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ABSTRACT 

DENSITY FUNCTIONAL THEORY INVESTIGATION OF RSNNSR SYSTEMS 

Vadim V Nazarenko 

(Thesis director Dr. Mark E. Noble) 

 The structural variations and stabilities of RSNNSR systems were studied using 

the hybrid density functional theory (B3LYP) at various basis set levels. Computational 

methodology was based on the locally dense basis set approach (LDBS) that assigns 

various levels of the basis sets accordingly to the previously calibrated results that could 

be correlated to the experimental data.    

     The present study investigated the effect of the substituents (R) on the structure and 

the stabilities of RSNNSR systems. There were totally ten systems studied where R: H, 

CH3, CF3, tert-Butyl, C6H6,  p-NO2C6H6 ,  p-CH3OC6H6.  

     The calculations revealed that the stability of the S-N bond is enhanced if there is a 

combination of the electron-releasing effect and the electron-withdrawing one that creates 

a push-pull effect (captodative effect) in the system. An increase of a positive charge on 

one of the sulfur atoms and a negative charge on the adjacent nitrogen atom increases 

delocalization of one the S’s lone pairs that creates a conjugation with the neighboring N 

atom and the ! carbons through 2p"-3p" interactions. 

     The push-pull effect also influenced structural characteristics of the systems. One of 

the most notable ones is the variation of the NSCC dihedral angle in some of our systems 

from 89° to 21° 
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CHAPTER 1 

INTRODUCTION 

     Thiodiazenes (diazosulfides) of the general formula R-S-N=N-R! have been known for 

over one hundred years (1).  Still, the literature on the subject is scarce (1-8). There are 

several areas in thiodiazene organic chemistry which have traditionally attracted the 

attention of researchers over the years, including photographic applications, as sources of 

diazenyl and thiyl radicals, dyes, and in synthetic applications (1,3,9-12). The relatively 

modest advances in thiodiazene chemistry are based on the fact that the S-N(=N) bond is 

very unstable. Thus, species with this bond are highly labile (13), although a number of 

thiodiazene systems have a relatively stable S-N=N lineage (14,15). In the mid-1970’s, 

the interest in inorganic compounds with the S-N link was stimulated by the possibilities 

of sulfur – nitrogen chains as a potential new type of superconductive polymer (16). It 

was noticed that there is no predicted correlation between structural integrity of the 

systems and their molecular structure (9). Despite its long history there are still some 

unanswered questions about the S-N bond valency (17). 

          There is another, rather enormous research field in chemistry where S-N bonds 

play an important role. This field is located at the crossroads of inorganic, organometallic 

and biochemistry, namely, metal-sulfur chemistry (18,19). The interest in the metal-sulfur 

chemistry is promoted by the role that sulfur plays in various catalysts and enzymes. 

     All sulfur-metal catalysts can be grouped into three categories based on the particulars 

of their binding sites. The binding sites can be located on the metal centers or on the
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 sulfur atom, or the sites can involve both metal and sulfur atoms. The latter two are of 

the greatest interest to us. 

     There are several examples of sulfido catalysts where sulfur is a binding site of the 

catalysts (20-23). One area of research concentrates on the reactions between dihydrogen 

and activated sulfur. The Rakowski DuBois group reported dihydrogen homolytic 

addition to S2
2- of a dinuclear Mo catalyst at ambient temperature and pressure (20,23). 

The essence of that research can be expressed by eq 1.1, where Cp! stands for 

cyclopentadienyl or a substituted derivative. 

 

 
 
 
(1.1) 

 

     What is interesting about this reaction is that the product complex also has catalytic 

properties. Under mild reaction conditions (75° C and 1-2 atm of H2), the 

bis(hydrosulfido) dimer can hydrogenate elemental sulfur to H2S, activate ethylene and 

acetylene (eq 1.2 and 1.3), activate alkyl or aryl thiol (eq 1.4), and, participate in 

hydrodesulfurization (HDS) (eq 1.5). 

 

 
 
 
(1.2) 
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     Besides studies that involved only sulfur as a catalyst active site, there were some 

studies that included sulfur and metal as a possible active site. One of the many examples 

of S-M active sites is the activation of acetylene and other alkynes. The binding modes 

could be summarized as in Figure 1.1. 

 

Figure 1.1. Possible binding modes of metal sulfur catalysts to alkynes. 
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     One of these ways of coordination may be employed by nitrogenase to convert 

alkynes to olefins (24). The exact binding mode of the alkynes to nitrogenase is not yet 

understood. Also, the way dinitrogen binds to nitrogenase is not clear.   

     The importance of dinitrogen fixation cannot be overestimated. Diazotrophic bacteria 

can turn H2O and N2 into O2 and NH3 in mild conditions. The latter product is especially 

important for it is the primary source of nitrogen for plants’ amino acids and therefore it 

is also important for animals. An alternative way to produce ammonia from N2 and H2 is 

the Haber-Bosch process. This process requires high temperature and high pressure. 

Thus, it is essential to understand nature’s method of this process in the hope we can 

improve the industrial production of ammonia.  

    In nature, there are several bacteria that use nitrogenase enzymes. The enzymes consist 

of a complex of two metalloproteins, the homodimeric Fe-protein and the MoFe-protein. 

(V/Fe and Fe-only versions of the latter are also known but are much less common than 

the Mo/Fe protein.) The MoFe protein consists of two metal clusters: the P cluster that 

consists of Fe and S, and the MoFe-cofactor. It is presumed that reduction of dinitrogen 

occurs at the MoFe-cofactor through electron acceptance from the Fe protein and the P 

cluster (20-22). 

     Until recently it was thought that a solution to the problem of nitrogen fixation was 

within our reach (25,26). But, at this point in time, we are not even sure about the exact 

structural formula of the protein. The understanding of nature’s process seems further 

away than previously thought (27). In the early 1990’s there was a consensus that the Fe-

Mo cofactor of nitrogenase had the structure shown in Figure 1.2. 
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Figure 1.2. Proposed structure for the Fe-Mo cofactor prior to the 2002 (21). 

 

     The most recent study proposes a new structure for nitrogenase cofactor with an 

additional atom inside the cluster, shown in Figure 1.3. 

 

Figure 1.3. The most recent proposal for the structure of the Fe-Mo cofactor (22). 

 

     The identity of the atom ‘X’ is not known with certainty but it could be nitrogen, 

carbon, oxygen or sulfur (28). Also, the researchers are not sure if the atom ‘X’ is a part 

of the cofactor structure or if it is a byproduct of the natural enzymatic activity of the 

nitrogenase.    

     The way by which nitrogenase binds dinitrogen is not clear. Several approaches have 

been studied over the years. In light of the above-mentioned facts, it is possible that the 

metal-sulfur active sites might involve sulfur atoms during activation of a substrate as 

was noted above (29). Also, the presence of sulfur atoms in all types of nitrogenase 
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cofactors allows for sulfur-nitrogen bonds to be one possible step in the activation and/or 

reduction of dinitrogen at the active site. Some studies have postulated hydrogen bonding 

by the sulfur atom in the catalytic activity of the nitrogenase cofactor.  This can be 

illustrated by Scheme I (30). 

 

Scheme I 

However, there remains the possibility for direct S-N covalency.       

     Our research group also made progress in synthesizing novel complexes of a 

sulfidomolybdenum dimer with sulfur as a binding site for substrate, for example, 

arenediazonium ion (1,6,8). The general reaction is represented by eq 1.6. 

 

 
 
 
(1.6) 
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Besides, there were other compounds studied that were derivatives of the 

sulfidomolybdenum dimer (eq. 1.6), and that involved S-N bond, namely, the 

dimolybdenum thionitrites Mo2SN=O and the dimolybdenum sulfenimines Mo2SN=CH2, 

Mo2SN=CHR, and Mo2SN=CR2 (6,8). The studies established that the substituents on the 

nitrogen atom influenced stability of S-N bond. The most stable were dimolybdenum 

sulfenimines, the least stable were the dimolybdenum thionitrites. 

     This notion introduces the need to study such covalent interactions. The present work 

involves computational studies of bis-thiodiazenes, RS-N=N-SR, as a study model for 

such interactions.  

     In the present research we investigated the impact of structural variations of the 

systems with the general formulae R-S-N=N-S-R on the covalency of the S-N bond and 

its energy. There were 14 systems studied. The study demonstrated the dependence of the 

S-N bond stability on the electronic environment of the substituents that were attached to 

the sulfur atom. The work reported here further advances our understanding of the S-N 

bond in the thiodiazene compounds and related systems. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1 INTRODUCTION 

     (Much of the material of this chapter is derived from references 24-31.) 

     An experiment that was performed by two American physicists, Clinton Davisson and 

Lester Germer, in 1925 demonstrated that particles have wave-like properties (25). Thus, 

it was established that matter has particle and wave character, which is termed wave-

particle duality. In order to describe a position of a particle in space, we need to take into 

the consideration its wave-like character and to look at it as the amplitude of a wave. The 

wave in quantum mechanics that replaces the classical concept of trajectory is called a 

wave function and is denoted #.  

     In 1926, the Austrian physicist Erwin Schrödinger presented an equation for finding 

the wave function of any system (25,26). The general formula of the non-relativistic 

time-independent Schrödinger equation is 

                                                                 !" = E"                                                   (2.1) 

where ! is the Hamiltonian differential operator for a molecular system representing the 

total energy (25-27): 

         ! =            (2.2) 
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     In the above equation, the first two terms describe the kinetic energy of the electrons 

and the nuclei. The third term represents the coulomb attraction between electrons and 

nuclei. The remaining two terms define the repulsion between electrons and nuclei. 

      The Schrödinger equation cannot be solved exactly for systems with more than two 

particles or for systems with distorted potential. The goal of quantum chemistry, 

therefore, is to find approximate solutions for the Schrödinger equation. We are going to 

discuss only approximation methods that are employed in the Hybrid Density Functional 

Theory methods.    

