though they are infinitely far apart but the work done per pair of superpositions k  on 

bringing 2 sources closer together is in the interaction term: 1 2 2 1* *    .   
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  (3.4. 2) 

  

Real work is done when bringing superpositions together and we can treat these interacting 

virtual photons as having real energy kc  .  Using virtual photon emission probability

(2 / )( / )dk k   from section 2.1.1   

                                

2
Energy per virtual photon Probabil   Probability 

2
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(3.4. 3) 
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Figure 3.4. 2 

Including Eq.(3.4. 3) the interaction energy @ k  is thus ( 1 2 2 1* *     )
2 c

dk




 
 
 

 and 

using Eq. (3.4. 2) the interaction energy @ k  is 
2 c

dk
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

 
 
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The total interaction energy density due to 1 2 2 1* *     for all k  is   
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     (3.4. 5) 

 

Where               
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2 22( )r C   as cos(180 ) cos      

                                                   
2 2 2 2and    4( )A B r C     (3.4. 7) 

 
 

 

 

Putting Eq’s. (3.4. 4), (3.4. 5), (3.4. 6) & (3.4. 7) together 
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This is the total interaction energy density of time polarized virtual photons at point P  due to 

1 2 2 1* *     for all k  and there are no directional vectors to take into account. We will 

use similar equations for the vector potential ( 1m   ) photons for magnetic energies but will 

then need directional vectors. Equation (3.4. 8) is the energy due to the interaction of 

amplitudes at any radius r  from the centre of the pair. It is independent of ,  and to get the 

total energy of interaction we multiply by 24 r dr for layer dr  and integrate from 0 .r    
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                              The interaction or potential energy is  
2

  
c c

C R

 
   

 

  (3.4. 9) 

 

If 2R C  is the distance between the centres of our assemblies, this is the classical potential. 

The procedure used here with small changes, simplifies the derivation of the magnetic 

moment; we reuse some equations, but in a slightly modified form taking polarization vectors 

into account. We also reuse some simple derivations when looking at gravity in Section 5. 

 

3.5 Magnetic Energy between two spin aligned Infinite Superpositions 

In this section we are going to consider two infinite superpositions that form Dirac spin ½ 

states.  We will look at the magnetic energy between them when they are both in a spin up 

state say along some z axis as in Figure 3.5. 1. We are not looking at the magnetic energy 
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here when they are both coupled in a spin 0 or spin 1 state. That is, both Dirac spin ½ states 

have their 3 / 2  spin vectors randomly oriented around the z axis with / 2  components 

aligned along this z axis. Also in this section we will be dealing with transversely polarized 

virtual photons and must take account of polarization vectors. In section 3.2.2 and Eq. (3.2. 7) 

spin ½ states are generated only from 3, 2l m   states and as transversely polarized photons 

are superpositions of 1m   photons they can only be emitted from these 3, 2l m   states, 

the remaining states are spherically symmetric and cannot emit transversely polarized 

photons. We don’t yet know the value of amplitudes nc  so we will derive the magnetic 

energy in terms of these. We will then equate this energy to the Dirac values assuming a g  

value of 2 before QED corrections; this allows us to evaluate in section 4.3  the amplitudes

nc  in terms of the ratio EM between primary and secondary electromagnetic coupling. We 

can then evaluate in section 4.1  the primary electromagnetic coupling constant EMP in terms 

of the ratio EM . (Section 3.5 uses the same format as Chapter 18, “The Feynman Lectures on 

Physics” Volume 3, Quantum Mechanics [11].)   

 

 

 

 

 

 

 

 

 

                                                     Figure 3.5. 1 

An 3, 2l m   state can emit a right hand circularly (R.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this be temporarily R . 

An 3, 2l m    state can emit a left hand circularly (L.H.C.) polarized ( 1)m    photon in 

the z  direction. Let the amplitude for this also be temporarily L . 

First rotate the z axis about the y  axis by angle   (call this operation S R ) then use

(1/ 2)x R L       and multiply on the right by operation S R . 

The amplitude to emit a transversely polarized photon in the x  direction is thus 

                                  
1

2
x S R R S R L S R                                            
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Where 2 23, 2 3, 2 (1/ 4) 2 2cos 4sin 3sin cosR S R S            
 

is the 

amplitude  an 3, 2l m   state remains in an 3, 2l m   state after rotation by angle  .   

Also   2 23, 2 3, 2 (1/ 4) 2 2cos 4sin 3sin cosL S R S             
 

is minus the 

amplitude that an 3, 2l m   state is in an 3, 2l m    state after rotation by .  

 

 Putting this together                     
21 2sin cos 2

2 2
x S R

 
                                                 

  (3.5. 1) 

 

An 3, 2l m   state can also emit an ( 1)m    photon in the z  direction but it will now be 

left hand circularly polarized. Let this amplitude be temporarily: L . 

Similarly an 3, 2l m    state can emit an ( 1)m    photon in the z  direction which is right 

hand circularly polarized. Let this amplitude be temporarily: R . 

 

 We can go through the same procedure as above to get
cos 2

2
x S L


                       

           (3.5. 2) 

 

This amplitude Eq. (3.5. 2) is for a photon emitted in the opposite direction to amplitude Eq. 

(3.5. 1) but cos2 cos2(180 )    and we can simply add these two amplitudes. Let us 

assume however that an 3, 2l m   state has equal amplitudes to emit in the z  & z  

directions of / 2R  and / 2L .  

 

With these amplitudes; 
1 cos 2 cos 2

2 22
x S R x S L

 
        cos2              

       (3.5. 3) 

 

 

Eqation (3.5. 3) is the angular component of the amplitude for a transverse x  polarization in 

the new zdirection where x x & z z   . When 0   or 180 the on axis amplitude 

for transverse polarization is one as expected ignoring other factors. Using the same 

normalization factors (we check the validity of this in section 3.5.2 we can still use the 

amplitudes and phasing of our original time mode photons Eq’s.  (3.4. 1) but instead of 

including polarization vectors we will for simplicity just use the cosine of the angle ( )   

between them (as in Figure 3.5. 2 ) as a multiplying factor. Including the angular factor Eq. 

(3.5. 3) in our earlier scalar amplitudes Eq’s.  (3.4. 1)  we have for our new wavefunctions:                                             
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The transverse polarized photons from sources (1) & (2) have polarization vectors 1x  and 

2x  at angle to each other ( )  , (Figure 3.5. 2) and the complex product becomes: 

 

         1(  2 ) * 1(  2 )    1 1 1 2 2 1 2 2* ( * * )(cos( ) *                 

 

Where the interaction term is now: 1 2 2 1( * * )cos( )        and as in the scalar case 

(section 3.4.1) but now using Eq’s. (3.5. 4)    
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                         (Where as in section 3.4.1, Eq. (3.4. 2) 1 2 1 2&A r r B r r    . )  

 

 

 

 

 

 

 

 

 

Figure 3.5. 2  Two sources 2C apart, both with 
2 ( 2)nk m     states along the joining  

line, &   are the respective angles to P ,  1r  & 2r  are the respective distances to point P. 

3.5.1 Amplitudes of transversely polarized virtual emmited photons 

In the laboratory frame nk  has amplitude nk to be in an 2m    state (section 3.1). For a 

multiple integer n superposition k n nk

n

c  . At each fixed wavenumber k we cannot 

distinguish which integer n a virtual photon comes from, so we must add amplitudes from 

each individual integer n superposition. To keep integrals simple we will assume that

1nk   or that spacing 2C is very large, and our interacting k  values are very small. 

C C 

 
 

 

 

 

   

Source 1 Source 2 

Point  
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(We can make a comparison with the Dirac values at any large spacing so accuracy need not 

be affected.) Thus if 1nk  & 1nk  , we can approximate Eq. (3.1. 11) as   

 

0 0

2 22
 

2 2 2 2

nk c c
nk nk nk nk

s nk s nkn k s
K

m c m c
       

p
 for spin ½ fermions. 

                Adding amplitudes for multiple integer  superpositions
2

c

k

n k
n    

  (3.5. 6) 

 

(When deriving Eq. (3.2. 10) we said
2   k kk n and not k n p p . How do we 

justify this? When 1nk   as above nk n k   nkp  So adding ampitudes nk to get k  is 

equivalent to adding nkp  to get kp  and not adding 
2 2 2 2

nk n kp to get
2 .k k np  If 

this is true when 1nk   it must be true for 0 1.)nk    

3.5.2 Checking our normalization factors 

Let us pause and check the reasonableness of all this and our normalization factors. From 

Eq’s.  (3.4. 1) for scalar photons 
2

2

2
*

4

krk e

r
 



 
 

 

   (emission probability
2 dk

k




) gives a  

            Scalar k emission probability density
2

2

2 22
*

4

krk e

r

dk dk

k k
 



 

 


   

   
   

.  

 

The transversely polarized probability density, using Eq’s. (3.5. 4) &   (3.5. 7) plus
2

k  is                               

 

Transverse emission probability density 
2

2

2

2 2 2
* cos 2

4

2 2
nk

r

nk

kk e

r

dk dk

k k

 
 


 

 

 
  

 
  

 

(Where 1 22 2 & .r r   ) If we now consider the on axis 0   case the transverse polarized 

on axis emission probability density at k  is: 

 

2

2

2 22

4

kr

k

k dk

k

e

r




 

 
 
 

2

k  
2

*
dk

k




   

Just as in QED the factor
2

k is the factor we need for this on axis emission probability 

density ratio between transverse and scalar polarization. This justifies using the same 

normalization constant 2 / 4k  for both the scalar and magnetic wavefunctions. We seem to 

be on the right track and using the same virtual photon emission probability and energy kc

as in Eq. (3.4. 3) for both the scalar and transverse polarization cases ie 
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2

Energy per transverse photon Probability   Probability 
2dk

kc
c

k
k

d








 
  





 
  (3.5. 7) 

 

 

Multiplying Eq. (3.5. 5) by Eq. (3.5. 6) squared, and Eq. (3.5. 7) we get the transverse 

interaction energy @ wavenumber k :  

                                    
2

1 2 2 1( * * )cos( )k       
2 c

dk




 
 
 

                             

                                   

22 2

1 2

4
cos 2 cos 2 cos( )

4 4

c Akn k k
e kB

r r
 




 
 
  

cos( ) 
2 c

dk




 
 
 

 

Rearranging this:       
2

1 2 2 1( * * )cos( )k       
2 c

dk




 
 
 

                    

                        =  

2 22 cn c

 1 2

cos 2 cos 2 cos( )

4 r r

   



 3 cos( )Akk e kB dk 
 

                  
    (3.5. 8) 

 

 

As in the scalar case we integrate over k  first but now with a 
3k term due to the inclusion of 

the
2

k factor which is approximately proportional to
2k from Eq. (3.5. 6).  

