
 A Knowledge Representation for Expressing Simple Algorithms
 Sridhar Natarajan
 sridhar_n@outlook.com

Abstract

This paper is about designing a platform for creating formalized semantic representations to
express algorithmic knowledge and their implementations in a high level language program.
Representations are mechanisms for expressing any linguistic utterance. Improvements in
human understanding of those utterances is achieved when each of those utterances are
expressed using representations with the most appropriate semantic properties. This principle is
applied for design of this platform. The platform can be used by computer scientists, teachers
and engineers who make attempts at conveying their knowledge about a specific algorithm and
its corresponding high level language program. The principal objective of the platform is aimed

at improving human understanding of representations for algorithmic knowledge.

The problem at hand

Conventionally, computer scientists include logic descriptions, diagrams and source code
implementations for explaining an algorithm. The descriptions express execution sequence,
boundary scenarios, and logic intent using natural language constructs. The source code
formalizes implementation of the algorithm. However, this approach could be very limiting for
the following reasons:

1) Ambiguity present in natural language descriptions.
2) Mapping program fragments present in source code to rationale descriptions present

in natural language. The reader might comprehend the overall meaning from natural
language descriptions, but may fail to relate discrete components of such meaning
with the constructs in the source code implementation being presented. In effect the
reader might find it difficult to justify if the content he has understood is the same as
the one fed to a computer as a high level language implementation

Terminology

Syntax defines the set of valid sequences of symbols in the alphabet pertaining to the language.
A programming language is defined by syntax that is specified with lexical or non lexical
constructs and its semantics specified with meaning. A computer program is a syntactic
utterance in a formalized representation.

Semantics are constructs that represent meaning of linguistic expressions. The language can be
a natural language, such as English or an artificial language, like a computer programming
language. Meaning in natural languages is important to make computers better able to deal
directly with human languages. Likewise meanings associated with artificial languages
constructs are crucial to empower human understanding of utterances expressed in computer
languages. In this paper, we will be analyzing the specific meaning representations required for
rendering understandable algorithm logic and intent.

User Roles

The users for the platform can be classified under two categories. A creator is a person whose
goal is to express algorithmic design knowledge using the platform. A learner is a person whose
goal is to understand the algorithmic knowledge expressed by the creator.

The Expressive Platform – A Knowledge Representation Approach

We use a knowledge representation approach by constructing a knowledge model for the
execution steps of the given algorithm. The knowledge model comprises formalized syntactic
constructs with enhanced semantic properties. Each construct unifies syntax and semantics in a
single representation that preserves the association between meaning and the actual utterance.

The Knowledge Model - Design Goals

1. Formalized: A knowledge model must exhaustively capture a formalized representation

for the algorithm. Effectively such an utterance must be a syntactical equivalent of a
high level language implementation of the algorithm.

2. Compact: A knowledge model must be visually compact so each interpretable segment

of execution alongside its context of occurrence in the overall algorithm is exhibited
within the space of a single screen.

3. Expressive: A knowledge model must be visually intuitive and absolve the learner from

having to apply complex rules for understanding the utterance.

To satisfy the above goals, a knowledge model must comprise the following components:

1. Task representation
2. Data representation
3. Code representation

1. Task Representation

Each computationally significant execution step is a task of the algorithm. A task aggregates
operations and the data to which such operations are applied. A task representation
provides a view of the current task in the context of all other tasks in an algorithm. An
implementation for the task representation must have the below semantic properties:

 Exhibit topological order of all tasks in an algorithm
 Exhibit sequencing or parallelism of tasks in an algorithm

1.1 An Implementation scheme for Task Representation

A Dependency structure matrix is an excellent choice for implementing the task representation.
In the below sections we will decode the rationale behind choosing a DSM for implementing
Task representation

1.1.1 Dependency Structure Matrix – An Introduction

A dependency structure matrix (DSM) is a matrix that shows relationships between tasks in
a project. Formally, A DSM is a binary square matrix with n rows and columns where n is the
number of tasks in a project. It has k non-zero elements, where k is the number of task
dependencies in that project. Each non-zero entry is placed in the matrix against the tasks
involved in that dependency.

In our context, the project at hand is the algorithm to be represented. Hence we create a
DSM with tasks of the algorithm. For example, consider a project that is composed of three
tasks (or sub-projects): task "A", task “B”, and task "C".

The use of graphs in managing complex structures is generally recognized. But the DSM
trumps the use of graph as it provides a simple and concise way to represent a complex
project. The DSM is amenable to analyses techniques, such as clustering and partitioning
that impart powerful semantic properties to the matrix.

 Fig: 1.1 Fig: 1.2 Fig: 1.3

In Fig 1.1, the DSM comprises two tasks ‘A’ and ‘B’ are cyclically connected. The strong
connection between the tasks is conveyed by the high density of the matrix. In Fig 1.2,
the two tasks are disconnected which is inferred from the empty matrix. In Fig 1.3, the
two tasks have no cyclical dependency which is obvious from an empty lower triangular
matrix. From reading matrix densities, we can draw inferences about the system being
represented.