2.2 BORN-OPPENHEIMER APPROXIMATION 

     The first approximation to the Schrödinger equation to consider is the Born-

Oppenheimer approximation. This approach treats nuclear motions and electron motions 

separately; it regards the nuclei as fixed in position, solving the Schrödinger equation 

only for the electrons in the static electric potential arising from the nuclei. Hence, the 

complete Hamiltonian loses the second term, the kinetic energy of nuclei, and the last 

term, the repulsive interactions between nuclei, can be expressed as a constant.  

     A modified Hamiltonian or electronic Hamiltonian that describes the motion of 

electrons in the field of the stationary nuclei could be expressed as: 

                                 !elec =                                   (2.3) 

The solution to the Schrödinger equation with !elec is then the electronic wave function, 

"elec, and the electronic energy, Eelec. "elec and  Eelec depend on the electronic coordinates 

(r, ms) but do not explicitly depend on the nuclear coordinates, only parametrically (R) 

(24). 

     The approximated Schrödinger equation, then, will have the form 
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                            !elec "elec(r, ms; R) = Eelec (R) "elec(r, ms; R)                                      (2.4) 

     The Born-Oppenheimer approximation uses the same approach to solve for nuclear 

motions. In this case, nuclei are considered as being in the electric potential arising from 

the electrons. A nuclear Hamiltonian is: 

                                          !nuc = + Etot ({RA})                                (2.5) 

where  

                                         Etot =  Eelec + Enuc = Eelec +                               (2.6)  

{RA} is an electronic Hamiltonian that serves as an electronic potential function for the 

internuclear motion.  

     From now on we will use mainly the electronic Schrödinger equation, eq 2.4. 

2.3 VARIATIONAL APPROXIMATION METHOD 

     The variational method that uses Eckart’s theorem (32) as its base was devised by 

J.W. Rayleigh. The variational method states that the energy, E*, computed as the 

expectation value of a Hamiltonian, !, from a trial normalized function, " *, will always 

be higher than the true energy, E0, of the ground state. Using bracket notation proposed 

by Paul Dirac (33), we could state that: 

                                   ""*#!#" *$ = E*(%,&,'...) (  E0 = " "0#!#" 0$                         (2.7) 

where %, &, '... are some arbitrary variational parameters. The expression, E*(%, &, '...) ( 

E0, holds if and only if " * = " 0.  

     Therefore, to find the ground state energy and ground state wave function, we need to 

minimize the expectation value of ""*#!#"*$ by manipulating the variational parameters 
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on which it depends. Saying this differently, we need to minimize the Rayleigh ratio, E*, 

which is defined as 

                                                           E* =  

 As we can see, we can minimize the functional E["] by searching through a certain set of 

wave functions (24,27). 

     The variational method is used for another approximation – the Hartree-Fock 

approximation method. 

2.4 THE HARTREE-FOCK APPROXIMATION METHOD  

     The Hartree-Fock method includes a cluster of various approximations and methods 

including those that were mentioned above. 

      Historically, the Hartree-Fock approximation was started as D.R. Hartree’s proposal 

to treat each electron of a physical system separately, representing each electron by a 

separate wave function, and with each electron occupying a separate orbital. An electron, 

then, would move in an average potential that is a product of all other electrons and the 

nuclei. Later, the approach was improved by V. Fock and J.C. Slater and it became 

known as the Hartree-Fock self-consistent field method or the Hartree-Fock method.       

          An orbital that is occupied by a single electron could be described by a wave 

function that includes space coordinates of the i-th electron, "(ri) , and one of two 

orthonormal spin functions, %(i) and &(i), with spins + ! and -!, respectively (24,25,31). 

A combined space-spin wave function is called a spin orbital and could be expressed as 

                                                           $(i) = "(ri) %(i)                                                (2.8) 

or 
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                                                           $(i) = "(ri) &(i)                                                 (2.9) 

       A many-electron system Hamiltonian is a sum of one-electron Hamiltonians. 

Consequently, it makes a many-electron wave function, called a Hartree product, a 

product of single electron spin orbital wave functions (24). 

                                       "(1,2,…,N) = $a(1) $b(2),…,$n(N)                                     (2.10)  

The energy of a wave function of a multi-electron system, therefore, will be a sum of the 

single spin orbitals of the system. 

                                                      E = %a + %b +....+%n                                               (2.11) 

     A many-electron system that has paired electrons must take into account the Pauli 

exclusion principle: “The total wavefunction must be antisymmetric under the 

interchange of any pair of identical fermions and symmetrical under the interchange of 

any pair of identical bosons” (25). A fermion is an elementary particle that has half-

integral spin, such as an electron. A boson is an elementary particle that has integer spin. 

      Taking into account the antisymmetric character of the many-electron system, we can 

express the ground state of such system as a secular determinant that consists of spin 

orbitals.  

               " 0(1,2,…,N) ) "(1,2,…,N) =           (2.12)  

where $a, $b,…,$n are spin orbitals with N number of electrons and  is a 

normalization factor. The wave function "(1,2,…,N), given by eq 2.12, is called a 

determinantal wave function or, simply, a Slater determinant, paying a tribute to J.C. 
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Slater who first proposed to use it for quantum mechanical applications. The Slater 

determinant could be expressed by its shorthand notation, using its diagonal elements 

only, as 

                              "(1,2,…,N) = det *$a(1) $b(2)…$n(N)*                            (2.13)       

     By swapping the places of two electrons of any electron pair, the sign of the 

determinant will change and that demonstrates its antisymmetric nature. Also, if two 

electrons occupy the same spin-orbital, the determinant will be equal to zero; that 

demonstrates that only one electron can occupy a spin orbital as a requirement of the 

Pauli exclusion principal. The exchange of two electrons with the same spin is correlated; 

that is called exchange correlation.  Although the Slater determinant takes into account 

exchange correlation of two electrons with parallel spins, it neglects dynamic correlation 

of electrons with opposite spins. Because the motion of two electrons with opposite spins 

is not correlated, it is said that a single determinantal wave function is an uncorrelated 

wave function (24). 

     At this point we would like to recall the variational approximation method. Using the 

variation method we can find the spin orbitals that will give us the Slater determinant that 

yields the lowest energy.  The individual spin orbitals are part of the Hartree-Fock 

equations, which are defined as      

                                                              i $i(i) = %i$i(i)                                           (2.14) 

where i = 1,2,…, N, %i is the orbital energy of the spin orbital, and i is an effective one-

electron operator called the Fock operator: 



 14 

                                       i = + +  +                    (2.15)  

     The first two terms represent a core Hamiltonian for electron i, i.e., the kinetic energy 

and the potential energy. The third term is the Hartree-Fock potential. u is a set of spin 

orbitals a,b,…,n. The Coulomb operator, #u , and an exchange operator, u , are defined 

as follows: 

                                      #u (i) $i(i)  = $i(i)                  (2.16)  

                                     u (i) $i(i) = $u(i)                  (2.17) 

The Coulomb operator represents the Coulombic interactions between electrons. Because 

these interactions are space related, the operator is called the local Coulomb operator. 

The exchange operator operates on spin orbitals of all points of space and is called a non-

local operator.   

     Just as soon as we tackle the problem with spin-space correlations of the spin orbitals, 

we need to look at a situation where electrons of different spins are not combined in the 

same space or they are considered separately with different effective potentials for each 

electron. Such systems are called open-shell systems that have unrestricted HF 

approximation, as opposed to the systems with paired electrons or closed-shell systems 

with restricted HF approximation. 

     As seen above in eq 2.14, the Hartree-Fock equations are integro-differential 

equations and their spin orbitals are their eigenfunctions and their corresponding energies 

are eigenvalues. Having said that, we should notice that exact solutions for integro-
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differential equations are possible only for spherically symmetric systems such as atoms. 

Also, we should notice that, because the Fock operator has a functional dependence on 

the solution of the spin orbital, the Hartree-Fock equations are not true linear eigenvalue 

equations; instead, these are nonlinear, pseudo-eigenvalue equations that should be 

solved iteratively. Once solved, the Fock operator becomes a Hermitian operator, which 

leads to spin orbitals with the lowest energy values. This, however, does not help us to 

solve spin orbitals of the non-spherical, non-symmetrical systems such as those of most 

molecules.  

     To resolve such a problem, Roothaan proposed to use a set of known spatial basis 

functions for describing a motion of a single electron that enables one to express 

molecular orbitals as a linear combination of atomic orbitals. 

                                                              #i =                                                (2.18)       

Here, $µ is a set of the basis functions, and cµ i are variational parameters or the expansion 

coefficients upon which a solution of a molecular orbital depends; K is the number of 

basis sets. We should notice that a spin variation is not a part of the variational 

parameters of the basis functions. Known spatial basis functions, i.e. spatial integro-

differential equations that represent them, could be expressed as matrix equations. 

Therefore, by substituting eq 2.18 into eq 2.14 and, then simplifying, we have 

                                            (1) (1) = %i (1)                           (2.19)    

     Multiplication of eq 2.19 by the complex conjugate function  on the left for a given 

µ, and then integrating it over all space will yield a matrix equation 
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                                        =                 i = 1,2,3,…,K          (2.20)    

where Fµ is the Fock matrix and Sµ is the overlap matrix. The Fock matrix is defined as 

                                                   Fµ&  =                                       (2.21)  

The overlap matrix is defined as 

                                                           Sµ =                                           (2.22) 

The solution to the determinant must be 

                                                       det  + = 0                                        (2.23)      

Eq 2.20 is a representative of a set of the Roothaan equations. Each equation represents 

one electron, i.e. one value of i. The whole set of equations could be represented as  

                                                               Fc = Sc%                                                     (2.24)   

where c is a matrix of the expansion coefficients cµi, and % is a diagonal matrix of the 

orbital energies %i. 

     The Roothaan equations cannot be solved directly because the Fock matrix depends 

on the spatial wave function #i. Therefore, by varying the coefficients, cµi, and by 

expressing the operators and functions as matrices, the equations could be solved 

iteratively.  

     The Fock matrix, Fµ, could be represented in the terms of the Fock operator, , 

F&µ =  

     =  +       (2.25) 
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In order to express the functions $i as matrices, we substitute a basis set function, $µ, for 

the spin orbital, $i,, in eq 2.16 and eq 2.17  

                          #u (1) $& (1) =  $& (1)                          (2.26)   

By multiplying eq 2.26 by the complex conjugate function (1) and, then by integrating 

it, we have 

                                     =                         (2.27) 

where  is the two electron repulsion integral. 