Using     1 2 1 2    &    A r r B r r        and    Eq’s.   (3.4. 6) & (3.5. 6) 

   

                                  
3

0

cos( )Akk e kB dk


 

  =

2 2 2 2 2
1 2

2 2 4

2 ( )3

8 ( )

r r r C

r C

  
 

 
    

 And thus:                      
2

1 2 2 1

0

( * * )cos( )k      


 
2 c

dk



           

          =   

2 22 cn c

 1 2

cos 2 cos 2 cos( )

4 r r

   




 

2 2 2 2 2
1 2

2 2 4

2 ( )3

8 ( )

r r r C

r C

  
 

 
           

    (3.5. 9) 

 

 

Equation (3.5. 9) is the magnetic interaction energy density at point P for all wave numbers .k    

Figure 3.5. 2 is a plane of symmetry that can be rotated through angle 2 around the axis of 

symmetry (the joining line along the axis of the 2 spin aligned sources).  To evaluate the total 

magnetic energy density over all space we just multiply by
24 sin .r d dr     

We thus integrate Eq. (3.5. 9)   
24 sin .r d dr   =    

           

       

2 2 /2 2 2 2 2 2
21 2

2 2 4

1 20 0

3 2 ( )cos 2 cos 2 cos( )
sin

4 )
 

(

cn c r r r C
r d dr

r r r C

    
 




  
 

 
      

   

(3.5. 10) 
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Now 
2

1 20 0

cos 2 cos 2 cos( )

r r



   



 

2 2 2 2 2
1 2

2 2 4

2 ( )

( )

r r r C

r C

  
 

 

2 sinr d dr  can be reduced to the  

single integral:   

1 2
2

3 3 2
0

1 (7 5 ) 1 14 16
1 ln

1 38

x x
x dx

xC x x

  
   

 
  which can be also expressed  

as an infinite series in p  (to not confuse with superposition value n ):  

3

1

8C 1

14 10 (2 1)!
.

2 3 2 1 2( 1)!( 1)!4

p

p
p

p

p p p p





  
 

    
    

3

1 (160 51 )
.

6 28C

 
                                                            

 

                                             
3

1 (160 51 )
(Putting 2  )    .

6 2
R C

R

 
    

  (3.5. 11) 

 

                       This infinite series is approximately  
3

1

54(1.0045062....)R


                 

  (3.5. 12) 

 

Putting Eq.(3.5. 12) into Eq.(3.5. 9) the total magnetic interaction energy over all frequencies 

and all space for 2 spin aligned infinite superpositions is:     

                                             

2 23

4

cn c
U




 

3

1

54(1.0045062....)R

 
 
 

 

              
2 2

3
We will call this   superpositions

72 (1.0045062....)
 

cn c
U

R

 
  
  

  

(3.5. 13) 

 

 

We can equate this magnetic energy to the classical value assuming the Dirac value of 2g   

for spin ½ (No QED corrections have been applied so it must be 2g  ). For the arrangement 

of spins as in Figure 3.5. 1 the Dirac magnetic energy between two spin ½ states is  

                                       

                                                         
2

2 3

2
Dira =

4
c

o

U
c R





 
  
 

 
(3.5. 14) 

 

 

Using the Dirac magnetic moment
0 02 2 2

cece e c

m m c
      the Dirac magnetic energy is    

                                            

                                                        

2

3
(Dirac)

2

c c
U

R

 
   

 
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The approximation used in deriving Eq. (3.5. 6) 
2 2 2    for 

2 1   is true only when

cR  . This error in 
2  is of the order of 

2 2/c R  and rapidly tends to zero with 

increasing R . There is no upper limit on the value of distance R we can choose. Thus 

comparing our estimate of the magnetic energy with Dirac’s value when cR  . 

  

             

2 2

3

2

3
(Superpositions) 

72 (1.0045062...
o(Dir r

.
c)

)
a

2

c cc
U

c
U

R

n

R

  
 

 
 

 


 




  

(3.5. 15) 

 

 

All symbols cancel except n  leaving:        
2

36(1.0045062.....)n   

The expectation value n  in our superposition is slightly more than 6n   our dominant 

mode. This is why we have used a three member superposition centred on this dominant 6n   

mode. The two side modes 5n   & 7n  are smaller so that:   

 

                         
5 7.,6,

( * ) 36(1.0045062...) 6.01350345n n

n

n c c n


         (3.5. 16) 

 

This is for Dirac spin ½ particles. This mean value of n creates a 2g   fermion which QED 

corrections (which are secondary interactions) increase slightly to the experimental value. In 

section 4.1 we solve the primary electromagnetic coupling constant in terms of ratio EM  

using Eq. (3.5. 16). It is important to remember this magnetic energy derivation applies to 

two infinite assemblies (or particles) localized in small cavities in relation to their distance R  

apart. They must be both on the z axis with spins aligned (or anti aligned) along this z  axis 

as in Figure 3.5. 1 & Figure 3.5. 2. Also the agreement with Dirac and in what follows is 

possible if superposition k  interacts only with virtual photons of the same wavenumber .k   

4 High Energy Superposition Cutoffs 

4.1 Electromagnetic Coupling to Spin ½ Infinite Superpositions 

Equation (3.5. 16) is the key requirement for spin ½ superpositions to behave as Dirac 

fermions, allowing us to solve 
1

EMP 
 as a function of coupling ratio    using Eq. (3.5. 16).  

   

  

5,6,7.

5 5 6 6 7 7 5 5 6 6 7 7

7 7 5 5

6.01350345

6.013503

( * ) 36(1.0045062...)

Thus  5 * 6 * 7 * but  6 * 6 * 6 * 6

 and                

45  

0.01350345       * *

n

n nc c n

c c c c c c c c c c c c

c c c c

n


  

     

 



 

   As 7 7 5 5 6 6* * 1 *c c c c c c    we can now solve for 7 7 5 5*   &   *c c c c  in terms of 6 6*c c  
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              6 6 6 6
7 7 5 5

* *
* 0.50675172    &     * 0.49324827

2 2

c c c c
c c c c             

       (4.1. 1) 

  

From Eq. (2.3. 12) the 
2 2Q A required to produce this superposition with amplitudes nc  is  

                                  
2 2Q A 

5,

4 2 4 2

6,7

*
81

n n

n

n k r
c c



  and using Eq. (4.1. 1) 

                
5,6,7

4

5 5 6 6 7 7*  625 * 1296 * 2401 *n

n

nc c n c c c c c c


    6 61524.991 217 *c c                          

Thus 
2 2Q A 

5,

4 2 4 2

6,7

*
81

n n

n

n k r
c c



   2 4 2

6 618.82705 2.67901 *c c k r  is the required vector  

potential squared to produce this spin ½ superposition.  From Eq.  (2.2. 4) with s   ½ &

1N   for massive fermions 
2 2Q A

2

2 4 2
2 8 8 )

3

EMP

k r




 
  is the available

2 2Q A .  

Equating required and available:
2

2 8 8 )EMP 
   6 618.82705 2.6790 *3 1c c   

                                                        
2

1 )EMP 
   6 61.386256 0.197258 *c c                                           

                                                         
2

6 6
1.386256 0.197258 * 1EMP c c    

 
                          

  (4.1. 2) 

 

From Eq’s. (3.3. 1) & (3.3. 22), 6 6 6 6* (1 * ) 2 / 6 2 /C EMc c c c   
 
and we can solve for 

EMP as a function of either EM or .C  We then use Eq. (3.3. 22) again to get 
1 @ .EMS cutoffk 

 

Now both EM and 
C  

are fundamentally the same ratio differing only by 36:1, because 

electron superpositions have six primary charges whereas we define them as one fundamental 

charge (section 3.3.1) and quarks have only one colour charge (Table 2.2. 1). Because 

1

3C    at the cutoff near PL
 
it is more convenient to work with.  From Eq. (3.3. 22) 

 

                     6 6

1 1 2
* 1 4

2 2 C

c c


      and there are two solutions for each .C    

One has 6 6*c c  dominant with two smaller 5 5*c c  & 7 7*c c side modes, the other is the reverse 

with 6 6*c c the minor player and two larger 5 5*c c  & 7 7*c c  side modes. As the values for 

EMP with 6 6*c c
 
dominant fit the Standard Model very closely, we include only these. (This 

only applies to spin ½ fermions and in Table 4.3. 1 spins 1 & 2 boson superpositions have 

minor centre modes.) Table 4.1. 1 shows these dominant 6 6*c c  mode results for 
1

3C  
 
at 

various possible cutoffs in the range 50 51C   , as this range fits the Standard Model. Of 

course there can be only one solution for this cutoff.   
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Coupling Ratio C       6 6*c c  
1

PrimaryEM 
  

1

Secondary @EM cutoffk 
 

         50.00 0.723607  75.4414          104.7798  

         50.20 0.724497  75.5447          105.3429  

         50.40 0.725378  75.6472          105.9060  

        50.4053             0.725401   75.6499           105.9210   

         50.60 0.726250   75.7488           106.4692   

         50.80 0.727115  75.8497          107.0324  

         51.00 0.727970   75.9499           107.5956   

Table 4.1. 1  Possible 
1coupling ratios  versus  in the range   = 50 51.C EMSecondary C      

The yellow row corresponds to the interaction cutoff energy in Figure 4.1. 2 & Eq. (4.2. 11).   

4.1.1 Comparing this with the Standard Model 

In the real world of Standard Model secondary interactions the electromagnetic force splits 

into two components 1 2&   at energies greater than the mass/energy of the 0Z  boson or 

91.1876 .GeV [12]. However we want to compare these Standard Model couplings with the 

values derived in Table 4.1. 1 at the
182.0288 10 .GeV   cutoff of Eq.    (4.2. 11). Assuming 

three families of fermions and one Higgs field the SM [13] predicts   

                                    

1

1

1

2

1

3

4.1
58.98 0.08 log

2 91.1876

19
29.60 0.04 log

6 2 91.1876

7
8.47 0.22 log

2 91.1876

e

e

e

Q

Q

Q
















  

  


  

 

       

       

 (4.1. 3) 

 

1 1 1

1 2

1 1 2 1 1 2

1 2  

5
The weak force split obeys              

3

3
Also   &  where is the Weinberg angle.

5

EM

EM W EM W WCos Sin

  

      

  

   

 

 

  

 

 (4.1. 4) 

  

Combining Eq’s. (4.1. 3) & (4.1. 4)        

 

                  1 1 1

1 2

5 11
127.90 0.173 log

3 3 2 91.1876
EM e

Q
  



      


 

                                                                                                       

  (4.1. 5) 

 

 

Figure 4.1. 1 plots these four inverse coupling constants. Figure 4.1. 2 plots the intersection 

of 
1

EMSecondary 
 predicted in Table 4.1. 1 and the Standard Model prediction for 

1

EM 
 in Eq.   

(4.1. 5). It would initially seem in Figure 4.1. 2 that there is an unusually large error band in 

the predicted results. However
1 1 / 2.8EMSecondary      is approximately constant in this 

table and the error band in the Standard Model colour coupling
1

3  of 0.22    in Eq’s (4.1. 3) 

translates into the larger error band for
1

EMSecondary 
 of 0.22 2.8 0.62     in Figure 4.1. 2. 
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Figure 4.1. 1 Standard Model based on three families of fermions and one Higgs field. 

