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Abstract 
 
This paper is about designing a platform for creating formalized semantic representations to 
express algorithmic knowledge and their implementations in a high level language program. 
Representations are mechanisms for expressing any linguistic utterance. Improvements in 
human understanding of those utterances is achieved when each of those utterances are 
expressed using representations with the most appropriate semantic properties. This principle is 
applied for design of this platform.  The platform can be used by computer scientists, teachers 
and engineers who make attempts at conveying their knowledge about a specific algorithm and 
its corresponding high level language program. The principal objective of the platform is aimed 

at improving human understanding of representations for algorithmic knowledge.  
 

The problem at hand 
 
Conventionally, computer scientists include logic descriptions, diagrams and source code 
implementations for explaining an algorithm. The descriptions express execution sequence, 
boundary scenarios, and logic intent using natural language constructs.   The source code 
formalizes implementation of the algorithm. However, this approach could be very limiting for 
the following reasons: 
 

1) Ambiguity present in natural language descriptions.  
2) Mapping program fragments present in source code to rationale descriptions present 

in natural language. The reader might comprehend the overall meaning from natural 
language descriptions, but may fail to relate discrete components of such meaning 
with the constructs in the source code implementation being presented. In effect the 
reader might find it difficult to justify if the content he has understood is the same as 
the one fed to a computer as a high level language implementation 

 

Terminology 
 
Syntax defines the set of valid sequences of symbols in the alphabet pertaining to the language. 
A programming language is defined by syntax that is specified with lexical or non lexical 
constructs and its semantics specified with meaning. A computer program is a syntactic 
utterance in a formalized representation. 
 
Semantics are constructs that represent meaning of linguistic expressions. The language can be 
a natural language, such as English or an artificial language, like a computer programming 
language. Meaning in natural languages is important to make computers better able to deal 
directly with human languages. Likewise meanings associated with artificial languages 
constructs are crucial to empower human understanding of utterances expressed in computer 
languages. In this paper, we will be analyzing the specific meaning representations required for 
rendering understandable algorithm logic and intent. 



 

User Roles 
 
The users for the platform can be classified under two categories. A creator is a person whose 
goal is to express algorithmic design knowledge using the platform. A learner is a person whose 
goal is to understand the algorithmic knowledge expressed by the creator.  

 

The Expressive Platform – A Knowledge Representation Approach 
 
We use a knowledge representation approach by constructing a knowledge model for the 
execution steps of the given algorithm. The knowledge model comprises formalized syntactic 
constructs with enhanced semantic properties. Each construct unifies syntax and semantics in a 
single representation that preserves the association between meaning and the actual utterance.  
 

 

The Knowledge Model - Design Goals  
 
1. Formalized: A knowledge model must exhaustively capture a formalized representation 

for the algorithm. Effectively such an utterance must be a syntactical equivalent of a 
high level language implementation of the algorithm. 

 
2. Compact:    A knowledge model must be visually compact so each interpretable segment 

of execution alongside its context of occurrence in the overall algorithm is exhibited 
within the space of a single screen. 

 
3. Expressive:  A knowledge model must be visually intuitive and absolve the learner from 

having to apply complex rules for understanding the utterance.   

 
To satisfy the above goals, a knowledge model must comprise the following components: 
 

1. Task representation                                                 
2. Data representation 
3. Code representation 

 

1. Task Representation 
 

Each computationally significant execution step is a task of the algorithm. A task aggregates 
operations and the data to which such operations are applied. A task representation 
provides a view of the current task in the context of all other tasks in an algorithm.  An 
implementation for the task representation must have the below semantic properties: 

 
 Exhibit topological order of all tasks in an algorithm 
 Exhibit sequencing or parallelism of tasks in an algorithm 

 
 
 



1.1 An Implementation scheme for Task Representation 
 
A Dependency structure matrix is an excellent choice for implementing the task representation. 
In the below sections we will decode the rationale behind choosing a DSM for implementing 
Task representation 

 

1.1.1 Dependency Structure Matrix – An Introduction 
 

A dependency structure matrix (DSM) is a matrix that shows relationships between tasks in 
a project. Formally, A DSM is a binary square matrix with n rows and columns where n is the 
number of tasks in a project. It has k non-zero elements, where k is the number of task 
dependencies in that project. Each non-zero entry is placed in the matrix against the tasks 
involved in that dependency.   

In our context, the project at hand is the algorithm to be represented. Hence we create a 
DSM with tasks of the algorithm. For example, consider a project that is composed of three 
tasks (or sub-projects): task "A", task “B”, and task "C".  