     The exchange term could be expressed as 

                                      =                       (2.28) 

where  is the two electron exchange integral. 

     The Fock matrix (equation (2.25)) could be expressed as 

                                 F'µ = "core +                         (2.29) 

where P'( is a density matrix or a charge-density bond-order matrix, and can be defined as  

                                                           P'( = 2                                              (2.30)    

A density matrix is based upon the probability density distribution function, or the charge 

density, or the electron density 

                                                   )(x) = 2                                           (2.31)         
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     Having the basic theoretical foundations of the Hartree-Fock self-consistent field 

method laid out, we can approach its procedural part. 

     First of all, the number, positions and identities of nuclei, the number of electrons of 

the molecule, and the basis set are assigned. Then, by assuming an initial set of orbitals, 

we can calculate an initial set of Fock operators. Having calculated the Fock operators, 

we can substitute them into eq 2.20 to compute a new set of orbitals, which concludes the 

first cycle of the SCF. The cycles will continue until there is no difference between two 

subsequent cycles. In reality, the difference between two cycles is almost never equal to 

zero but instead to an accepted threshold value. Iterations proceed self-consistently, and 

that explains the name of the procedure.  

2.5 DENSITY FUNCTIONAL THEORY 

      The corner stone of density functional theory (DFT) is the electron density. An idea 

to express a system’s total energy as a functional of the electron density was introduced 

by Thomas and Fermi, but it took a number of scientists (34,35) and dozens of years to 

make this theory available for practical purposes to computational chemistry.   

     The most important part of DFT that attracted scientists was its inexpensive 

calculations. We know that the wave function depends on 4N variables, where N is the 

number of electrons. Each electron has four variables, three spatial and one spin. In 1964, 

Hohenberg and Kohn came up with the first Hohenberg and Kohn theorem that states 

“the external potential Vext( ) is (to within a constant) a unique functional of )( ); 

since, in turn, Vext( ) fixes !, we see that the full many particle ground state is a unique 

functional of )( )” (34,35). As the definition of this theorem shows, the electron density 

could uniquely determine the Hamiltonian and, therefore, the energy of the system. The 
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electron density is experimentally observed and depends on 8 variables, not 4N. Let us 

discuss DFT in more detail.  

     As we saw from the previous part of this Chapter, eq 2.31 permitted us to predict the 

probability to find an electron in a volume dxi. Eq 2.31 could be expanded including not 

one but two electrons, giving us a possibility to calculate the pair density. 

                          )2(x1,x2) = N(N-1) dx3…dxN                             (2.32)  

The pair density, however, depends on the Coulombic forces and antisymmetric nature of 

the wave function that could be taken into an account by the reduced density matrix for 

one and two electrons (eq 2.33 and eq 2.34). 

               )1(x,x*) = N  (x,x2,x3,…,rN)#• (x*,x2,x3,…,rN)dx2dx3 …dxN                    (2.33) 

  )2(x1,x2, x1*, x2*) =   (x1,x2,x3,…,rN)#• (x1*,x2*,x3,…,rN)dx3 …dxN        (2.34)     

     We should notice that x1 = x1* and therefore 

                                                  )2(x1,x1) = +)2(x1,x1)                                             (2.35)             

Taking into account exchange-correlation effects (see eq 2.16 and eq 2.17) we have 

                                         )2(x1,x2) = )(x1) )(x2)[1 + f(x1; x2) ]                                 (2.36)   

where f(x1; x2) is the correlation factor. The Fermi exchange and the Coulomb correlation 

produce the so-called exchange-correlation hole that is equal to the charge of one 

electron. The idea of the exchange-correlation hole is a theoretical basis for the exchange-

correlation energy that could be defined as: 

                                                   EXC[)] = EX[)] + EC[)]                                          (2.37) 

It should be noted that exchange energy is the largest contributor to the overall exchange-

correlation energy. 
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     Going back to the first Hohenberg-Kohn theorem, we can express the ground-state 

electronic energy as: 

                          E0[)0] = (x) VNedx  + T + Vee[)0] + EXC[)0]                            (2.38) 

where T represents kinetic energy.  

     Also, 

                                                  E0[)0] = (x) VNedx + FHK[)0]                          (2.39) 

where FHK[)0] is the Hohenberg-Kohn functional which is a universal functional that is 

independent of external potential and is defined as 

                                                  FHK[)0] =                                          (2.40)   

Therefore, we can say that there is direct correlation between the electronic density )  of 

the ground state and the external potential VNe 

                                                            E0 = [)0]                                                 (2.41)   

     The second Hohenberg-Kohn theorem laid the foundation for the variational principle 

in DFT. According to this theorem, the energy obtained from any trial density )t(x) which 

has the number of electrons (N) of the system as its functional,  = N, is the 

upper bound to the true ground state energy. 

                                                            E0 , [)t]                                                 (2.42)   

     The Hohenberg-Kohn theorems, however, do not specify functionals that should be 

used for solving DFT problems. In 1965, Kohn and Sham (KS) (35) developed a practical 

approach for the implementations of the Hohenberg-Kohn theorems. 
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     The main idea of the KS approach is to express the kinetic energy T (see eq 2.37) of a 

system as a Slater determinant (eq 2.12) of the non-interactive, imaginary electrons. 

Therefore, 

                                                     T = +                                          (2.43) 

where ,i is a spin orbital, called a Kohn-Sham orbital. In parallel to eq 2.14, we have 

                                                            KS,i = %i,i                                                  (2.44) 

where the Kohn-Sham operator KS is defined as 

                                                        KS = + + Vlp                                             (2.45) 

where Vlp is local potential. As we can see, eq 2.44 represents a single-particle equation 

that includes density of the system. 

      Despite the fact that we are not using real electrons still, we obtain the real electron 

density  

                                                        )(x) =                                               (2.45) 

This electron density could be used for the calculations of the exchange-correlation 

energy that is a centerpiece of the Kohn-Sham approximation method, which is expressed 

as  

                                                [)] = +                                      (2.46) 

where LDA stands for the approximation of the exchange energy that in DFT is called the 

local density approximation (LDA). The name LDA is derived from the fact that the 
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exchange energy, which by nature is non-local, depends on the local values of the 

electronic density as shown in eq 2.46. 

      The exchange potential is 

                                                    (x) = +                                         (2.47) 

The total exchange-correlation energy could be expressed as  

                                                =                                       (2.48) 

where  is the exchange-correlation energy distribution per unit volume of the 

electronic density with local dependency.  

     If we go beyond LDA’s dependence on electronic density )(x), but substitute it for 

electronic spin densities )-(x) and )!(x) that are composite parts of )(x) 

                                                     )(x) = )-(x) + )!(x)                                              (2.49)        

then we have the local spin-density approximation (LSD) whose energy could be 

expressed as 

                                            =                             (2.50) 

     Accounting for non-homogeneity of an electron density made significant improvement 

for the computations of the exchange-correlation energy. This was done by introducing 

the generalized gradient approximations (GGA) that uses the generalized gradient of the 

charge density, -)(x).  Therefore, 

                                          =                                   (2.51) 

and also 

                                                     =  +                                             (2.52)    
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     The exchange part of the exchange-correlation energy could be expressed as: 

                                          =  +                             (2.53) 

where s. is the reduced density gradient for spin . (local inhomogeneity parameter) 

                                                      s.(x) =                                                  (2.54)         

In 1988, Becke further improved the GGA by introducing the gradient-corrected 

exchange functional 

                                         =   +                              (2.55)    

where ! is experimentally determined exchange energies of inert gases that is equal to 

0.0042 Hartrees (36).   

     For the gradient-correlated correlation functionals, we should mention two of them, 

namely those of Perdew and Wang, 1991 (PW91) (55-58) and Lee, Yang and Parr, 1988 

(LYP) (41,42). 

     According to PW91, the local part of the correlation energy is 

                                              [)] = dx                                     (2.56) 

where 

                                                           rs =                                                  (2.57)      

and 

                                                           / =                                                   (2.58)               
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     LYP is another gradient-corrected correlation functional. LYP is not based on  

and uses parameters that were derived for the correlation energy of the helium atom. It 

includes one empirical parameter and some local components. We should note that the 

correlation functionals described here, PW91 and LYP, concentrate primarily on the 

dynamic or short-range correlation effects.  

     In 1993, Becke proposed DFT/HF hybrid functionals by a combination of the density 

functionals for exchange and exact Hartree-Fock exchange (61). The hybrid DFT that 

uses three empirically obtained parameters could be used in conjunction with LYP or 

PW91 correlation functionals. The values of Becke’s three parameters were based on 56 

atomization energies, 42 ionization potentials, 8 proton affinities, and second-period 

elements’ atomic energies (43). The B3LYP exchange-correlation energy expression is 

                        = (1+a)             (2.59) 

where a=0.20, b=0.72, and c=0.81. The '=0 limit represents the exchange contribution of 

a Slater determinant.  

     Because of the contribution from HF, hybrid DFT could be solved iteratively 

employing SCF as was described above.   

2.6 BASIS SETS 

     As mentioned above in Section 2.3 of this chapter, Roothaan proposed to use a set of 

known spatial basis functions for describing the motion of a single electron that enable 

one to express molecular orbitals as a linear combination of atomic orbitals (LCAO). The 

sum of the atomic orbitals (eq 2.18) forms the basis set. There are several types of basis 

sets available today.  
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     One of them, STO-NG basis set, is a combination of two types of basis functions STO 

(Slater-type orbitals) and GTO (Gaussian-type orbitals, (44)). 

     The Slater-type functions have the form 

                                                (.,r-RA) = N                                    (2.60)                                  

where N is a normalization constant and -/ is the Slater orbital exponent. 

     The Gaussian-type orbitals have the form 

                                  #ilk (rl + Rc) = (xl  + xc)i(yl  + yc)j(zl  + zc)k                     (2.61)                             

where (xc,yc,zc) (xl,yl,zl) are the Cartesian coordinates of the center of the Gaussian at Rc 

and the Cartesian coordinates of an electron at rl, respectively; -% is the Gaussian orbital 

exponent.  