 

 

 

Figure 4.1. 2  A close up of the intersecting region of the Standard Model Eq. (4.1. 5) and 

Table 4.1. 1 predictions. The fermion interaction cutoff is consistent with the Standard 

Model. 
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 in .Q GeV    

Figure 4.1. 2 

is a close up  

of this region. 

Possible values for

1 (Secondary)EMS 
  

from Table 4.1. 1 

18Fermion interaction cutoff 2.029 10 . PlanckE
GeV

n
    

 

Standard Model 

1 1 1

1 2
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3
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Figure 4.1. 1 expanded 

 in .Q GeV    

 Planck Energy

n
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4.2 Introducing Gravity into our Equations 

4.2.1 Simple square superposition cutoffs    

In section 3.2 we looked at single integer n superpositions of nk  initially for clarity, and 

later found multiple integer n superpositions gave the same results; we will do the same here. 

We also found in Eq’s. (3.2. 3) & (3.2. 6)  that the integrals for both angular momentum and 

rest masses are of similar form. They both ended up including the term 

 

    
2

0

1

1 nkK



 
 
 

which if nkK cutoff   becomes 
2

0

1

1

nkK cutoff

nkK

 
 
 

and this is equal to  

   

 2

2 2 2

1 1 1
1

1 1 1 1/ ( ) 1

nk

nk nk nk

K cutoff

K cutoff K cutoff K cutoff 
   

   
  

            (4.2. 1) 

 

    

where using Eq. (3.1. 11) the infinitesimal 

2 2

0

2 2 2 2

21

( )nk cutoff

m c

K cutoff n k s
    

            (4.2. 2) 

 

 

For integral or half integral angular momentum precision is required but Eq. (3.2. 6) now 

gives us ( )z TotalL
2

0

1 1

2 1 2 1

nkK cutoff

nk

sm sm

K 

 
  

  
 . So can the effect of gravity increase 

our probabilities from 
dk

sN
k

  to (1 )
dk

sN
k

  ?  We will initially address only massive 

infinite superpositions where 1N   in Eq. (2.2. 4).  

The first question we need to address is what is the effective preon mass to be used when 

coupling to gravity? In Eq. (3.1. 4) we said the preon rest mass is 0 / (8 2 )nkm s for each of 

the 8 preons that build a spin ½ particle of rest mass 0m . Now gravity couples to the total 

mass including the kinetic energy. It also couples to other terms in Einstein’s energy-

momentum tensor, but we conjecture that in primary interactions such as this (section 1.1.2), 

gravitons only couple to the mass/energy, and the equations are consistent only if this is so. 

(Sections 6.2.1 & 6.2.2 also discuss this further.) 

At the start of the interaction each preon mass is 0 / (8 2 )nkm s and after the interaction 

(Figure 3.1. 3) it is 
2

0 (1 ) / (8 2 )nk nkm s  . Let us think semi classically again and see where 

it leads us. We have been using magnitudes of velocities as they are the most convenient way 

to express our equations even if not the conventional language of quantum mechanics. The 
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interaction with the zero point fields takes the momentum of each preon from zero to 

02 / (8 2 )nk nkm c s   (Figure 3.1. 3). While this happens as a quantum step change let us 

imagine it as a virtually infinite acceleration from zero velocity to 
22 / (1 )nk nk  , which is 

the relativistic velocity addition (see Figure 3.1. 1)  of 2 equal steps of .nk
  

At the half way 

point after one step the velocity is nk (the velocity of the CMF, the preon mass has increased 

to 0 / (8 2 ).m s  We can imagine this as being like the central point of a quantum interaction. 
 

We will conjecture this midway point preon mass 0 / (8 2 )m s  is the mass value that gravity 

acts on and we will see that it is indeed the only value that fits all equations. Also it does not 

make sense to choose either of the end point masses. We can also get reassurance from the 

properties of the Feynman transition amplitude which tells us in Eq. (3.1. 15) 

0

0

0

( ) 2

( ) 2
f

z

i f nk nk

i nk

p p m

p p m

 







 nk  and the ratio of space to time polarization in the LF is

2.nk  

This centre of momentum velocity tells us the key properties of the interaction. We will thus 

assume we have 8 preons in each nk  of effective gravitational mass 0 / (8 2 )m s  with 

effective total gravitational mass 0 / 2m s . To put the gravitational constant in the same form 

as the other coupling constants we need to divide it by c . The gravitational coupling 

amplitude is thus 0 / (2 )Pm G s c  to the gravitational zero point field, where PG is the 

primary amplitude for a Planck mass to emit or absorb a graviton. Now this gravitational 

amplitude can be regarded as a complex vector just as colour and electromagnetism. We 

assumed for simplicity, as they are both spin 1 field particles, that colour and 

electromagnetism are parallel. Spin 2 gravity could be at a different complex angle to the 

other two. In fact the equations only have the correct properties if gravity is at right angles to 

colour and electromagnetism. Putting Primary G SecondaryG G   we conjecture that:    

   

0 0

0

/ (2 ) / (2 )

                                               

The gravitational coupling

     

 am

   

plitude 

                                

is 

 / (2 )

P G S

G

im G s c im G s c

im G s c





 

 
  

     

     (4.2. 3) 

 

Where we have put the secondary gravitational coupling constant to a bare Planck mass sG  

in Eq. (4.2. 3) equal to the measured gravitational constant G and temporarily labelled the 

ratio between the primary the primary and secondary gravitational constants as G and return 

to this in section 6.2.3. So modifying Eq’s. (2.2. 1) to (2.2. 3) by adding Eq.  (4.2. 3)   
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0 2 4 2
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EMP Gim G s c sN dk
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2 2Q A
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EMP
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 
 


 

Our previous wavefunctions k required
2 2Q A

2

2 4 2
8 8 )

3

EMP

k r
sN





 
   from Eq. (2.2. 4). 

Thus primary graviton interaction can increase the probability of our previous wavefunctions

k by 1    as required to obtain precision in our integrals for / 2&  if .nkK cutoff   

 

Using Eq.(4.2. 2) now put
2 2
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  (4.2. 4) 
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256(1 )
         For 1 single integer  superpositions   
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EMP

G

cutoff P
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
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    (4.2. 5) 

For 1N   superpositions k n nk

n

c  , we can use the logic of section 3.5.1; replacing 
2

nkK

with
2
,kK  and 

2n  with 
2

n  in Eq. (4.2. 4), so that Eq.  (4.2. 5) becomes     

             

                
2

2 2

256(1 )
For 1 multiple integer  superpositions   

( )

EMP

G

cutoff P

N n
n k L





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  (4.2. 6) 

 

If we now go back to Eq’s. (2.3. 9) & (2.3. 10) as k   the energy squared
2 2 2

nk nkE cp  

2 2 2n  .  Again using the logic of section 3.5.1) for multiple integer n superpositions the  

expectation value for energy squared as k   is 
22 22 2 2 2

k kE c n k c p thus  

 

        For multiple integer  superpositions as ,    k kn k E c n kc  p    (4.2. 7) 
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4.2.2 All N = 1 superpositions cutoff at Planck Energy but interactions at less 

It is reasonable to assume that the cutoff superposition energy cannot exceed the Planck                                            

energy PlanckE (at least for square cutoffs) and that this is true for all 1N   superpositions. 

(Section 6.2.1 discusses N = 2 superposition PlanckE cutoffs.) So for simple square cutoffs: 

 

( )1 multiple integer  superpositions cutoff ener  gy k cutoff cutoff PlanckN n E n k c E       (4.2. 8) 

                           This can be written as      cutoff Planck

Planck

c
n k c E

L
       

   For  1 multiple integer  superpositions
1

           & 1cutoff cutoff P

Planck

n k n k Ln
L

N    
   (4.2. 9) 

  

 1 multiple integer  superposition interaction cutoff energy  Planck
cutoff

E
N n ck

n
   

 (4.2. 10) 

 

Using Eq.  (4.2. 10) with Planck energy
191.22 10 .GeV and 6.0135n  from Eq.(3.5. 16) for 

simple square cutoffs (also see Figure 4.1. 2). 

 

                
18Interactions between 1 fermions cutoff @ 2.0288 10 .N GeV        (4.2. 11) 

 

From Table 4.3. 1 we see that all other particles such as photons, gluons and gravitons etc. 

have 6n   and thus higher interaction cutoff energies than fermions ie. 
182.03 10 .,GeV   

but < .PE   Putting 
182.0288 10 .GeV  in the Standard Model equations (4.1. 3) & (4.1. 4). 
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   (4.2. 12) 

Real world high energy secondary interactions only involve 1 2 3, &   , but spin zero 

primary interactions do not involve the weak force. Table 4.1. 1 can thus only predict 
1 105.921EM    at the cutoff compared to the Standard Model combination of 

1 1

1 2(5 / 3)   1

EM   105.934 0.173   of Eq. (4.2. 12).  (See Figure 4.1. 1 & Figure 4.1. 

2). Also using Eq’s. (3.3. 3) & (4.2. 12) we get the primary to secondary fundamental 

coupling ratio C . 

 

      
1 18

3  Coupling Ratio @ 50.405 0.22  (ie.@  2.0288 10 .)C cutoffk GeV       

 

   (4.2. 13) 
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If we now put Eq. (4.2. 9) into Eq. (4.2. 6) we get 
2

2

2 2

256(1 )
256(1 )

( )

EMP

G EMP

cutoff Pn k L


 


     

 

From Eq’s.(4.1. 2) and Table 4.3. 1 we find (1 ) 1.115EMP 
 
and Eq.(4.2. 6) becomes                                 

                                                    2256(1.115) 318.3G       (4.2. 14) 

 

Using Eq. (4.2. 3) 318.3G   is the ratio between the primary graviton coupling to bare 

preons, and the normal measured gravitational constant (Big G). In other words the primary 

graviton coupling to preons is (Primary) (318.3) .G G    (Section 5.1.1, Eq. (5.1. 8) defines 

the secondary graviton coupling between Planck masses G  and section 5.3.2, Eq. (5.3. 14) 

finds contrary to expectations that 1/ 2,800G   so as in Eq.(6.2. 7) the primary to 

secondary graviton coupling ratio is 2,800G  and 318.3 890, 000 02 8 0,G    .) When 

318.3G   in Eq.(4.2. 4) the contribution from gravity (the   in Eq.(4.2. 4)) cancels any 

deficit in primary interactions (the   in Eq.(4.2. 4)) if these superpositions cutoff at Planck 

energy, which we argue is true for all 1N   superpositions. (Sections 6.2 & 6.2.1 discuss 

2N   superposition PE  cutoffs.) To enable high energy interactions 2N   bosons must also 

cutoff at Planck energy just as 1N   superpositions do, or as in Eq.  (4.2. 10). Figure 4.2. 1 

plots radial probabilities for all 3,4,5,6&7n   Planck Energy cutoff modes. They are 

identical as the radial probability 8 2 2 2( / 9)RP r Exp n k r  , but from Eq. (4.2. 7) 1nk   in 

each Planck energy mode, so they all have radial probability 6 8 28.74 10 ( / 9)RP r Exp r   . 