1.1.2 Semantic Properties of a DSM - An illustration

The semantic power of a DSM is best exploited by applying partitioning techniques over a
created DSM. Let’s construct a DSM for a sample algorithm with tasks and their dependencies in
Fig 2.3. By applying partitioning techniques, the matrix gets transformed to the one as in Fig 2.4.
In the transformed matrix, the tasks are reordered and sub-matrix boundaries are drawn using
red boxes.

1.1.2.1 Reading the DSM

Without much difficulty, a learner can identify the following facts about the transformed DSM in
(Fig 2.4).

 The upper half triangle of the matrix is empty …….. (2a)

 An empty sub matrix of size 3 is present at the bottom of the DSM against C, A & E .…..…(2b)

 All sub matrices except the one at the bottom are of size 1 .…….. (2c)

1.1.2.2 Inferences

Going by the rules of reading modularity and sequencing, a learner can infer the
following facts about our DSM:

Fact Inference
2a About all tasks, they have no cyclical dependencies and are topologically sorted

2b About C,A and E, they have no predecessors and don’t depend on each other

2c About G, D,B,& F, each task has to complete before the next task is taken up for execution

As (2a), (2b) & (2c) are visually available facts about the algorithm, the inferences listed in Table

(2.5) can be observed almost effortlessly.

1.1.2.3 The DSM for Task representation

From Section 1.1.2, we know the semantic properties of the task representation to be used in
our knowledge model. Now let us evaluate the semantic properties of the DSM to see if it fits as
an implementation for our task representation. The partitioned DSM provides the topological
order of the tasks. It also provides for distinguishing independent and sequential tasks in the
algorithm. Thus we determine that the DSM can be used to implement the task representation.

2. Data Representations

For each task, the data which is being operated is denoted by data representations. Data
representations are visual depictions of data such as trees, lists, table, graphs used as input by
functions in each task. Data representations are crucial to visualizing structural transformations
to data as a result of applying an operation.

 Tree Data Table Data List Data

3. Function Representation

Function representations are constructs that are needed to depict operational semantics of each
task. They are best implemented by using Lisp S-Expressions.

3.1 Implementation of Function Representation
 Function representations are best implemented using Lisp S expressions. The Lisp S
expression is a combination of a higher order function representing the operation and the data
over which the operation is applied. Abstracting data from the operations that are applied to
them enables us to represent each kind of utterances (data & operations) with the most
appropriate semantic representations.

 Fig 3.1

3.2 Side Effects

Lisp S expressions can represent functions that are eventually aggregated by a function for final

goal which leaves no room for representing side effects. Incidentally, this is one of the reasons
behind choosing them over imperative language statements. Usage of higher order functions to

represent operations enforces explicitness in representing side effects of operations.

An Implementation of knowledge Model

A screenshot of a C++ implementation for the knowledge model is presented in Fig 4. The active
task in the DSM is shaded. The data and function representations for the active task are
currently displayed in the screen. The side effects of an operation are shown in the same
horizontal line of that operation.

Conclusion

The paper presents lays out a scheme for implementing a system whose primary goal
would be to expressively represent knowledge about an algorithm. We acknowledge the
problem of having the creator and learner learn the LISP programming language to write and
comprehend s-expressions. But the semantic power of lisp makes it a natural choice for
representing operations with higher order functions. Benefits of human understanding might
significantly differ depending on the contextual knowledge of the learner. The platform strives
to present all relevant information necessary for understanding available with the roll of an
eyeball. Improvements can be made with the level of interpreter supported and more
sophisticated DSM algorithms use to showcase task relations.

	The semantic power of a DSM is best exploited by applying partitioning techniques over a created DSM. Let’s construct a DSM for a sample algorithm with tasks and their dependencies in Fig 2.3. By applying partitioning techniques, the matrix gets trans...
	1.1.2.1 Reading the DSM
	Without much difficulty, a learner can identify the following facts about the transformed DSM in (Fig 2.4).
	 The upper half triangle of the matrix is empty …….. (2a)
	 An empty sub matrix of size 3 is present at the bottom of the DSM against C, A & E .…..…(2b)
	 All sub matrices except the one at the bottom are of size 1 .…….. (2c)
	1.1.2.2 Inferences
	Going by the rules of reading modularity and sequencing, a learner can infer the following facts about our DSM:
	As (2a), (2b) & (2c) are visually available facts about the algorithm, the inferences listed in Table (2.5) can be observed almost effortlessly.
	1.1.2.3 The DSM for Task representation
	From Section 1.1.2, we know the semantic properties of the task representation to be used in our knowledge model. Now let us evaluate the semantic properties of the DSM to see if it fits as an implementation for our task representation. The partitione...
	2. Data Representations
	For each task, the data which is being operated is denoted by data representations. Data representations are visual depictions of data such as trees, lists, table, graphs used as input by functions in each task. Data representations are crucial to vis...
	Tree Data Table Data List Data
	3. Function Representation