     In order to achieve higher accuracy in calculations, several Gaussian functions (also 

called primitive Gaussian functions) are linearly combined together to produce a 

contracted Gaussian function (CGF), /, of the form 

                                                              /j =                                                (2.62) 

where dji are the contraction coefficients and g is the primitive Gaussian function with i 

parameters.  

     The simplest basis set is that with one function representing one orbital. A minimal 

STO-3G basis set would include linear combination (contraction) of three primitive 

Gaussian functions. Substituting each of the minimal basis functions with two basis 

functions will improve the STO-NG basis set. The name for this new, improved type of 

basis sets is double-zeta basis set (DZ). Consequently, if we use three basis functions in 

place of one minimal basis function, we then have a triple-zeta basis set (TZ). A 
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compromise between computational demands of DZ and TZ resulted in a split-valence 

basis set (SV). SV basis sets would represent each core shell atomic orbital with a single 

basis function and each valence atomic orbital with two basis functions.    

     One of the examples of the SV basis sets is the 3-21G (45-51) basis set that includes 

one function with three primitives for the inner shell and two functions for each valence 

shell orbital, a contracted Gaussian of two primitives and a single primitive.  

     In order to compensate for atomic orbital distortions when the value of the quantum 

number is larger than classically accepted, some polarization functions of p, d, f, and g 

type are added. These can be denoted as 6-31G* or 6-31G(d). Also, some corrections are 

needed for systems with diffused electronic clouds, such as ions. In this case, diffuse 

functions are added to the basis sets (6-31G*(+)).  
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CHAPTER 3 

STRUCTURAL STUDIES OF RSN=NSR TYPE SYSTEMS USING HYBRID 

DENSITY FUNCTIONAL THEORY 

3.1 INTRODUCTION 

     Structural studies of thiodiazenes have been attracting the attention of chemists for 

quite some time (2,5,6). All studies have concentrated on the monosubstituted 

thiodiazenes, RSN=NR. In this work we directed our investigation to the bis-thiodiazenes 

of the general formula RSN=NSR. Such species were reported as possible intermediates 

([PhSN=NSPh]) in the trisulphenamide decomposition reaction (52,53), but there were 

no follow up studies done.  

     Also, it is interesting to compare the structural specifics of bis-thiodiazenes to the 

geometries of their oxygen analogs, hyponitrous acid and trans-di-tert-butyl hyponitrite 

that were studied previously (11,54).   

3.2 COMPUTATIONAL METHODS 

     The calculations were performed using Gaussian 98 revision A.7 software suite (55). 

     For the calculations, we employed Hybrid Density Functional Theory (HDFT) -- 

B3LYP method with Becke’s three-parameter non-local exchange and Lee-Yang-Parr’s 

non-local correlation functionals (36,41-43,56,57).   

     There were fourteen systems studied (see following page). 

     There were several basis sets (see Section 2.6 for details) used in the course of the 

calculations.
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     (Z)-bis(hydrosulfido)diazene     (E)bis(hydrosulfido)diazene     cis-hyponitrous acid       
                   1                                                2                                              3 
 
 

                                               
   trans-hyponitrous acid    (E)-bis(methylthiolate)diazene  (E)-1-trifluoromethylthiolate- 
                                                                                                      2-methylthiolatediazene   
                    4                                              5                                                6 
 
 

                                    
(E)-bis(trifluoromethylthiolate)  (E)-bis(tert-butylthiolate)             trans-di-tert-butyl  
                    diazene                                     diazene                              hyponitrite 
                   7                                                  8                                               9 
 
 

                                       
(E)-bis(phenylthiolate)diazene                    (E)-bis(4-nitrophenylthiolate)diazene 
                     10                                                                  11 
 
 

                     

(E)-4-nitrophenylthiolate-4!-                    (E)-bis(4-methoxyphenylthiolate)diazene 
methoxyphenylthiolatediazene 
                     12                                                                   13 
 
 

 
(E)-4-nitrobenzenediazo-4!- methoxythiophenolate  
 
                    14 
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     For the initial step we used only STO-3G basis set (58,59), with three primitive 

Gaussians. Subsequent steps involved Pople-type basis sets: split valence shell double-

zeta plus polarization 3-21G* basis set, split valence shell double-zeta plus double 

polarization 6-31G(*, *) basis set, and split valence shell triple-zeta plus double 

polarization 6-311G(*, *) basis set. Polarization and diffusion functions of 6-31G and 6-

311G basis sets have been adjusted according to the computational needs. The search for 

the global minima of the potentials was verified by screening the frequency calculations 

of the systems for imaginary frequencies.     

     During our calculations, we encountered several difficulties in obtaining convergence 

for structures 8 through 14. The cause of the problem is rooted in the fact that the 

molecules have flat potentials. Force constants that are produced by the initial guess for 

the second derivative matrix from a valence force field can differ considerably from the 

true values. In order to improve calculations, the Gaussian manual (60) suggests 

computing the force constants during the initial step using higher theory level or 

computing the force constants at every point of the optimization (keywords: Opt=CalcFc, 

Opt=CalcAll). The second way to deal with the flat potentials of large systems is to 

utilize GDIIS (61) (Geometry based on Pulay’s Direct Inversion in the Interactive 

Subspace extrapolation method).  In our case, the ways proposed by Gaussian to improve 

the calculations did not yield satisfactory results. Another way proposed by Gaussian for 

certain situations was not to vary the accuracy of the integrals during the initial SCF 

cycles (keyword: scf=novaracc). This approach also produced minimal success. Although 

none of these approaches worked for us, a combination of GDIIS method and the more 
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accurate calculations of the integrals at the initial SCF cycles – “no vary accuracy”, 

produced excellent results.      

3.3 COMPUTATIONAL EVALUATION OF  (E)-4-NITROBENZENEDIAZO-4!-

METHOXYTHIOPHENOLATE, 14 

          A computational investigation, regardless of its accuracy, needs experimentally 

obtained values for validation. In our case, the experimental database is virtually 

nonexistent due to that fact that no bis-thiolatediazene compound has ever been isolated. 

Therefore, we tried to find a group of compounds that chemically and/or electronically 

were as close to the systems of interest (1-2, 4-8, 10-13) as possible, and that had 

experimental structural parameters available. Compounds that were chosen to be the 

models for the computational evaluation are 3, 4, 9 and 14.  

     Because compound 14 is chemically and electronically relatively close to some of our 

systems (10-13), and at the same time it is as computationally challenging as the systems 

of interest (all have flat potentials and the third row element sulfur), we chose to 

investigate it first. Having said that, we would like to note that we decided to investigate 

the E conformer of 14 because there was experimental data for it.      

     The geometry optimization of 14 was performed in several steps. Initial geometry 

optimization of the system was used as a basis for the next calculation and the second 

geometry optimization was used as a basis for the third computation and so on. For the 

first step, one of the simplest basis sets STO-3G was employed (for the basis set 

descriptions see Chapter 2) (58,62). Then, the following steps utilized 3-21G* (46,48-

51,63), 6-31G(d, p) (64-69), and 6-311G(d,p) basis sets (70-74).  The final stage of the 

geometry optimization of 14 involved a complex basis set approach that became known 
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in the related literature as “the splicing” (75) or locally dense basis sets method (LDBS) 

(75-79). The essence of LDBS is to assign different basis sets to different atomic centers 

of a molecule. 

     Systematic applications of LDBS began to be developed in the 1970s and early 1980s 

(63,69,71,72).  Huber and Diel employed LDBS for the calculations of the electric field 

gradients (80). Chesnut and Moore developed a LDBS method for NMR related 

calculations (81). In 1990, Jensen and Gordon applied LDBS for calculations of 

molecular geometries, Mulliken charges, and internal rotational barriers (75).  

     The systems that Jensen and Gordon studied were CH3CH2CH2OH and CH3CH2XHn, 

where XHn=F, OH, NH2, CH3. They reached the conclusion that, for geometry 

optimization, LDBS works the best across homonuclear or homoelectronegative bonds, 

such as C-C bonds. Also, they pointed out that they preferred to assign extended basis 

sets to “the chemically interesting part of the molecule” (75), while treating the rest of the 

molecule with lower levels of theory. 

     In our approach to investigate 14 we decided to assign a region of primary interest to 

the S-N=N part of the molecule (76-79). Reasons for this were that this region represents 

the weakest link of the molecule, the S-N bond is susceptible to a facile decomposition, 

and the S-N=N link is the primary object of our studies (1,3-5,9). 

     Our final, pre-LDBS step utilized the split valence shell triple-zeta plus double 

polarization 6-311G(d, p) basis set that uses three sizes of contracted functions with one d 

and one p polarization functions for the first three rows of atoms. The results, along with 

selected structural parameters and experimental values of 14, are provided in Table 3.1. 

Results in Column 1 demonstrate that an absence of the diffuse functions on S, N1, and 
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N2 failed to correctly represent crucial bond lengths of N-S and S-C.  (For details on this 

section, see Appendix 1). An assignment of the diffuse functions to all atomic centers 

except hydrogen brought bond distances closer to experimental values. Column 2 shows 

results of the calculations which used basis sets with one diffuse function added to all 

heavy atoms. Column 3 has two diffuse functions added to the heavy atoms. Columns 4, 

5 and 6 demonstrate results of the calculations with one or two diffuse functions on the 

heavy atoms (Appendix 1, Figure A1.14). The results in the column 4 are based on the 

calculations that involved an assignment of two diffuse functions to S, O and N’s of the 

nitro group; one diffuse function was assign to the remaining nitrogen atoms. In the 

column 5 two diffuse functions were placed on S atom and two nitrogen atoms of the 

diazo group, one diffuse function – on the remaining nitrogen atoms, all O and C atoms. 

In the column 6 this distribution was as follows: two diffuse functions on all O atoms, N 

atoms of the nitro group and S, one diffuse function on the remaining N atoms and C that 

is bonded to S. 