 

 

 

 

 

 

 

 

 

 

 

Despite each 3,4,5,6&7n   mode having Planck energy the probability in every case of 

being inside the Planck region is virtually zero at
78.9 10  .  

Radius in Planck units. R
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Planck region 

     Figure 4.2. 1 

 

All Planck energy n modes look identical 
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4.3 Solving for spin ½, spin 1 and spin 2 superpositions 

Superpositions with 2N   are covered in section 6.2 but Eq.(4.2. 13) and Eq. (3.3. 22) 

extended by keeping N s  constant as in Eq. (4.4. 1) allow us to solve various combinations 

of spins ½, 1 or 2 and 1N   or 2N  . 
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                     2 /  2 / 50.4053 0.199194C  

       

 

   (4.4. 1) 

 

Starting with spin ½ we can solve this to get 6 6* 0.7254c c   as the dominant value.  

Putting 6 6* 0.7254c c   into Eq.(4.1. 2) or alternatively using Table 4.1. 1 

 1
2

6 6
1.386256 0.1 75.64997258 * 91EMP c c     
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          (4.4. 2) 

From Eq.  (2.2. 4) the available 
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where we ignore the infinitesimal factor of (1 )  due to gravitons. And from Eq. (2.3. 12)                                           
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   (4.4. 3) 

 

The same primary electromagnetic coupling EMP  builds all fundamental particles, allowing 

Eq.(4.4. 3) to be true. Using Eq’s  (4.4. 1),(4.4. 3) & * 1n nn
c c   we get Table 4.3. 1. We 

define the coupling ratio for gravitons 827,000G   in Eq.(6.2. 7) section 6.2.3, where we 

also solve infinitesimal mass graviton superpositions. In Table 4.3. 1 three member 

superpositions fit the Standard Model best. In section 4.1 we solved spin ½ superpositions 

with a dominant centre mode 6 6*c c that fitted the Standard Model. However when solving 

for spins 1 & 2 we must initially comply with Eq. (4.4. 1) which defines interaction 

probabilities (see Eq. (3.3. 22) and final paragraph section 3.3.4). We must also comply with 

Eq.(4.4. 3) which determines centre or side mode dominance. In this table we have also 

included a massive 1N   spin 2 graviton type Dark Matter possibility interacting only with 

2N   spin 2 gravitons. There are other possibilities which we have not included. To this 

point this paper has attempted to demonstrate that infinite superpositions can behave as the 
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Standard Model fundamental particles. The methods used may seem unconventional, but it is 

important to remember that primary interactions are very different to secondary interactions 

(see sections 7& 2.2.3).These methods are however based on simple quantum mechanics and 

relativity, and there is also surprising consistency with the Standard Model. If the principles 

behind the outcomes of these derivations are at least on the right track and fundamental 

particles can be built by borrowing energy and mass from zero point fields then, as we will 

see in what follows, this may possibly have some significant and profound consequences.  

 

  Mass Type Spin  N 3 3*c c

 
4 4*c c

  
5 5*c c

 
6 6*c c

 
7 7*c c

 
 Infinitesimal mass gravitons    2  2 0.8346 

61.4 10

  
0.1653   

 Infinitesimal mass bosons    1  2 0.4847 0.0526 0.4627      

 Massive (dark matter?) gravitons     2  1 0.4847 0.0526 0.4627   

 Massive bosons    1  1  0.0134 0.8878 0.0988  

 Massive fermions    ½   1   0.1305 0.7254 0.1441 

 Table 4.3. 1  Approximate probabilities for various possible superpositions. 

5 The Expanding Universe and General Relativity 

5.1 Zero point energy densities are limited 

If the fundamental particles can be built from energy borrowed from zero point fields and as 

this energy source is limited, (particularly at cosmic wavelengths) there must be implications 

for the maximum possible densities of these particles. In section 2.2.3 we discussed how the 

preons that build fundamental particles are born from a Higg’s type scalar field with zero 

momentum in the laboratory rest frame. In this frame they have an infinite wavelength and 

can thus be borrowed from anywhere in the universe. This would suggest that there should be 

little effect on localized densities, but possibly on overall average densities in any or all of 

these universes. So which fundamental particle is there likely to be most of? Working in 

Planck, or natural units with 1G   we will temporarily assume the graviton coupling 

constant between Planck masses is one. (We will modify this later but it helps to illustrate the 

problem.) As an example there are approximately 
6110M   Planck masses within our 

causally connected region of the universe. They have an average distance between them of 

approximately the radius 
CCHR  of this region. Thus there should be approximately

2 12210M 

virtual gravitons with wavelengths of the order of radius 
CCHR  within this same volume. No 

other fundamental particle is likely to approach these values, for example the number of 

virtual photons of this extreme wavelength is much smaller. (Virtual particles emerging from 

the vacuum are covered in section 6.2.2.) If this density of virtual gravitons needs to borrow 

more energy from the zero point fields than what is available at these extreme wavelengths 

does this somehow control the maximum possible density of a causally connected universe?   
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5.1.1 Virtual graviton density at wavenumber k  in a causally connected Universe 

From here on we will work in natural or Planck units where 1c G   .  

General Relativity predicts nonlinear fields near black holes, but in the low average densities 

of typical universes we can assume approximate linearity. The majority of mass moves 

slowly relative to comoving coordinates so we can ignore momentum (i.e. 1)  , provided 

we limit this analyses to comoving coordinates. In these comoving coordinates the vast 

majority of virtual gravitons will thus be scalar. We should also be able to simply apply the 

equations in sections 3.4  & 3.5 to spin 2 virtual graviton emissions, as they should apply 

equally to both spins 1 & 2. We will assume spherically symmetric 3l   wavefunctions emit 

both spin 1 & 2 scalar virtual bosons, and 3, 2l m    states can emit both 1m    spin 1 

bosons and 2m    spin 2 gravitons. Section 3.4 derived the electrostatic energy between 

infinite superpositions. In flat space we looked at the amplitude that each equivalent point 

charge emits a virtual photon, and then focused on the interaction terms between them. Thus 

we can use the same scalar wavefunctions Eq’s.  (3.4. 1) for virtual scalar gravitons as we did 

for virtual scalar photons. Using 1 2( )  * 1(  2 ) 1 1 1 2 2 1 2 2* * * *          
 

we showed in section 3.4.1 that the interaction term for virtual photons is 
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  (5.1. 1) 

 

 

This equation is strictly true only in flat space but it is still approximately true if the 

curvature is small or when 2 / 1m r  , which we will assume applies almost everywhere 

throughout the universe except in the infinitesimal fraction of space close to black holes. In 

both sections 3.4 & 3.5, for simplicity and clarity, we delayed using coupling constants and 

emission probabilities in the wavefunctions until necessary. We do the same here. There will 

also be some minimum wavenumber k which we call mink where for all mink k  there will be 

insufficient zero point energy available. We need Eq. (5.1. 1) to apply for all values of k 

down to this minimum value which we find is min 1/ CausallyConnectedHorizonk R . In Section 6 we 

find gravitons have an infinitesimal rest mass 0m of the same order as this minimum 

wavenumber mink . At these extreme k values this rest mass must be included in the 

wavefunction exponential term. It is normally irrelevant for infinitesimal masses. Section 6.2 

looks at 2N  infinitesimal rest masses finding
2

min 1kK  . Using Eq.(3.1. 11) with 1c   
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2 min
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1
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s n k
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m
   and for spin 2 gravitons 
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0 min2

0

1  or  
n k

m n k
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          
   

(5.1. 2) 

From Table 4.3. 1 we find    

                       For 2N   spin 2 gravitons 3.33n     so that   0 min3.33m k    (5.1. 3) 
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This virtual mass 0m  introduces an extra exponential decay term 0m r
e


 in the virtual graviton 

wavefunction Eq. (3.4. 1) 0 0( )
.

m r k m r ikrkr ikr kr ikre e e e
         Define k  using Eq.  (5.1. 3)   

        

                min min min mi in0 m n3.33     3.33 4and   .33kk k kk kk m k               (5.1. 4) 

 

The normalized virtual graviton wavefunction in Eq.  (3.4. 1)      

                                 
2 2
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4 4

kr ikr k r ikrk e k e
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 
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(5.1. 5) 

 

 

Thus the interaction term in Eq. (5.1. 1) becomes  
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  (5.1. 6) 

 

In Eq. (5.1. 6) constant 1 2r r  describe ellipses, and constant 1 2r r  describe hyperbolae.  

Integrating over all space at constant k and k   using elliptical coordinates in Figure 3.4. 2 and 

putting r  as the distance between the two Planck masses or charges:  

             

            1 2 2 1

2 sin( )
At any wavenumber ;  * *  

k re kr
k dv

kr
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      (5.1. 7) 

 

Now consider one Planck mass at any point P  somewhere in the interior region of a typical 

universe, and let the average density be 
U  (subscript U for homogeneous universe density) 

Planck masses per unit volume. Consider spherical shells around point P of radius r  and 

thickness dr  with
24U Udm dv r dr    . Now we expect the graviton coupling constant 

 to be 1G   between Planck masses but because we do not really know this let us define   

  

           The Secondary graviton coupling constant between Planck masses G        (5.1. 8) 

Section 3.4.1 in Eq. (3.4. 3) used a scalar emission probability (2 / )( / )dk k  which becomes

(2 / )( / )G dk k   between Planck masses. (We return to this in section 5.3.2)  Now quantum 

interactions are instantaneous over all space but distant galaxies recede at light like velocities.  

However at the same cosmic time T in all comoving coordinate systems, clocks tick at the 

same rate, and a wavenumber k (or frequency) in one comoving coordinate system measures 

the same in all comoving coordinate systems.  Thus as we integrate from radius 0r    

we can still use the same equations as if the distant galaxies were not moving. (The vast 

majority of mass is moving relatively slowly in these comoving coordinate systems and we 

have already used this constant clock rate when integrating Eq.  (5.1. 6) over all space to get 
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Eq.(5.1. 7) and we return to this important comoving coordinate property in section 5.3.1). 