The use of graphs in managing complex structures is generally recognized. But the DSM 
trumps the use of graph as it provides a simple and concise way to represent a complex 
project.  The DSM is amenable to analyses techniques, such as clustering and partitioning 
that impart powerful semantic properties to the matrix. 
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In Fig 1.1, the DSM comprises two tasks ‘A’ and ‘B’ are cyclically connected. The strong 
connection between the tasks is conveyed by the high density of the matrix. In Fig 1.2, 
the two tasks are disconnected which is inferred from the empty matrix. In Fig 1.3, the 
two tasks have no cyclical dependency which is obvious from an empty lower triangular 
matrix. From reading matrix densities, we can draw inferences about the system being 
represented.  

 



 

1.1.2 Semantic Properties of a DSM - An illustration 

The semantic power of a DSM is best exploited by applying partitioning techniques over a 
created DSM. Let’s construct a DSM for a sample algorithm with tasks and their dependencies in 
Fig 2.3. By applying partitioning techniques, the matrix gets transformed to the one as in Fig 2.4. 
In the transformed matrix, the tasks are reordered and sub-matrix boundaries are drawn using 
red boxes.  

 

                                        
 

1.1.2.1 Reading the DSM 
 
Without much difficulty, a learner can identify the following facts about the transformed DSM in 
(Fig 2.4).  

               
 The upper half triangle of the matrix is empty                                                                              …….. (2a) 
 
 An empty sub matrix of size 3 is present at the bottom of the DSM against C, A & E            .…..…(2b) 

 
 All sub matrices except the one at the bottom are of size 1                                                      .……..  (2c) 

 

1.1.2.2 Inferences    
 
Going by the rules of reading modularity and sequencing, a learner can infer the 
following facts about our DSM: 
 

Fact Inference 
2a About all tasks, they have no cyclical dependencies and are topologically sorted 

2b About C,A and E,  they have no predecessors and don’t depend on each other 

2c About G, D,B,& F, each task has to complete before the next task is taken up for execution  

 
As (2a), (2b) & (2c) are visually available facts about the algorithm, the inferences listed in Table 

(2.5) can be observed almost effortlessly. 



 
 

1.1.2.3 The DSM for Task representation 

 
From Section 1.1.2, we know the semantic properties of the task representation to be used in 
our knowledge model. Now let us evaluate the semantic properties of the DSM to see if it fits as 
an implementation for our task representation. The partitioned DSM provides the topological 
order of the tasks. It also provides for distinguishing independent and sequential tasks in the 
algorithm. Thus we determine that the DSM can be used to implement the task representation. 

 

2. Data Representations 
 
For each task, the data which is being operated is denoted by data representations. Data 
representations are visual depictions of data such as trees, lists, table, graphs used as input by 
functions in each task. Data representations are crucial to visualizing structural transformations 
to data as a result of applying an operation. 

 

                       
     Tree Data                                                                Table Data                                                                             List Data 
 
 

3. Function Representation 
 
Function representations are constructs that are needed to depict operational semantics of each 
task.  They are best implemented by using Lisp S-Expressions. 

 

3.1 Implementation of Function Representation 
        Function representations are best implemented using Lisp S expressions. The Lisp S 
expression is a combination of a higher order function representing the operation and the data 
over which the operation is applied. Abstracting data from the operations that are applied to 
them enables us to represent each kind of utterances (data & operations) with the most 
appropriate semantic representations.  

                                       
                                                                                Fig 3.1 



3.2 Side Effects 

 
Lisp S expressions can represent functions that are eventually aggregated by a function for final 

goal which leaves no room for representing side effects. Incidentally, this is one of the reasons 
behind choosing them over imperative language statements. Usage of higher order functions to 

represent operations enforces explicitness in representing side effects of operations. 
 

An Implementation of knowledge Model 
 

 
 
 
A screenshot of a C++ implementation for the knowledge model is presented in Fig 4. The active 
task in the DSM is shaded. The data and function representations for the active task are 
currently displayed in the screen. The side effects of an operation are shown in the same 
horizontal line of that operation.  

 
Conclusion 
 

The paper presents lays out a scheme for implementing a system whose primary goal 
would be to expressively represent knowledge about an algorithm. We acknowledge the 
problem of having the creator and learner learn the LISP programming language to write and 
comprehend s-expressions. But the semantic power of lisp makes it a natural choice for 
representing operations with higher order functions. Benefits of human understanding might 
significantly differ depending on the contextual knowledge of the learner. The platform strives 
to present all relevant information necessary for understanding available with the roll of an 
eyeball. Improvements can be made with the level of interpreter supported and more 
sophisticated DSM algorithms use to showcase task relations. 
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