     The results of the calculations of the bond lengths in the Columns 4, 5 and 6 are in 

excellent agreement with the experimental values with one exception (Figure 3.1). This 

demonstrates that it is crucial to find the proper distribution of the diffused functions of 

the atomic centers about the molecule. The best results were obtained when two diffused 

functions were assigned to S; one diffused function was assigned to N1, N2 and C8. We 

used these conclusions for the computational studies of 10-13.  

     The exception to the good results obtained above was a divergence of 10° in the 

evaluation of the dihedral angle N1S31C8C3 of 14. This may be explained by the fact that 

we investigated our systems in the gas-phase, but the experimental data was obtained 
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Figure 3.1 Final structural results of the geometry optimization of 14. 

 

 

 

 

Figure 3.2. A unit cell of the crystal lattice of 14 (2). The molecules with bold lines are 
closer to the viewer. Hashed lines indicate possible intermolecular interactions.  
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from a crystal structure. Therefore, dihedral distortions of the crystal structure could be 

caused by the intermolecular interactions of 14 as it shown in Figure 3.2 (2). One kind of 

interaction is between lone pairs of sulfur atoms and the aryl group of the 

methoxythiophenolate; the second interaction is between nitrophenyl groups. 

 
3.4 COMPUTATIONAL EVALUATION OF THE STRUCTURES OF 10 - 13 

     Computational results for the geometry optimization of 10 - 13 are reported in Table 

3.2.  

     The results of the calculations are consistent with the structural trends of compound 

14. The most significant differences that could be found among compounds 10 - 13 

(Figures 3.3 - 3.6) reside in their S-N bonds and in their NSCC dihedral angles. The 

greatest difference in the S-N bond length is between structures 11 and 13, 0.035Å. The 

most noticeable difference in dihedral angles is between structures 13 and 12.       

     A Natural Localized Molecular Orbital (NLMO) analysis, which is part of the NBO 

4.0 software package (82), helped us to understand structural variations of 10, 11, 12 and 

13. The NLMO analysis shows that the principal difference among systems 10 through 

13 is in the degree of delocalization of one of the lone pairs of sulfur atoms.      

     The lone pair delocalization has a 0-bonding character that is a result of the interaction 

of sulfur’s 3p orbital with 2p orbitals of the neighboring atoms and/or with 0-orbitals of 

the aryl ring (83). This delocalization accounts for 10% - 12% of the electronic density 

one of sulfur’s lone pair to the neighboring atoms (Table 3.3). The most crucial direction 

of the electron delocalization that influences the dihedral angle $NSCC is a donation of 

the electron density to the aryl group. Dihedral angles of 11 and 12 are closest to the  
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Figure 3.3. Final structural results for the geometry optimizations of 10. 
 

                                                     

Figure 3.4. Final structural results for the geometry optimizations of 11. 



 36 

                                                        
Figure 3.5. Final structural results for the geometry optimizations of 12. 

 
 

                                           

 
Figure 3.6. Final structural results for the geometry optimizations of 13. 
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plane of the SNNS group, 35.1° and 20.8° respectively. As a matter of fact one of the 

dihedral angles of 12 (20.8°) is almost identical to the dihedral angle of 14 

($C(18)C(23)N(2)N(1)) (20.7°) which is a part of the conjugated system (Appendix 1). 

     The difference between the dihedral angles of structures 10 through 14 is seen in the 

degree of the conjugation of S-N=N-S with the aryl substituents. The Highest Occupied 

Molecular Orbitals (HOMO) of 10 - 14 serve as a good illustration of this process 

(Appendix 2, Figure A2.10  - A2.14). In the systems of 10 - 12, we clearly see an 

interaction between one of the lone pairs of the sulfur atom with the aryl groups. 

However in 13 and in the methoxyphenyl part of 12 and 14, there is no evidence of the 

contribution of the S lone pair (S LP(2)) to the system’s conjugation.    

3.5 COMPUTATIONAL EVALUATION OF STRUCTURES 1 - 9 

     Computational evaluation of structures 1 - 8 required a different approach than the 

calculations of the previously discussed systems. The former systems do not have a 

chemical model with experimentally obtained structural data that would be electronically 

and/or chemically close to the discussed systems with at least one S-N=N bond. 

Therefore, we had to turn to the oxygen analog of the bis-thiodiazenes, trans-di-tert-butyl 

hyponitrite (9) that had previously been studied (11). 

     Computational results for the geometry optimization of 9 are reported in the Table 3.4.  

     Initial steps of the geometry optimization of 9 were identical to those of 14 (Section 

3.3). In order to choose the best route for the LDBS step of the geometry optimization of 

1, 2, 5, 6, 7 and 8, we performed an experiment in which we varied the diffuse function 

distribution about 9 (Table 3.4). Column 1 includes results based on the calculations 

without diffuse functions. In column 2 – we placed two diffuse functions on each oxygen 
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atom and one diffuse function on each nitrogen atom. In column 3 – one diffuse function 

on atom oxygen atom. In column 4 – one diffuse function on each nitrogen atom. In 

column 5 – one diffuse function on each oxygen atom. In column 6 – one diffuse function 

on each nitrogen atom. Based on the obtained results we came to the conclusion that it is 

essential not to put any diffuse functions on oxygen and carbon atoms, but it is essential 

to assign one diffuse function to the nitrogen atoms.    

     Computational results for the geometry optimization of 1 - 8 are reported in Table 3.5.  

     Comparing structural differences of Z-HSN=NSH (1) and E-HSN=NSH (2) versus 

cis-HON=NOH (3) and trans-HON=NOH (4), we noticed that the structural differences 

between Z and E conformations of the former pair is greater than that between the cis and 

trans conformations of the latter pair. Such differences can be explained by long-range 

interactions between sulfur atoms of the Z conformation (84) (see Appendix 2).   

     Substitution of the fluorine atoms on 6 for hydrogen atoms on one of the sides of the 

molecule affected the S-N bonds due to push-pull effects, which will be discussed later in 

Chapter 4.  

     Table 3.6 summarizes delocalization of one of sulfur’s lone pairs. It shows that the 

delocalization for the present structures is smaller than that for structures 10 through 14.  

Also, we would like to point out that delocalization of one of oxygen’s lone pairs in 9 is 

smaller in comparison than the delocalization of sulfur’s lone pair in the analogous 

structures. This observation underlines the greater polarizability of sulfur’s lone pairs. 
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3.6 CONCLUDING REMARKS 

     The most important observation that was made in the course of the computational 

evaluation of the above-mentioned systems was the importance of the proper utilization 

of the diffuse functions during the LDBS step in the calculations.  

     Structural studies have demonstrated that a substitution group on the sulfur atom plays 

a crucial role in determining the geometry of the system. 
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Table 3.1. Crystallographic results and B3LYP calculations of the structure of 
NO2PhN=NSPhOMe (14). Bond lengths are reported in Angstroms (Å) and molecular 
angles are reported in degrees (°). 
 

calculated resultsa 
 

experimental 
resultsb 

  1 2 3 4 5 6 7 8 
N-S 1.752 1.738 1.738 1.721 1.719 1.721 1.726(3) 1.729(6) 
S-C 1.780 1.777 1.774 1.766 1.768 1.767 1.755(3) 1.762(6) 
N-C 1.424 1.422 1.423 1.422 1.421 1.425 1.433(4) 1.440(6) 
N=N 1.252 1.244 1.244 1.244 1.245 1.244 1.236(4) 1.245(6) 
1CSN 98.9 99.2 99.2 99.5 99.5 99.4 99.6  
1SNN 112.1 112.9 112.9 113.5 113.4 113.5 110.3  
$ NSCC 98.5 85.6 85.8 85.5 86.5 79.2 69.0  

 

a Column 1:  6-311(d,p) basis set was assigned to all atoms of 14. 
 
Columns 2 – 6: for basis set descriptions, see Appendix 1, Figure A1.14. 
 

b Column 7 is experimental X-ray data, Column 8 is experimental data corrected for 
thermal motion.  

 

Table 3.2. B3LYP calculations on the structures of 10 - 13. Bond lengths are reported in 
Angstroms (Å) and molecular angles are reported in degrees (°).  
 
 10 11 12 13 

  PhSNNSPh NO2PhSNNSPhNO2 NO2PhSNNSPhOMea MeOPhSNNSPhOMe 
S-N 1.745 1.727 1.737 1.762 
S-N   1.742  
N=N 1.232 1.237 1.234 1.228 
S-C 1.772 1.771 1.763 1.766 
S-C   1.742  
1NNS 113.2 113.1 112.7 113.0 
1NNS   113.3  
1NSC 98.5 99.1 99.7 98.9 
1NSC   99.1  
2NNSC 179.6 178.6 176.5 179.9 
2NNSC   179.2  
2NSCC 55.6 35.1 20.8 88.9 
2NSCC   82.6  

a For NO2PhSNNSPhOMe, the first line is for the NO2C6H4S part of the molecule, the 
second line is for the SC6H4OMe part.  
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Table 3.3. NLMO analysis of the delocalization of one of the sulfur’s lone pairs of 
 RS-NN-SR! and of NO2PhNNSPhOMe. 
 