Integrating over all radii the total number of virtual gravitons interacting with this point 

Planck mass using Eq’s. (5.1. 7) &  (5.1. 4)  is
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    (5.1. 9) 

 

Where we have reexpanded 0 min3.33k k m k k    using Eq. (5.1. 4).This is the virtual 

graviton coupling at wavenumber k  between one Planck mass and all other Planck masses. In 

a homogeneous universe we can carry out this same integral at all points (at the same cosmic 

time T). To get the total virtual graviton density we thus multiply Eq.   (5.1. 9) by / 2U  (so 

as to not count all pairs of Planck masses twice). We need to also integrate over all 

wavenumbers mink k  and for simplicity assume a square cutoff at mink . So we integrate from 

min  to 1k k k  . As 61

min 10k   in Planck units, to aid integration we use the variable u 

                                                                      

min min
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(5.1. 10) 

 

Multiplying Eq.    (5.1. 9) by / 2U  and using Eq.(5.1. 10) then integrating over u     
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  (5.1. 11) 

 

5.2 Relating this to General Relativity 

The above assumes that at any cosmic time T, there is always some value mink where the 

borrowed energy density min minGk ZPE E  the available zero point energy density min@k . We 

have also assumed so far that the mass in the universe is like a perfect fluid and 

homogeneous, also that space is essentially flat on average. Thus all observers fixed relative 

to comoving coordinates and at the same cosmic time T must measure the same virtual 
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Central observer 

at point P 
1r   

graviton density G  as in Eq. (5.1. 11). This equation must be true for all such comoving 

observers in a homogeneous universe.  If this graviton density G  is at a zero point energy 

borrowing limit we can perhaps expect it to always be uniform at any cosmic time T or at 

least some form of upper limit. So what happens if we now change the uniform fluid mass 

density U by putting an initially small mass concentration 1m  at some point? Because near 

mass concentrations we would expect the local graviton density G  to increase. However 

General Relativity tells us that near mass concentrations the metric changes, radial rulers 

shrink and local observers measure larger radial lengths. This expands volumes locally and 

should lower their measurement of the background G . Can these effects balance each other, 

so that the extra gravitons generated by a nearby mass concentration can bring this density 

back to the flat space or background G  of Eq.(5.1. 11).  Changes in the metric will also 

change the local measurement of 
1/2

min min min (1 2 / )k k k m r     but we will initially only 

consider the case where / 1m r   and look again at this at the end of section 5.2.2. 

5.2.1 Approximations that are necessary with possibly important consequences  

 

 

 

 

 

 

 

 

 

 

 

Let us refer back to Eq. (3.4. 2) and the steps we took in section 3.4.1 to derive it; but now 

including 0 min3.33k k m k k     as in Eq. (5.1. 6) 
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  (5.2. 1) 

 

And assume that space has to be approximately flat with errors 
1/21 (1 2 / ) / .m r m r     If 

we now focus on Figure 3.4. 2 , equation (5.2. 1) is the probability that a virtual graviton of 

wavenumber k is at the point P if all other factors are one. Let us now put a mass of 1m  

Planck masses at the Source 1 point in Figure 3.4. 2 or as in Figure 5.2. 1. Also assume that 

the point P is reasonably close to mass 1m (in relation to the horizon radius) at distance 1r  as 

in Figure 5.2. 1 and the vast majority of the rest of the mass inside the causally connected 

Spherical shells thickness dr   

& mass 
24 Udm r dr   

 Mass 1m   

 r   

Radius 1r r   

                                                                                                

Figure 5.2. 1 
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horizon CCHR  is at various radii r, equal to the 2 r  of Eq. (5.2. 1) where 2 1r r r   and thus

1cos[ ( )]k r r cos( )kr  . Only under these conditions can we approximate Eq. (5.2. 1)as 

 

 
1 2 2 1

1
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4

k rk
e kr

r r
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    (5.2. 2) 

 

 

As we have assumed average particle velocities are low ( relative to comoving coordinates) 

this is a scalar interaction (as in section 3.4.1) and as there are no directional effects we can 

consider simple spherical shells of thickness dr  and radius r around a central observer at the 

point P which have mass 
24 .Udm r dr   At each radius r the coupling factor 

(2 / )( / )dk k   we used in Eq. (3.4. 3) using Eq.      (5.1. 8) becomes (2 / )( / )G dk k   

between Planck masses and again we use the fact that all instantaneously connected 

comoving clocks tick at the same rate.   

      
                          21 12 2
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(5.2. 3) 

Including this coupling factor in Eq. (5.2. 2) 
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(5.2. 4) 

 

This is virtual graviton density at point P due to each spherical shell. (Ignoring the relatively 

small number of gravitons emitted by mass 1m  itself, see addendum 8). Integrating over 

radius 0r    the virtual graviton density at wavenumber k using Eq’s.(5.1. 4) & (5.2. 4) 
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  (5.2. 5) 

 

 

Integrating over wavenumbers min 1k k   or ,u    the extra virtual graviton density 

G  at point P distance 1r  from mass 1m  is  
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But we have conjectured that the expansion of space due to GR is such that extra gravitons 

near a local mass concentration do not change the background density G  in Eq.). If the local 

expansion of space due to GR is /V V  and the new background graviton density G   is to 

remain unchanged then 

                         

New  original   implying  
1 /

G G G
G G

G

V

V V V
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  (5.2. 7) 

 

 

Using Eq’s. (5.1. 11) &(5.2. 6) the graviton coupling  constant G  cancels out:  
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  (5.2. 8) 

  

Both integrals B & A are functions of min CCHk R  . In comoving coordinates, at any cosmic 

time T, the red part of this equation must be a fixed value at all points inside the horizon and 

thus the expansion of space around any mass is proportional to 1 1/m r . The Schwarzschild 

solution to Einstein’s equations tells us that the radial metric around mass 1m  changes as  

    
1/21 1

1 1

2
(1 ) 1localr m m

r r r






   


 when 1 1r m  and the local change in volume 

1

1

mV

V r


 .   

We have been approximating to the first order in 1 1/m r  so to this first order we can say  
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       (5.2. 9) 

 

Provided the background graviton density G  remains constant; GR tells us the red 

highlighted part is approximately one in Planck units. Numerically integrating both &B A    
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Putting Eq. (5.2. 10) the average density U into Eq.(5.1. 11) gives G  in terms of 
2 &B A

which we can again numerically integrate in terms of min .CCHk R    
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If our conjecture is true, this is the average density of gravitons excluding possible effects of 

virtual particles emerging from the vacuum. In section 6.2.2 we argue these do not change 

graviton density G  in Eq. (5.2. 11). However graviton density G  in Eq.(5.2. 11) does depend 

on the graviton coupling constant G  between Planck masses but it cancels out in Eq.(5.2. 8) 

and does not effect the allowed universe average density U  in Eq.(5.2. 10). 

5.2.2 The Schwarzchild metric near large masses 

At a radius 1r  from a mass 1m  the Schwarzchild metric is 
1/2

1 1(1 2 / )m r   for the time and 

radial terms. The radial term can be written as  
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(5.2. 12) 

 

 

Velocity   ( 1c  ) is that reached by a small mass falling from inifinity and 
1 

 is the metric 

change in clocks and rulers due to mass 1m . Differentiating the metric at fixed radius 1r     
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We can write this as the change in the radial metric 13
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  (5.2. 13) 

 

Where   is the change in the metric from adding mass 1m  to mass 1m .  With zero mass 

1 0m   the unexpanded unit volume 1V  . When 1 0m   this volume becomes V   so that 
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  (5.2. 14) 

 

Now the mass 1m  in the Schwarzchild metric is that of the mass dispersed at infinity before it 

comes together. So let us start with a central mass 1m  (as measured at infinity) and then bring 

in from infinity a small extra mass 1m (as measured at infinity), and repeat the derivation of 

Eq.(5.2. 5) in section 5.2.1. Because of the metric 1  at point P in Figure 5.2. 1 due to 1m

(compared to the metric 1  at infinity) an observer at point P measures the total mass of all 

the spherical shells inside his causally connected horizon as ( )a dm  . This same observer 

at P also measures the added mass 1m  as 1( )b m  . These two factors &a b  of  together 

modify Eq.(5.2. 6) where G  is now the extra graviton density at point P due to adding mass

1 :m  
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  (5.2. 15) 

 

Equations (5.2. 8) & (5.2. 9) are also modified, where V  is now the modified volume 

expansion at point P predicted by GR from adding mass 1m  where G  cancels out again: 
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Again the red parts are equal to approximately one and we have agreement with Eq. (5.2. 14). 

 

                                                     
1

2 1G

G

mV

V r

 


 

  
    

 (5.2. 16) 

 

 

Thus the Schwarzchild metric around any mass concentration is consistent with the 

conjecture that the background virtual graviton density G  is uniform at any cosmic time T 

for comoving observers. But we have not yet discussed the effect of the metric on the local 

measured value of k k  . The vast majority of gravitons have wavelengths 1/ k  

spanning towards the horizon. Almost 99% span / 4CCHR . We can thus let k tend towards 

mink  in the product kr  of the key factors in our integrals, in particular &cos( ). k re kr
   

Close to large black holes in the region where the metric 1   the relevant radius 

min( 1/ )CCHr R k   and the product mink r  min 0k r  , also cos( ) 1k re kr
    . There 

is an extremely localized perturbation of the exponentially decaying wavefunction. The 

metric rapidly 1  with radius r, and mink also rapidly mink . The overall effect on the 

integrals is insignificant. This is only true if outside observers see infalling mass remaining  

on the event horizon, and gravitons emitted from that horizon. Also we assumed in our 

derivations that space is approximately flat on average. For the same reasons as above, as the 

region around even large black holes (where space is far from flat) is insignificant in relation 

to the volume over which we integrate, the overall effect is again very small. 

 

5.3 The Expanding Universe 

Equation (5.2. 11) tells us the density of gravitons is  2 2
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are superpositions of wavefunctions k  occurring with probability 
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
 from Eq. (2.1. 4). 
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The density of any k  wavefunction required is thus min
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From Eq.(3.2. 1) the vacuum debt for a superposition is
2

( ) .k kdebt n p k  From 

Eq’s.(3.1. 11), (3.1. 12) & (3.2. 10)
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. From Table 4.3. 1 we 

find 3.33n   for gravitons, so each wavefunction k borrows from the zero point fields  
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When  mink k  Eq. (5.3. 2) becomes
@ (14)Quanta k Gdk   , but the density of zero point 

modes available min@k is 2 2

min /k dk   (ignoring some small factors). Even if 1G   this is 

ridiculously too small, by about 2 2

min 1/ CCHk R . But the area of the causally connected 

horizon is 
24 CCHR  suggesting a possible solution?  

 

5.3.1 Holographic horizons and red shifted Planck scale zero point modes 

Zero Point energies are invariant in all rest frames. The Lorenz transformations tell us this, 

but this is due to Special Relativity which applies locally. In section 2.2.3 we defined a rest 

frame in which zero momentum preons with infinite wavelength build infinite superpositions. 

If we have a spherical horizon with Planck scale modes, receding locally at the velocity of 

light, these Planck modes can be absorbed by infinite wavelength preons (from that receding 

horizon) and red shifted in a radially focussed manner inwards. We will argue in what 

follows, that at the centre where the infinite superpositions are built, approximately 1/6 of 

these Planck modes can be absorbed from that horizon with wavelengths of the order of the 

horizon radius. This potential possibility only exists because zero momentum preons have an 

infinite wavelength. If any source of radiation recedes at velocity /v c   the 

frequency/wavenumber reduces as  (1 )observer sourcek k     where
2 1/2(1 )    .  In the 

extreme relativistic limit 1   & we can put1       .  
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             1
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2  and 1/ 2
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 
 
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

 

       

  

  

   

       

         (5.3. 3) 

 

There is always some rest frame travelling at nearly light velocity that can redshift Planck 

energy modes into a min 1/ CCHk R  mode and also many other frames travelling at various 

lower velocities that can redshift Planck energy modes into any mink k  mode .  This is 

special relativity applying locally. But in sections 5.1.1 & 5.2.1 we used the fact that clocks 

in comoving coordinates tick at the same rate.   So how does Eq.(5.3. 3) help? Space between 

comoving galaxies expands with cosmic or proper time t and is called the scale factor ( )a t . It 

is normally expressed as ( ) pa t t .                            