 10 11 12 13 14 
R/R!: Ph/Ph NO2Ph/PhNO2 NO2Ph/PhOMea MeOPh/PhOMe NO2PhNNSPhOMe 

Total electron 
density on S lone 
pair (%) 90.33 87.54 87.88 91.97 87.96 

   90.00   
Electron density of 
S lone pair 
delocalized       
to: C (nearest) (%) 1.24 2.31 2.94 0.74 0.73 
    0.71   
to: C & H (next to 
the nearest C) (%) 1.29 4.74 3.85 0.78 1.50 
to: N (nearest) (%) 3.40 3.64 2.69 3.12 5.10 
    4.34   
to: N (remote) (%) 3.28 3.48 2.55 3.02 3.95 
    3.83   
to: other S (%) 0.17 0.16 0.49 0.16 n/a 
      0.08   
 
a For NO2PhSNNSPhOMe, the first line is for the NO2C6H4S part of the molecule, the 
second line is for the SC6H4OMe part.                                                         

 

Table 3.4. B3LYP calculations for the structure of tert-BuONNOtert-Bu (9).  
Bond lengths are reported in Angstroms (Å) and molecular angles are reported in degrees 
(°). 
 

calculated resultsa experimental 
resultsb 

 1 2 3 4 5 6 7 
N=N 1.228 1.252 1.226 1.264 1.263 1.263 1.252(6) 
N-O 1.384 1.444 1.396 1.386 1.387 1.387 1.380(6) 
O-C 1.464 1.475 1.477 1.467 1.464 1.464 1.471(7) 
1344 107.9 107.6 107.8 107.9 107.7 107.7 106.5(3) 
1NOC 111.0 110.5 111.1 110.6 110.7 110.7 109.3(3) 
a Columns 1- 6: for basis set descriptions, see Appendix 1, Figure A1.9. 
b Column 7 is experimental X-ray data (11) 
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Table 3.5. B3LYP calculations on the structures 1 - 8. Bond lengths are reported in 
Angstroms (Å) and molecular angles are reported in degrees (°). 
 
 1 2 3 4 5 6 7 8 

R/R! (Z)H/H (E)H/H cisHO/OH transHO/OH CH3/CH3 CF3/CH3
a CF3/CF3 t-Bu/t-Bu  

S-N      1.741   
S(O)-N 1.772 1.732 1.406 1.395 1.722 1.718 1.730 1.715 
N=N 1.253 1.279 1.253 1.259 1.276 1.235 1.232 1.276 
S(O)-C(H) 1.348 1.349 0.969 0.969 1.806 1.818 1.824 1.851 
S-C      1.807   
1NNS(O) 121.5 113.3 114.4 107.5 114.4 112.6 113.2 114.9 
1NNS      114.3   
1NS(O)C(H) 91.5 92.2 101.0 101.2 96.6 94.9 94.7 98.4 
1NSC      97.2   
2NNS(O)C(H) 180.0 180.0 180.00  180.0 180.0 180.0 180.0 
2NNSC      180.0   
a For CF3SNNSCH3 , the first line is for the CF3S part of the molecule, the second line is 
for the SCh3 part.  
 

Table 3.6. NLMO analysis of the delocalization of one of the sulfur’s lone pairs. 

 1 5 6 7 8 9 
R/R!: (Z)H/H CH3/CH3 CF3/CH3

a CF3/CF3 t-Bu/t-Bu  t-BuONNOt-Bu 
Total electron density 
on S lone pair (%) 92.63 90.54 91.22 90.43 90.07 92.65 

   89.80    
Electron density of S 
lone pair delocalized       
to: C (nearest) (%) n/a 0.54 0.49 2.18 0.58 0.54 

   2.46    
to: C & H (next to the 
nearest) (%) n/a 0.36 0.64  0.85 0.57 
to: N (nearest) (%) 3.18 4.03 4.63 3.25 4.13 2.98 

   2.47    
to: N(remote) (%) 3.13 3.90 4.34 3.13 4.01 2.98 

   2.45    
to: S (%) 0.11 0.25 0.51 0.16 0.24 0.90 

   0.09    
 
a For CF3SNNSCH3 , the first value is for the CF3S part of the molecule, the second 
value is for the SCH3 part.  
 

 



 43 

CHAPTER 4 

HYBRID DENSITY FUNCTIONAL INVESTIGATION OF BOND DISSOCIATION 

ENERGIES OF THE S-N BOND OF R-S-N=N-S-R SYSTEMS 

4.1 INTRODUCTION 

      The range of chemical compounds that have sulfur–nitrogen bonds vary from 

heterocyclic compounds to metal complexes with sulfur-nitrogen ligands. Although there 

have been numerous studies on sulfur-nitrogen chemistry, the nature of these S-N bonds 

still is not completely understood. 

     Understanding the sulfur-nitrogen bond is very important for a variety of compounds. 

Especially intriguing is the investigation of sulfur–nitrogen chemistry with regard to its 

potential application for nitrogen fixation.  In this respect, the study of S-N interactions in 

diazene, one of the possible intermediates in nitrogen fixation, could be very beneficial. 

Therefore it is essential to study such models that will help us to understand the role of 

substituent effects on the energies of S-N bonds.  

      Bis-thiodiazene compounds are valuable models for the investigation of the energies 

of sulfur-nitrogen bonds. Potentially, they could be important sources of thiyl radicals as 

are their thiodiazene counterparts, R-N=N-S-R’. Also, they could be important as 

chemical initiators that are capable of producing thiyl radicals. The quality of the 

thiodiazenes is based on the weakness of the S-N bond which is susceptible to homolytic 

decomposition under thermal or photolytic conditions (1,6,7,85). A theoretical study of 
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the influence of the substituent effects on the sulfur-nitrogen bond dissociation energies 

of the R-S-N=N-S-R seemed of great interest. 

4.2 THEORETICAL METHODOLOGY OF THE CALCULATIONS OF THE 

HOMOLYTIC BOND DISSOCIATION ENERGIES 

     In this work we will define the term bond dissociation energy (BDE) as the quantity of 

energy that is required to cleave a given chemical bond into two radicals (85-88). 

Homolytic BDE can be expressed as the overall energy change for the reaction:  

R-S-N=N-S-R5 R-S •  +  •N=N-S-R  

Therefore, the BDE is: 

BDE = E(R-S • ) + E(•N=N-S-R) + E(R-S-N=N-S-R) 

     Table 4.1 gives the total electronic energies of the systems and their fragments with 

zero-point energy corrections. Also, in bold, we present the BDE of the S-N bonds of the 

systems under study are given.  

4.3 COMPUTATIONAL METHODS 

     The calculations were performed using Gaussian 98 revision A.7 software suite (55).    

As was described in Section 3.2 of this work, we used Hybrid Density Functional Theory 

– B3LYP for the energy calculations. LDBS method was used as it is described in 

Section 3.3. DiLabio and coworkers (76-79) applied LDBS method for the computational 

determination of the bond dissociation enthalpies, substituent effects in para-substituted 

phenols, solvation energies, activation energies, and proton and electron affinities. In 

their calculations they divided a molecule into several regions according to their 

priorities. They then assigned larger basis sets to the regions with higher priority and, 

consequently, smaller basis sets to the regions with lower priority. The priorities were 
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determined based on the points of interest. The point of interest in bond dissociation 

energy calculations would include, for example, those two atoms whose chemical bond 

was broken. The largest basis sets of the calculations would be assigned to those two 

atoms, and smaller basis sets or series of basis sets to the rest of the system. The main 

motivation of DiLabio and coworkers to use LDBS method was an attempt to bring 

computational cost down. We followed this methodology (Appendix 1).  

4.4 COMPUTATIONAL EVALUATION OF BDE OF THIOLS 

     There were three systems chosen for the computational calibration: hydrogen sulfide, 

methanethiol, and thiophenol (benzenethiol). The results were encouraging: 

       H-SH 5 H• + •SH           BDE = +89.32 kcal/mol (exptl: 91.2 ± 0.7 kcal/mol (107))  

       H-SCH3 5 H• + •SCH3   BDE = +84.38 kcal/mol (exptl: 87.31 ± 0.6 kcal/mol (107))  

       H-SPh 5 H• + •SPh        BDE = +78.17 kcal/mol (exptl: 83.29 ± 1.9 kcal/mol (108))  

     The geometry optimizations of the thiols also were performed as was described in 

Section 3.2. Some results are given here. 

For hydrogen sulfide: 

     S-H bond length is 1.3492 Å (exptl 1.3356 Å), 

     HSH angle is 92.42º (exptl 92.12º). 

For methanethiol: 

     S-H bond length is 1.35 Å (exptl 1.34 Å), 

     C-S bond length is 1.828 Å (exptl 1.819 Å), C-H bond length is 1.09Å (exptl 1.09 Å), 

     HSC angle is 97.3º (exptl 96.5º) (33,34).  

For thiophenol: 

     S–H bond length is 1.3817 Å, 
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     C-S bond length is 1.821 Å,   

     HSC angle is 96.77º (experimental structural data were not conclusive (91,92)). 

     As we can see, our results demonstrate excellent agreement with the experimental 

values, thus validating our computational methodology. 

4.5 ENERGIES OF THE STUDIED SYSTEMS. RESULTS AND ANALYSIS 

     The total energies of the studied systems (Et) were calculated based on their fully 

optimized structures. There were no restrictions imposed on the systems with the 

exception of the diazenyl radicals, R-S-N=N•: structural restrictions were imposed on the 

S-N bond of these diazenyl radicals because the S-N bond of the thiodiazenyl radical is 

not stable and it is prone to spontaneous homolytic cleavage. Such behavior was observed 

for hyponitrous acid and a possibility of a concerted O-N bond cleavage has been studied 

(54). 

 

Figure 4.1.  Comparison of the single (nonconcerted) and concerted S-N bond scissions, 
based on S-N internuclear distance.  
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Figure 4.2. Comparison of the single (nonconcerted) and concerted S-N bond scissions, 
based on S-N internuclear distance.   
 
 
     Our calculations consisted of the study of E and Z conformations of HSNNSH. 

Calculations of each system consisted of two parts. The first part involved the study of 

the concerted decomposition of HSNNSH. For this first part, we elongated both S-N 

bonds stepwise, noting changes of the total energy of the systems. The second part 

involved elongation of only one of the S-N bonds. Changes in the total energies of the 

systems are reflected in the Figure 4.1 and Figure 4.2. Our results demonstrate that 

homolytic decomposition of both conformations of HSNNSH should follow a 

nonconcerted path. 

     The total energies of each system and their corresponding radicals, which include Zero 

Point Energy (ZPE) corrections, are presented in Table 4.1. 

     The results in Table 4.1 can be divided into three groups. The first group would 

include BDE’s of the S-N bond of structures 1, 2, 5, 7 and 8: their average BDE is ~ 29 
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kcal/mol. The second group consists of BDE’s of 10 and 13 whose average value is ~ 16 

kcal/mol. The last group would include 6, 11, 12, and 14 whose BDE’s significantly 

surpass that of the former two groups. To explain the differences between the BDE’s of 

the above-mentioned groups we need to examine structural variations of the various 

compounds.  

     Let us begin our discussion with the first group of the molecules. 

     Molecules that belong to the first group are all symmetrical. Both of their sulfur atoms 

have identical substituents. It seems that electronegativities of the substituents do not play 

a significant role in strengthening the S-N bond.  Indeed, the inductive effect that changes 

significantly among the compounds of this group is not crucial for the BDE of the S-N 

bond.  

     Results of the Natural Atomic Charges of the Natural Population Analysis (NBO 4.0 

software suite) (82) are listed in the Table 4.3. These results show that the charge 

variance on the %-substituents of the sulfur atoms goes from +0.92009 of 7 (carbon of 

CF3SNNSCF3) to –0.82214 of 5 (carbon of CH3SNNSCH3). The charges are indicators of 

the influences of the inductive effects that are opposite in 7 and 5. At the same time, 

electrical charges on the sulfur atoms remain at the same level, +0.44754 and +0.4304 

respectively (Table 4.3). Furthermore, the BDE’s of S-N of 7 and 5 are about the same, 

28.37 kcal/mol and 28.04 kcal/mol (Table 4.1). 

     The inductive effect is graphically represented in Figure 4.3. In the structure on the 

left, both R and N have greater negative charge than S. In the structure on the right, R and 

S are more positively charged than the nitrogen atoms. Despite these two opposite types 
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of inductive effects, the systems’ BDE does not differ to any significant degree (Table 

4.1).    

                    

Figure 4.3. Directions for the inductive effect in the systems of study. 

 

Therefore, we can see that the electron-withdrawing or electron-releasing inductive effect 

of the substituents does not affect the BDE of the S-N bond directly. 

     To understand the reason why all S-N BDE’s are very close in value, we direct our 

attention to the charge distributions between S and N (Table 4.3). Natural Atomic Charge 

values of S and N do not vary greatly from system to system (with the exception of 1 for 

S). The average negative charge on N is - 0.36, and the average positive charge on S is  + 

0.44. The key point here lies in the difference between the charges of S and N. It was 

established that highly diffused sulfur lone pairs can considerably effect the resonance 

hybrid if S has a formal positive charge and if it is bonded to an electronegative group 

(94). In our case we have a range of charges going from + 0.44 on S to - 0.36 on N. This 

difference in charges is the result of the S-N bond’s  ~30% ionic character. One of the 

sulfur’s lone pairs, which can be easily polarized, contributes to the electronic overlap 

between S and N (94).  

     The interaction between the sulfur’s lone pair and the substituents R that results in the 

resonance structure A (Figure 4.4) diminishes repulsion between lone pairs of S and N. 

The resonance effect increases the positive charge on S which strengthens the S-N bond 

by partial 3p0-2p0 interaction (94).  The result of such interactions on the structures 1, 2, 

5, 7, 8 and 9 could be expressed through resonance effect, as shown in Figure 4.4. 
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                          A                                                                                      B              
    
Figure 4.4. 3p0-2p0 interaction of the S-N bond could be expressed through resonance 
structure A. B is the main resonance contributor. 
 
 
Our NBO NRT analysis demonstrated that such resonance hybrids have somewhere 

between 10% and 16% of the weight of the total structure (82). 

     The second group of the BDE’s in Table 4.1 includes structures 10 and 13. BDE’s of 

this group are ~ 16 kcal/mol, only a fraction of the magnitude of the BDE’s of the 

previous group. The reason again can be demonstrated by the resonance effect. 

Resonance contributions of the type that is depicted in Figure 4.4 have about 6% of the 

weight in structure 10, and even less in structure 13 (the exact number could not be 

determined). Also, for this group there is a possibility for another resonance contributor 

incorporating the aromatic ring such as shown in Figure 4.5. 

 

 

Figure 4.5. S-N bond as a part of the aryl ring conjugation. 

 

     Figure 4.5 is a demonstration of the interaction of one of the sulfur’s lone pairs with 0 

orbitals on the aryl ring. It was established that S can have a large neighboring effect on 

the &-carbons (94). In our case, S interacts not only with the &-carbons, but also with the 
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0 orbitals on the aryl ring, thus establishing conjugation with it (Appendix 2, Figures 

A2.13.a – A2.13.d, Figures A2.14.a – A2.14.c). Also, it is important to note that sulfur 

lone pair (LP) delocalization in 13 occurs through the remote N to the remote aryl ring. 

An interaction of S’s LP with the vicinal aryl group is of gerade character, which 

explains 13’s perpendicularity of the aryl ring to the S-N=N-S plane (Appendix 2, 

Figures A2.13.a – A2.13.d).  

     The aryl substituents of 10 and 13 are mild electron-releasing groups. The 

combination of electron-donating inductive effect and sulfur’s neighboring group effect 

diminishes the magnitude of the S-N 0-bonding, reinforcing S-C 0-bonding instead. 

     The third group of molecules includes one symmetrical system (11) and three 

asymmetrical ones (6, 12, and 14). Compound 11 stands out in this group because of its 

symmetry. It could be compared to 7 because the substituents on the sulfur atoms of both 

7 and 11 are electron-withdrawing groups. The BDE of 11 however, is much higher than 

that in 7 (170.07 kcal/mol versus 28.04 kcal/mol).  The source of this difference lies in 

the fact that the nitro group is an electron-withdrawing group that has the ability to 

increase its positive charge on sulfur (+ 0.52) promoting in that way resonance 

hybridization and establishing a 0-bond with N atom.  This gives an enhanced stability of 

the S-N bond of 11, as compared with compounds of the first group, making the S-N 

bond part of the aryl ring conjugation, as shown in Figure 4.6.  

 

Figure 4.6. S-N bond as a part of the aryl ring conjugation. 
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     The remaining systems of this group, 6, 12, and 14 are asymmetrical, with one part 

having an electron-releasing substituent on one sulfur atom and the other having an 

electron-withdrawing substituent on the other S.  

     An inspection of the HOMO (Appendix 2, Figure A2.6.a) of system 6 demonstrates 

that there is a strengthening of the S-N bond on the CF3 side of the molecule, but this is 

absent in S-N bonds of 7. According to Table 4.1 the BDE’s of 6 are 64.42 kcal/mol and 

31.46 kcal/mol as compared to the BDE of 7, which is 28.04 kcal/mol.  

     A combination of the two inductive effects in 6, the electron- releasing one and the 

electron-withdrawing one, has created a push-pull effect (also known as a captodative 

effect) (95-97) that increased the BDE’s of both the S-N bonds of the molecule. A 

positive charge on one of the sulfur atoms and a negative charge on the adjacent nitrogen 

atom were increased, thus increasing delocalization of the S’s LP and, therefore, 

reinforcing the S-N bond by creating additional resonance contributors with 3p0-2p0 

interactions. The magnitude of the other S-N bond remained at the same approximate 

level as in 7 because of the comparable difference of charges between the adjacent S and 

N.     

     Values for the BDE’s of 12 and 14 are much larger than those of 6. The magnitude of 

the values of the BDE’s is a result of several things. One of them is the push-pull effect 

that, in combination with the structural specifics of 12 and 14, increases the resonance 

effect that extends the conjugation of the S-N bonds with the aryl rings through the S 3d 

orbitals. 
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     The qualitative and quantitative degree of S LP delocalization is demonstrated by the 

data on the Bond Dipole Moment analysis (Table 4.2), the Natural Localized Molecular 

Orbital analysis (Table 4.4), the Natural Bond Order Analysis (Table 4.5) (82), and the 

visualization of the MO (Appendix 2).    

     An analysis of the numerical data of the dipole moments, the distribution of charges, 

and the electron densities and energies of the various bonds of the systems, demonstrated 

that the only significant difference between all the systems of interest is the difference in 

the electron density and electron delocalization of one of the sulfur’s lone pairs (S LP (2)) 

(see Tables 4.2 –4.5). The only visible correlation between systems 11, 12, and 14 with 

the highest values of BDE of the S-N bonds is the electron density on S LP 2, which is 

below 90% as opposed to the rest of the systems where this value is above 90%. The 

direction of the delocalization, and the hybrid character of the lone pair of systems 11, 12, 

and 14, does not differ to any significant extent from those of 1-10 and 13, with the 

exception of the delocalization to its vicinal carbon of the vicinal aryl group.  

     The figures in Appendix 2 depict MOs of our models. There is one visible qualitative 

difference between them. The MOs of the systems 10 through 14 (Appendix 2) show that 

there is conjugation between some carbons of the aryl groups and the S-N=N-S chain. 

Systems 1 through 9 lack this feature. We believe that a contribution from the electron 

delocalization of the S LP(2) to the global conjugation of the systems plays a crucial role 

in the increase or the decrease of the BDE’s.  

     Also, we should point out that the discussed conjugation is of ungerade, " character. 

The fact that one lone pair of the sulfur atom is delocalized to a greater extent than the 
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other explains the asymmetrical “twist” of systems 10-12, and 14 (Figures 3.3 – 3.6): the 

S LP(2) is delocalized to the opposite side of the vicinal aryl ring (Appendix 2).    

     All four systems display cross conjugation when the aryl carbons (primarily ipso and 

ortho) are not conjugated with the nitrogen atoms, but each of them are conjugated with 

the sulfur atom (98#99). Here the electron-withdrawing effect of the p-nitro group in 11 

induces conjugation and a push-pull effect (95-97) of the p-nitro group. The p-methoxy 

group of 12 and 14 create the most favorable electronic environment for the conjugation. 

     We have evidence that our models have hyperconjugation in its classical meaning. 

This involves ., no-bond resonance structures. NBO resonance structure analysis (NRT) 

demonstrated that there is a significant contribution of hyperconjugation to the overall 

structure. On average we have 4% per system of the total weight of all resonance 

structures, as depicted in Figure 4.7. 

 

Figure 4.7. Hyperconjugation of the systems of study. 

 

     Another example of hyperconjugation (reverse hyperconjugation) of system 6 and 7 

that contributes about 2% of the resonance weight per resonance structure is shown in 

Figure 4.8. 
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Figure 4.8. Reverse conjugation of 6 and 7. 