                     Thus 
1( ) pa t pt  and the Hubble parameter

( )
( )

( )

a t p
H t

a t t
   

    (5.3. 4) 

 

Writing the present scale factor normalized to one so that ( ) 1a T   implies ( ) /p Pa t t T , we 

can get the causally connected horizon radius and the horizon velocity V. Using Eq.(5.3. 4)  

   
0 0

The horizon radius   only when  is constant.
( ) 1

T T

p

CCH p

dt dt T
R T p

a t t p
  

   
       (5.3. 5) 

 

   

1

0

The horizon velocity ( ) 1

 But  is the current Hubble constant so horizon velocity 1 ( )

T p
p pCCH CCH

CCHp p p

CCH

dR Rd dt T p
V T pT R

dT dT t T T T

p
V H T R

T


 

      
 

 


 

 

   

  (5.3. 6) 

Now the receding velocity of a comoving galaxy on the horizon is ( ) CCHV H T R   and thus 

from Eq.(5.3. 6) the horizon velocity is always 1V V   .  In other words the horizon is 

moving at light velocity relative to comoving coordinates instantaneously on the horizon as 

measured by a central observer. Now clocks tick at the same rate in all comoving galaxies but 

clocks moving at almost the horizon light velocity (relative to comoving coordinates 

instantaneously on the horizon) will tick extremely slowly or as 1/   from Eq.(5.3. 3) as 

special relativity applies locally in this case. Thus Planck modes on the receding horizon will 

obey Eq’s.(5.3. 3) as seen in all comoving coordinates. Let us now imagine an infinity of 

frames all travelling at various relativistic velocities relative to comoving coordinates 

instantaneously on the horizon and radially as seen by central observers. We can think of 

these as spherical shells on the horizon all of one Planck length thickness as measured by 

observers moving radially with them. Transverse dimensions do not change for all radially 

moving observers and the effective surface area of all these shells is 24 CCHR . The internal 

volume of all these shells as measured in rest frames by observers moving radially with them 

as each of these observers measures their thickness as one Planck length is 
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                        2 2Rest frame internal shell vo 4 4lume  CCH CCHV R R R       (5.3. 7) 

Now it is simpler from here to use zero point quanta available, where before redshifting a 

single zero point quanta has Planck energy ( 1)k   and k  energy after redshifting ( k   before 

redshifting where 1k   for these Planck energy modes and k after.) The final outcome is 

identical if we use energies but it is clearer this way. The density of Planck energy zero point 

modes in this shell is 
2 2/k dk    and at energy / 2k   per mode this is 

          
2

22

k dk



 
  quanta, which we will write as zero point quanta density 

3

22

dk

k

k



 


.  

   (5.3. 8) 

Now at Planck energy 1k   and we are redshifting to k  where from Eq’s.(5.3. 3) 

/ 2k k   & / 2dk dk  .  Thus / /dk k dk k   .  As 1k   Eq.   (5.3. 8) becomes 

           
2

1
Planck Energy Zero Point Quanta Density before redshifting

2

dk

k
   

  (5.3. 9) 

(Equation   (5.3. 12) makes clearer why we use /dk k .)  Now multiply density by volume ie. 

Eq’s. (5.3. 7) &   (5.3. 9) to get the total Planck energy zero point quanta inside the rest frame  

shell as 
2

2
4

1

2
CCH

k
R

dk


  . Two thirds of these quanta are transverse and one third radial so 

only 1/ 6  of these quanta are available for redshifting radially inwards.  

After redshifting to wavenumber k  these quanta have radius min min

min

1 1 CCH
c

Rk k
R

k k k k
    


 

and thus occupy spherical volume

33

min

3

4

3

CCHR k
V

k

  
     

. Using
min CCHk R   the effective 

density becomes  

3 2
3
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 These quanta are half scalar and half the vector required to build infinite superpositions. 

    Density of vector quanta available after redshifting 

2
2

2

min8
k

k
dk

k




 
  

 
  

 (5.3. 10) 

 

Now an observer at the centre of all this sees space being added inside the horizon at the rate 

of the horizon velocity  1 ( ) CCHV H T R   as in Eq. (5.3. 6). We will conjecture that the space 

added in one unit of Planck time inside the expanding horizon also creates the source of these 

zero point quanta that we can borrow. Thus Eq. (5.3. 10) becomes  

 

  

2 2
22

2 2

min min

(1 )
Density of vector quanta availabl  e

16 16

CCH
k

H RV k k
dk dk

k k
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     

   
                      

  (5.3. 11) 
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5.3.2 Plotting available and required zero point quanta 

 

              

 

Figure 5.3. 1 plots Eq’s.(5.3. 2) & (5.3. 11) and when mink k  we can equate these 
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  (5.3. 12) 

 

Equation (5.2. 10) 

2

2
the average density of the u

25.26
niverse

2
  U

CCHR





 allows us to solve the 

present value of min CCHk R   .  Using the 9 year WMAP (March 2013) data for Baryonic and 

Dark Matter density and radius 612.7 10CCHR    Planck lengths (
946 10  light years) puts

2 0.37U CCHR   in Planck units. Thus
2 2(12.63) / 0.37U CCHR     yields  

 

                                   The current value for min 0.303CCHk R       (5.3. 13) 

The current Horizon Hubble velocity 1 ( ) 4.35CCHV H T R    and putting this and 0.303   

into Eq.   (5.3. 12) we can solve the approximate graviton coupling constant G  . 

 

                                                           
2 1

1,124 2,800
G

V



   

(5.3. 14) 

 

The actual value for G  is less important than the form of this equation as provided Eq. (5.2. 

10)
2 2(12.63) /U CCHR    is true (or in other words all comoving observers measure 

constant virtual graviton density G  as in Eq.(5.2. 11) GR is still true locally regardless of 

graviton coupling G . The normal gravitational constant (big) G is directly related to the 

metric change of GR, and if GR is true locally then G will not change, as it is independent of 

graviton coupling G . Because Eq. (5.3. 14) depends on the actual present values for &V it 

must be approximate. The above analysis is based on a conjectured potential source of 

cosmic wavelength quanta that can only be borrowed if preons are born with infinite 

wavelength, but as we will see exponential expansion seems to follow naturally from Eq. 

  

Quanta available 

Quanta reqired 

min

k

k
        Figure 5.3. 1 

 

mink   
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(5.3. 14) and it is hard to imagine any other large enough source. It also strongly suggests that 

if fundamental particles are in fact built from infinite superpositions that borrow quanta from 

zero point vector fields, then graviton coupling G  between Planck masses must be way less 

than 1. So are there possible consequences of this? 

5.3.3 Could virtual gravitons repel mass minutely but metric changes attract mass? 

In both classical physics and quantum mechanics like charges repel each other and opposites 

attract, but gravity is different. Is it possible there could be a minute repulsive component 

between Planck masses of
43.5 10  of the attraction due to the metric change? In section 

5.3.6 we suggest an infinitesimal change to GR with affect only at cosmic scale. A small 

repulsive component due to virtual graviton coupling would only become dominant at 

distances of the order of the horizon radius. It could thus be a factor in the exponential 

expansion which is a solution to the above equations. It might also make a small change of 

70  nanoseconds in the 200 microseconds Shapiro maximum time delay for light passing 

close to the sun. (It could minutely change the gravitational potential in the metric but not the 

spatial term). Even 200 nanoseconds would be almost impossible to measure however as 

variations in height of radar reflecting planet terrain would cause greater errors than this. 

5.3.4 A possible exponential expansion solution and scale factors 

Let the scale factor be a then density
3

1

a
   and Eq. (5.2. 10) tells us the average density of 

the universe 

2

2

(12.63)
U

CCHR





 so that 

2

2 3

1 1
U

CCHK R a



   where 

12.63
K


  is a constant. 

 

                           Thus     
3 2 2 2/3 2/3a KR a K R        where CCHR R    (5.3. 15) 

 

The Hubble parameter H is 
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(5.3. 16) 

 

We can also write Eq.(5.3. 14) 2 2800 a constantGV    and
2 2 0dV d V     , thus

1

2

1dV

V dT

d

dT






 . Also Eq. (5.3. 6) tells us that the Horizon velocity CCHdR dR
V

dt dt
  .  

 Equation (5.3. 6) also tells us that 1V H R V      so we can write Eq. (5.3. 16) as  

      
2 2
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d
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R R dV
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 
  




  

 
 3

R dV
V

V dt
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dV V
V

dt R
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  (5.3. 17) 
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We will look for an exponential increase of the horizon velocity so / 0dV dt  and 3 .V     

Let us try first a simple 3 ( )V Exp bt with 3V  for all values of & 0b t  .     

Also simply put      
0 0

 3 ( )
t t

R Vdt Exp bt dt        thus    
3[ ( ) 1]Exp bt

R
b


 .  

Putting this value for R   plus 3 ( )V Exp bt  &  3 3[ ( ) 1]V Exp bt    into Eq. (5.3. 17)  

                ( 3) 3 ( ) 3[ ( ) 31]
3[ ( ) 1]

( )
V b

V Exp bt Exp bt
R Exp b

dV
bExp bt

d tt
      


.  

But 3 ( )V Exp bt and again  3 ( ) 3 ( )
dV d

Exp bt bExp bt
dt dt

  . Thus Eq’s. (5.2. 10) & (5.3. 14) 

are consistent with 3 ( )V Exp bt for positive b regardless of the value of graviton coupling G  

        A possible expansion solution is 3 ( )V Exp bt  & 
3[ ( ) 1]Exp bt

R
b


 , 0.b    

(5.3. 18) 

 

But is this consistent with the local special relativity requirement for CCHR ? In other words 

does
0

3[ ( ) 1]
@ time ( )

( )

T dt Exp bT
R T a T

a t b


   ? Now Eq. (5.3. 15) tells us the scale factor 

3 2 2 2/3 2/3a KR a K R      but Eq.(5.3. 14) says
2 1/V   so the scale factor

1/3 2/3.a V R  

From Eq. (5.3. 18), ignoring the constant factors 3 & b, ( )V Exp bt  &  ( ) 1R Exp bt   

 

                                        
1/3 2/3The scale factor ( ) ( ) [ ( ) 1]a t Exp bt Exp bt    (5.3. 19) 

1/3 2/3

1/3 2/30 0
( ) ( ) [ ( )
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( ) ( ) [ ) 1]
]

(

T Tdt dt Exp bT
R

a t E
a T Exp bT Exp

xp bt Exp b b
bT

t


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
 

 

and Eq. (5.3. 18) appears to be a consistent exponential expansion for both V and R. 

5.3.5 Possible values for b and plotting scale factors 

This simple exponential expansion starts at the Big Bang and is very different to the current 

cosmology models that keep a constant horizon velocity until Dark Energy starts to take 

effect. This continuous exponential increase could well lead to slightly different values for 

the radius CCHR  and also possibly the age 
913.8 10T    years. (Some recent observations [1]  

have also been questioning the leading current dark energy explanations of acceleration).  

Current cosmology models put the Hubble parameter as / 1/H a a T   at present (based on 
913.8 10T   years). It also simplifies the plots below if we put

913.8 10  years 1T     with   

CCHR  or radius R  becoming multiples of 1T  . 
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Using Eq. (5.3. 6) 1 ( )V H T R  , Figure 5.3. 2 plots the Hubble parameter by time ( 1)T 

now as a function of the exponential time coefficient b showing if 0b   that

 always 2 / (3 )H t  as in current cosmology at critical density with no dark energy. Also if 

1/H T now it shows that 0.48b  . This yields 3.85R T  or 15%  greater than current 

cosmology. Figure 5.3. 3 plots horizon velocity & Figure 5.3. 4 the scale factor based on

0.48b  , but of course the actual value of b or rate of change with time must be in agreement 

with the redshifts currently observed when looking back towards the big bang. These could 

well change b and radius R. Figure 5.3. 5 plots the transition to positive acceleration of the 

scale factor showing the effect of changing the value of b.  

 

5.3.6 An infinitesimal change to General Relativity effective at cosmic scale 

Section 5 is based on energy in the zero point fields being limited. We argued that a uniform 

mass density throughout the cosmos has a uniform graviton density G  . At this mass density 

the zero point energy density available equals that required. To maintain this required delicate 

balance (see Figure 5.3. 1) we argued that around any mass concentration the curvature of 

space expands space locally so as to maintain this uniform limiting graviton density G  at all 

points. In other words our conjecture only works if the local curvature of space depends on 

the difference between the local mass density and the uniform background. Compared to 

General Relativity this is an infinitesimal change except at cosmic scale. GR says the 

curvature of space depends on local mass density whereas we argue that it depends on the 

difference between local mass density and the average background. This automatically 

guarantees the universe to be flat on average. All our aguments in Section 5 start with flat 

space on average. The equations of GR would look almost identical except the Energy 

Momentum Tensor T  in comoving coordinates requires 00T  the mass/energy density to 

change from   to U   where the density of the universe U  is as in Eq. (5.2. 10). 

 

00 In comoving cordinates  changes from  to  in the Energy Momentum Tensor UT T      (5.3. 20) 

5.3.7 Non comoving coordinates.   

With this change General Relativity is equivalent to maintaining constant graviton density G  

in comoving coordinates, and if Eq.(5.3. 20) is true it should also be a tensor equation and 

should be true in all coordinates. So let us see what happens if we move relative to comoving 

coordinates? The centre of momentum of all galaxies or mass is fixed relative to local 

comoving coordinates. In coordinates moving at velocity    (relative to comoving 

coordinates) the average density of the universe U  becomes
2

U   where
2 1/2(1 )    

(using gamma prime   to distinguish it from the metric change   below and as in Eq.(5.2. 

12)) as all mass increases as
2 1/2(1 )     and all volume elements shrink as

1  . Similarly 

the number density of all gravitons G  becomes G  . Also mink we now measure as mink  .  
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Similarly the horizon radius CCHR  we now measure as /CCHR    so that 

min min( ) ( / )CCH CCHk R k R     remains constant. (This change in the measured, or 

calculated, values of mink and CCHR  has implications that we discuss further at the end of 

section 6.2)  We can repeat section 5.2 to show that if a mass concentration
1m  as in Figure 

5.2. 1   is also moving at the same velocity    relative to comoving coordinates then the local 

increase in gravitons
G due to

1m , also becomes
G   as in Eq.(5.2. 6). So as in Eq.(5.2. 16)  

 

2 1
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In other words if we are moving at constant velocity    relative to comoving coordinates far 

from any mass concentration we measure graviton density G  and this does not change as we 

approach any such mass concentration. This is true regardless of the velocity of this mass 

relative to us. The curvature of space around this mass guarantees this.  Thus General 

Relativity appears to be equivalent to maintaining the appropriate constant graviton average 

density G   in any coordinates moving at any velocity  . If we now think of the mass in the 

universe as a dust of density U essentially at rest in comoving coordinates we can define a 

tensor (Background)T . In these comoving coordinates (Background)T has only one non 

zero term 00(Background) UT  . In any other coordinates this same (Background)T tensor 

is transformed by the usual tensor transformations that apply in GR. If these coordinates for 

example move at velocity   (relative to comoving coordinates)  
2

00(Background) UT     
2

00(Background)T  . This all seems to suggest that maintaining a constant background 

density of gravitons G  in comoving coordinates (or its transformed value in any others) is 

equivalent to the infinitesimally modified Einstein field equations 

 

                         
4

1 8
(Background)

2

G
G R g R T T

c
    


        

         (5.3. 21) 

 

This modification is of course only relevant in the extreme case as T approaches

(Background)T . Far from mass concentrations (Background)T T  so the curvature of 

space is zero and as we said above an immediate consequence is that   does not need to be 

one for the causally connected universe to be flat on average. If Dark Energy is not required 

and 1  there can be more (or less) Dark Matter possibly increasing (or decreasing) U , 

& G  as in Eq’s. (5.3. 13) & (5.3. 14). 
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6 Further consequences of Infinite Superpositions 

6.1 Low frequency Infinite Superposition cutoffs 

In section 4.2 when we introduced gravity, for the lower limit in our integrals we assumed

min 0k  , and then in section 5 showed that there is a lower limit min 0k   .  It turns out that 

for massive 1N   superpositions the effect of this is negligible in comparison to the high 

frequency cutoff cutoffk   , which we showed gravity can address in section 4.2. For 

infinitesimal rest mass 2N  superpositions we cannot however ignore the effect of min 0k  .  

6.1.1 Quantifying the approximate effect of min 0k  on infinite superpositions 

If we look again at section 4.2.1 we can repeat what we did there as follows. Initially to 

illustrate these effects we will consider only 1N   superpositions where we can say that  
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  (6.1. 2) 

 

(Where   is the original 21/ nkK cutoff of Eq. (4.2. 2)). Equation (6.1. 2) is for spin ½, but the 

numerical factor 9 only changes slightly for spins 1 & 2.  In Planck units
6110P CCHL R  , but 

for electrons say
2 446 10c   , so the effect is of order 

4 56 26 1/  /10 10 10    which we 

have been ignoring. We cannot ignore this however in the case of infinitesimal rest masses as 

we will see. 

6.2 Infinitesimal Masses and N = 2 Superpositions 

Looking again at angular momentum and rest masses in section 3.2 the key factor in our final 

integrals is in Eq. (6.1. 1). Using Eq.  (3.1. 12) we can rewrite Eq. (6.1. 1) as 
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With massive 1N   superpositions as above the difference between 
2

min & 1nk  is vanishingly 

small, i.e.
2

min( 1) 1/nk     and as in section 6.1.1 this first term is of much less 

significance than the
2

cutoffnk  term. Now define an approximate equality between 
2

min& kN  using Eq.  (3.1. 12) as follows 

                                                          
2 2

min min1k kN K   
 

      (6.2. 2) 

In section 3.2 we derived angular momentum and rest masses for only massive or what we 

called 1N   particles. To get integral angular momentum we had to assume in deriving Eq. 

(3.2. 6) that the minimum value of min or 0nk nkK K  . For massive 1N   particles such as the 

fermions the error in this assumption (as in section 6.1.1) is 
2510  times smaller than , 

which for an electron is already 
4510   due to the high frequency cutoff @

18.3110 .GeV  

(We allowed for this 
4510  when we included gravity in section 4.2.)  From section 6.1.1 

above we approximated
2 2 2

min  as 9 /nk c HK R for a spin ½ fermion. So we can express Eq. 

(6.2. 2) in terms of this approximation for fermions with non infinitesimal mass 
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For the massive particles it appears we can safely say that 1N  . Even if neutrino masses 

were as low as
410 eV

 then 
592

min 1 10 .k
   If the mass is too small however Eq. (6.2. 1) 

tells us we cannot get the correct angular momentum unless something else changes. 

Infinitesimal increases above 1 of the order of 
5010 or so can be handled perhaps by a 

small change in the actual high frequency cutoff details, but this probably does not allow 

massive particles to be much less than sub micro electron volts. So if massive particles are a 

group with 1N  , then it would not seem unreasonable to imagine there could possibly be 

another group with 
2

min2 1 kN K    implying that 
2

min 1.kK   Repeating the derivation 

of Eq. (3.2. 6) but with 
2

min2 1 kN K    and for clarity and simplicity let cutoffnkK  .   
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       (6.2. 4) 

 

 

Provided we have doubled the probability of superpositions as in Eq. (2.1. 4) from 

1( ) /Ns dk k  to 2( ) /Ns dk k , the final angular momentum results in Eq’s. (3.2. 6) & 
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(6.2. 4) are identical. The same is true for rest mass calculations.  For multiple integer n 

infinite superpositions if 2N   then the expectation value
2

min 1kK  . We thus conjecture 

that all 2N   infinite superpositions have
2

min 1kK  .  

From Table 4.3. 1 

               2N  infinitesimal rest mass spin 1 superpositions have 3.98n   

               2N  infinitesimal rest mass spin 2 superpositions have 3.33n   

 

Using Eq’s. (3.1. 11) and (5.1. 10) 
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Using the value for 0.303   from Eq. (5.3. 13) based on WMAP data which also puts 

the horizon radius at  
946 10   light years 

612.7 10CCHR    Planck lengths.   

 

        Spin    Compton Wavelength  C      Infinitesimal Rest Mass 

           1               1.18 CCHR           
343.82 10  eV.    

           2               0.99 CCHR          
344.56 10  eV.   

    Table 6.2 1 Infinitesimal rest masses of 2N   photons, gluons & gravitons.  

 

These Compton wavelengths and rest masses are the present values, changing slowly but 

exponentially with cosmic time T. They are based on WMAP data where 1  and could be 

slightly different if 1  and the Dark/Baryonic matter ratio is different as explained at the 

end of section 5.3.6. They also depend on the actual value of b in the exponential expansion

3 ( )V Exp bt . These infinitesimal rest masses limit the range of virtual photons, gluons and 

gravitons to approximately the horizon. The graviton rest masses above are close to recent 

proposals explaining the accelerating expansion of the cosmos [2] [3]. They are also based on 

the value of mink   measured (or calculated) in comoving coordinates. If we move at velocity 

  relative to comoving coordinates (as we said in section 5.3.7) mink mink and contrary to 

what intuition would tell us the infinitesimal rest masses above become 0 0m m  . Of course 

these are infinitesimal rest masses and not the massive we are familiar with; they are also 

virtual and cannot be measured, but this still conflicts with our picture of what we have 

always called reality. There have been a huge number of experiments in the last few decades 

however confirming the counterintuitive Copenhagen interpretation that the result of a 

quantum experiment can depend on the act of measurement. 



85 

 

6.2.1 Cutoff behaviours for N = 1 & N = 2 superpositions 

Equation (6.2. 1) can be written for both 1N   & 2N   superpositions using the results of 

sections 4.2 & 6.2 as follows  
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(We should be using expectation values, but for clarity we simply imply them.) We have 

shown in section 6.2 that 2

min1/ 1/ 2k   when 2N  , but in reality it is Eq. (6.2. 6) that 

must be true. In section 4.2 we showed that for 1N   superpositions the primary coupling of 

gravity to preons infinitesimally increased the interaction probability by   (1to )    where  

from Eq. (4.2. 4)      
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In the 1N   case this meant that any deficits due to a non infinite cutoff were exactly 

balanced by the contribution from gravity, but in the 2N   case this infinitesimal correction 

is out by a factor of two. However Eq. (6.2. 6) tells us that exactness can be maintained in the 

2N  case by an infinitesimal change from 2

mi minn

2 to 1/1/ 1/  22 1/kk   . Thus both 

1N   & 2N  superpositions can cut off at Planck energy as in section 4.2.2.  The low 

frequency cutoff for all superpositions is at min / CCHk R   if they are to affect gravity. 

6.2.2 Virtual particle pairs emerging from the vacuum and space curvature 

For almost a century it has been a puzzle why spacetime is not massively curved by Planck 

scale zero point energy densities. However space appears to be flat on average regardless of 

this massive Planck scale zero point energy density so something must be different. In section 

5.2.1 we argued that the curvature of space is consistent with a constant graviton background 

density G  as in Eq. (5.2. 11). We calculated this graviton density G  assuming gravitons 

only couple to the average density U  of energy, plus baryonic and dark matter in the 

universe. If long wavelength gravitons coupled to all virtual pairs emerging from the vacuum 

there is just not enough zero point energy at cosmic wavelengths to build them. We argued 

that spacetime warps around any departure from a uniform background mass density U .  

So let us similarly conjecture the possibility that secondary interaction gravitons (as distinct 

from primary interaction gravitons as in section 4.2.1) only couple to any departure from the 

uniform background of virtual pair creation. If real gravitons in gravitational waves signal 

spacetime how to behave, then virtual gravitons coupling to departures from uniform 

backgrounds also somehow signal space how to expand (as in section 5.3). However even if 

there are no mink gravitons coupling to virtual pairs, there must still be sufficient quanta 

available in the zero point vector fields to build the virtual particles themselves. It would 
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initially seem that this requirement would exceed that for gravitons. Particle lifetimes are key 

here. About 99% of graviton superpositions have lifetimes of T the age of the Universe 

where the uncertainty principle only allows energies 1 1

min CCHE k R T     . Available zero 

point energies are limited for only such long lifetime superpositions. On the other hand most 

virtual pairs have extremely short lifetimes where the uncertainty principle allows much 

greater supplies of zero point energies to build their superpositions. Because of this we will 

ignore this issue when applying Eq.   (5.3. 12).  

6.2.3 The primary to secondary graviton coupling ratio G   

In Eq. (4.2. 14) we found 318.3G   as the ratio between the primary graviton coupling to a 

bare Planck mass and the normal measured gravitational constant G. Equation (5.3. 14) 

defined graviton coupling between Planck masses G . If 1G   as we had expected, the ratio 

between primary and secondary graviton coupling (as defined for colour and 

electromagnetism in Eq. (3.3. 2) would be
1 318.3G G G G        . But we found in section 

5.3.2 that the graviton coupling constant between Planck masses was 1/ 2,800G   implying  

 
1The primary to secondary graviton coupling ratio 2,800 318.3 890,000G G G         (6.2. 7) 

However this is obviously very approximate. Equation  (6.2. 7) can also be interpreted as the 

primary graviton coupling to preons is (318.3)G  and the secondary graviton coupling is 

/ 2,800G . To solve graviton superpositions we can use Eq. (3.3. 16) which is the 

gravitational interaction probability between fermions and we can now put on the RHS the 

coupling ratio  890,000G   in the same way as we did for Eq.(3.3. 21) 
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But from Eq. (4.4. 1) 6 6 6 6 2* (1 * ) /  2 / 50.4053 0.199194Ca a a ac c c c     
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 
. Using Eq.(4.4. 3),

4* 170.95n nc c n    

for spin 2, 2N   we get the infinitesimal mass graviton superposition values in Table 4.3. 1. 

The probability of a graviton, of the same mass/energy as say photons, gluons or fermions etc 

exchanging gravitons, (using the same procedure as in Eq. (3.3. 16)) is 
810  of the 

probability of photons, gluons or fermions exchanging gravitons. This is consistent with 

gravitational energy not being included in the Einstein tensor and why we said in section 
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1.1.1 that gravitons may not emit gravitons. This implies that the gravitational constant does 

not run with wavenumber k at high energies as the other coupling constants do. This is why 

we can use the normal gravitational constant G as the secondary gravitational coupling 

constant SG  where we put the primary gravitational coupling to bare preons as 

P G S GG G G     in Eq.(4.2. 3). 

6.2.4 N=1 & N=2 Bosons and the Higg’s mechanism 

In the Standard Model the Higg’s mechanism adds mass to zero mass photons but here we 

say it adds mass to infinitesimal mass photons but not only does it do that, it also converts 

them from from 2N   to 1N  , and also from 3,4,5n   to 4,5,6n  superpositions.  

6.3 Black Holes, the Firewall Paradox and possible Spacetime Boundaries  

Several recent papers [14] [15] [16] [17] [18] have discussed the BH firewall paradox. In 

section 5.2.2 we use the fact that outside observers see infalling mass remaining on the 

horizon. In fact if we look carefully at the analyses in sections 5.2.1 & 5.2.2 we see they 

strongly suggest that GR cutsoff at the BH horizon; one of the possible firewall paradox 

implications. The equations we derived do not work inside the horizon. Our argument that 

comoving observers see a constant graviton density being consistent with GR will not work 

inside the horizon. Is it possible that the horizon of a Black Hole could well be a spacetime 

boundary?  

6.4 Dark matter possibilities 

Table 4.3. 1 shows a spin 2, 1N   neutral massive graviton type superposition that 

exchanges infinitesimal mass 2N   graviton superpositions 
810  more strongly than 2N   

gravitons exchange 2N   gravitons. It may possibly be only detected via these graviton 

interactions. 

6.5 Higgs Boson 

It is not clear if the Higgs boson is a spin zero superposition so it is not in Table 2.2. 1; but if  

it is, it would be some superposition of infinite superpositions with a total angular momentum 

vector summing to zero just as two spin ½ fermion superpositions can for example. 

6.6 Constancy of fundamental charge  

It has always been fundamental that the electromagnetic charge of protons and electrons is 

precisely equal and opposite to get a neutral universe. In section 4.2 we showed that the 

probability of superpositions was (1 ) /sN dk k   where the infinitesimal  is proportional 

to rest mass squared and thus different for various particles. We used this probability to 

determine interaction coupling strengths in section 3.3. This suggests that the probability of 
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virtual photon emission is also proportional to the probability (1 ) /sN dk k   of each 

superposition, and would not be precisely equal for electrons and protons due to small 

variations in   of the order of 
4510  between electrons and quarks. If however we look 

closely at Eq.(4.2. 3) and the following equations, by adding the amplitude for gravity at right 

angles we effectively added the probabilities of spin 2 gravity generated superpositions to 

those of spin 1 colour and electromagnetic superpositions. If somehow only those 

superpositions generated by spin 1 electromagnetic and colour interact with spin 1 photons 

this would cancel any minute difference in charge. If this is not so then there are infinitesimal 

differences in charge of the order of 
4510 which would surely have shown up in some form 

by now unless there are minute differences in the total number of electrons and protons. 

6.7 Feynman’s Strings 

Over a century ago there were various models of the electron. The Abraham-Lorenz was 

probably the most well-known [19] [20].  All these models suffered from the problem that the 

electromagnetic mass in the field was 4/3 times the relativistic mass. In 1906 Poincare 

showed that if the bursting forces due to charge were balanced by stresses (or forces) in the 

same rest frame as the particle, these would cancel the extra 1/3 figure restoring covariance 

[21]. In chapter 29 Volume II of his famous lectures on physics, Feynman, probably jokingly, 

suggested that if the electron is held together by strings that their resonances could explain 

the muon mass; he just may have been right [22]. The equations for infinite superpositions in 

this paper apply equally to all massive particles. Also, as infinite superpositions are held 

together by interactions with zero point forces in the same rest frame, could these zero point 

interactions possibly be Feynman’s strings? If they hold the virtual preons in orbit, it would 

seem that they should also be able to balance any bursting forces due to electric charge. 

However this paper suffers from the same problem as the Standard Model. There is nothing 

in it suggesting the quantization of mass of the massive particles; but it does however suggest 

the mass of infinitesimal rest mass particles.  

7  Conclusions 

If fundamental particles are built from infinite superpositions then why do we never see any 

sign of them? It is important to remember that all components of infinite superpositions are 

virtual and only complete infinite superpositions can behave as real particles.  If infinite 

superpositions could be somehow decomposed into their virtual components this would 

destroy the resulting equivalent real particle. Could it be that particle conservation laws 

controlling the behaviour of fundamental particles somehow prevent any sign of their virtual 

components? Also the viability of this paper depends on primary interactions where spin zero 

preons can borrow mass from some Higgs type scalar zero point field, and energy from 

colour and electromagnetic zero point vector fields. The behaviour of these primary 
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interactions is very different to the secondary interactions that the SM is all about. The SM 

rules applying to borrowing mass and energy from scalar and vector zero point fields may not 

apply to primary interactions; but the secondary interactions of QED, QCD etc of the SM 

applying to fundamental particles must equally apply to infinite superpositions. We have also 

not discussed gravitational waves. Just as a minute graviton coupling constant can lead to 

much larger changes in the metric around mass concentrations, we can imagine similarly 

small emmissions of real 2m    gravitons leading to larger waves in the metric. Finally, this 

paper suggests that if fundamental particles can in fact be built from infinite superpositions:  

 Quantum mechanics may well rule the exponential expansion of space and the 

warping of spacetime around concentrations of mass/energy.  

 The warping of spacetime around mass concentrations and the exponential expansion 

of space may possibly be the only evidence of infinite superpositions we will ever see.  

 General Relativity (in an infinitesimally modified form affecting cosmic scale only) 

could well be a consequence of Quantum Mechanics.   

 The interaction between gravitons is minute in relation to the apparent attraction 

between mass concentrations due to metric changes. This may cause a small 

repulsion that could be a factor determining the rate of the exponential expansion. 

 General Relativity may not apply inside Black Holes, and the event horizon itself may 

possibly be a Spacetime Boundary, as infinite superpositions will not form inside 

them.  

 

8 Addendum 

The finding in this paper suggesting consistency between an infinitesimally modified General 

Relativity (affecting cosmic scale only) and all observers seeing constant background  

graviton densities (appropriate to their velocities relative to comoving coordinates)  only 

considered the gravitons interacting between a small mass (in relation to the rest of the 

cosmos) and the mass of the rest of the cosmos. For clarity and simplicity those gravitons 

emitted by the small mass itself were ignored. Their effect is small except close to black 

holes. This second order effect will be explored in a separate paper.  
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