4.6 FURTHER VERIFICATION 

     As a final step we decided to further verify our BDE calculations. For this purpose we 

designed the following set of reactions. 

pNO2 ArS+NNSAr pNO2 5  pNO2 ArS• + •NNSAr pNO2       BDE = +170.07 kcal/mol 

pNO2 ArS•  +  •NNSAr pOMe 5 pNO2 ArS+NNSAr pOMe    -BDE = -237.33 kcal/mol 

pMeOArS•  +  •NNSAr pNO2 5 pMeOArS+NNSAr pNO2      -BDE = -230.73 kcal/mol 

pMeOArS+NNSAr pOMe  5  pMeOArS•  +  •NNSAr pOMe   BDE = +14.22 kcal/mol 

The total of the BDEs of the reactions above are -283.77 kcal/mol. This value is based on 

the separate calculations of the total electronic energies of the whole systems and their 

corresponding free radicals. The following manipulation is based only on the total 

electronic energies of the whole systems. These two sets of reactions should have the 

same value, if there is no significant energy underestimation of the whole systems and no 

significant spin contamination in the free radicals. 

     The control set of the following reactions must match the above value: 

pNO2 ArS+NNSAr pNO2 + pMeOArS+NNSAr pOMe 5 2 pMeOArS+NNSAr pNO2 

BDE = Et (26 -1688.00371H of  pMeOArS+NNSAr pNO2 ) – Et (-1778.003235 H of 

pNO2 ArS+NNSAr pNO2 + -1597.551959H of  pMeOArS+NNSAr pOMe) =  
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-0.452226H   

Then,  -0.452226H  6 627.5095 kcal/H = -283.776 kcal/mol 

This excellent agreement between the two reactions described above demonstrates that 

there was very little spin contamination during the calculations and there was negligible 

amount of underestimation of the calculations of the total energies. This gives validation 

of our results.    



Table 4.1. Total Energies, Fragment Energies, and Bond Dissociation Energies (BDE) of the S-N bonds of RS-NN-SR! systemsa.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 1 2 5 6 7 8 9 10 11 12 13 14 
R/R!: (Z)H/H (E)H/H CH3/CH3 CF3/CH3 CF3/CF3 CMe3/CMe3 otherb Ar/Ar NO2Ph/PhNO2 NO2Ph/PhOMe MeOPh/PhOMe otherc 

RSNNSR -907.027 -907.033 -985.593 -1283.505 -1581.355 -1221.282 -575.254 -1369.005 -1778.003 -1688.004 -1597.552 -1289.598 

RSNN! -508.220 -508.222 -547.502 -845.409 -845.409 -665.346 -342.324 -739.237 -943.609 -943.609 -853.513 -545.320 

RSNN!    -547.502      -853.513   

RS! -398.765 -398.765 -438.046 -735.901 -735.901 -555.888 -232.881 -629.739 -834.123 -834.123 -744.016 -744.016 

RS!    -438.046      -744.016   

RS-NNSR 26.38 28.78 28.37 31.46 28.04 29.65 30.93 17.90 170.07 237.33 14.22 164.54 
    64.42d      230.73e   

 

a Total system energies (electronic energies plus ZPE) are reported in Hartrees. BDE are shown in bold and are reported in 
kcal/mol. 
 

b t-BuONNOt-Bu; c NO2ArNNSArOMe; d BDE of CF3S-NNSCH3, e BDE of MeOArS-NNSArNO2 



Table 4.2. Bond Dipole Moments of the RSNNSR systems. 
 

Compound  S-N S-C N=N N=N N-C 
  NLMO NBO NLMO NBO NLMO NBO NLMO NBO NLMO NBO 

HSNNSH, 1 1.61 1.36 1.97 1.99       
MeSNNSMe, 5 1.68 1.45 0.27 0.23 0 0 0 0   
CF3SNNSMea, 6 1.40/1.16 1.72/1.41 0.46/0.38 0.28/0.21 0.02 0.02 1.4 1.2   
CF3SNNSCF3, 7 1.53 1.26 0.42 0.34 0 0 0 0   
t-BuSNNStBu, 8 1.56 1.36 0.28 0.16 0 0 0 0   
t-BuONNOtBu, 9 0.54 0.67 1.7 1.73       
PhSNNSPh, 10 1.57 1.28 0.38 0.27       
NO2ArSNNSArNO2, 11 1.53 1.29 0.47 0.35 0 0 0 0   
NO2ArSNNSArMeOa, 12 1.65/1.47 1.37/1.21 0.35/0.25 0.50/0.39 0.45/0.45 0.54/0.51     
MeOArSNNSArMeO, 13 1.61 1.29 0.39 0.30 0 0 0 0   
MeOArSNNArNO2, 14 1.32 1.31 0.37 0.27 0.16 0.09 0.58 0.1 0.84 0.69 
 
a In the asymmetrical systems, the first value is for the left side of the molecular formula as written. 



Table 4.4. NLMO analysis of the S LP (2) of RSNNSR!. 
 
 1 5 6c 7 8 9 10 11 12c 13 14c 

R/R!: (Z)H/H CH3/CH3 CF3/CH3 CF3/CF3 tBu/tBu othera Ph/Ph NO2/NO2 NO2/OMe MeO/MeO otherb 

92.63 90.54 91.22 90.43 90.07 92.65 90.33 87.54 87.88 91.97 87.96 Total electron 
density on S lone 
pair  (%)   89.80      90.00   
Electron Density of  S lone pair delocalized 
to: N(nearest) (%) 3.18 4.03 4.63 3.25 4.13 2.98 3.40 3.64 2.69 3.12 5.10 
    2.47      4.34   
hybrid character (%) 
     p100 p100 

p98 
d2 

p98 
d2 

p98 
d2 p100 

p98 
d2 

p98 
d2 

p100/p98 
d2 

p98 
d2 

p98 
d2 

to: N(remote) (%) 3.13 3.90 4.34 3.13 4.01 2.98 3.28 3.48 2.55 3.02 3.95 
    2.45      3.83   
hybrid character (%) 
 p100 p100 

p99 
d1 

p99 
d1 

p99 
d1 p100 

p99 
d1 

p99 
d1 

p98;d2/ 
p99;d1 

p99 
d1 

p99 
d1 

to: other S(O) (%) 0.11 0.25 0.51 0.16 0.24 0.90 0.17 0.16 0.49 0.16 n/a 
    0.09      0.08   
hybrid character (%) p100 p66;d33 p91;d9 p100 p73;d27 p92;d8 p69;d31 p64;d36 p92;d8 p64;d36  

   f1 
p12d87 

f1      
p18d81 

f1   
to: C(nearest) (%) n/a 0.54 0.49 2.18 0.58 0.54 1.24 2.31 2.94 0.74 0.73 
    2.46      0.71   
hybrid character (%)  p90d10 p88d12 p96d4 p95d5 p98d8 p97 p99d1 p100 p96d4 p96d4 
    p96d4    d3  p96d4   
C(other) (%) n/a H:0.35772 H:0.64  0.85 2C:2x0.286 1.287 4.74 2.91/0.941 0.391/0.390 1.5 
hybrid character (%) 
 
  s100 s100  s40p59d1 

s38 
p60d2 

s28/ 
44p55/ 

100d0/3 

s5/7 
p92/100 

d0/2 
s3p97/ 

s62p37d1 
s66 
p34 

s60 
p40 

a t-BuONNOt-Bu; b NO2ArNNSArOMe; c In the asymmetrical systems, the first value is for the left side of the molecular formula 
as written. 



Table 4.5. Natural Bond Orbital Analysis. 
 

Compound  S-N S-C(H) N-N N-N S LP (1) S LP (2) N LP (1) 
  Occup. Energy Occup. Energy Occup. Energy Occup. Energy Occup. Energy Occup. Energy Occup. Energy 
(Z)HSNNSH, 1 1.96632 -0.6748 1.98874 -0.57428 1.99474 -1.03522 1.98874 -0.41216 1.99907 -0.67698 1.85255 -0.2794 1.97751 -0.49990 

CH3SNNSCH3, 5 1.96485 -0.6575 1.98912 -0.60125 1.99290 -1.01257 1.98874 -0.39247 1.99501 -0.64566 1.81354 -0.2484 1.97291 -0.47842 

CF3SNNSCH3, 6  1.95622 -0.6612 1.98901 -0.61999 1.99555 -1.07636 1.99164 -0.66116 1.98890 -0.70762 1.82631 -0.2837 1.96779 -0.52575 

CH3SNNSCF3, 6 1.95606 -0.6798 1.97562 -0.66045 1.99555 -1.07636 1.99164 -0.66115 1.99347 -0.66995 1.80522 -0.2689 1.96801 -0.51639 

CF3SNNSCF3, 7 1.95379 -0.6909 1.97484 -0.67167 1.99516 -1.10221 1.99155 -0.45673 1.98931 -0.72470 1.81034 -0.29960 1.96647 -0.54363 

t-BuSNNSt-Bu, 8 1.96454 -0.6525 1.96328 -0.56711 1.99442 -0.98219 1.99168 -0.38438 1.99042 -0.64442 1.80477 0.23829 1.96824 -0.47752 

t-BuONNOt-Bu, 9 1.97788 -0.8182 1.98383 -0.79471 1.99577 -0.38732 1.98852 -0.99267 1.98202 -0.63206 1.85492 -0.3117 1.97797 -0.47461 

PhSNNSPh, 10 1.94817 -0.6310 1.97851 -0.63833 1.99506 -1.05105 1.99185 -0.40801 1.98527 0.65231 1.80909 -0.2504 1.96747 -0.49746 

NO2PhSNNSPhNO2, 11 1.95601 -0.68894 1.97755 -0.68646 1.99470 -1.08586 1.98815 -0.44718 1.98796 -0.68678 1.75425 -0.28786 1.96764 -0.53368 

NO2 PhSNNSPhOMe, 12   1.94735 -0.64647 1.97823 -0.65197 1.99506 -1.06025 1.98925 -0.42937 1.98453 -0.66323 1.80930 -0.2599 1.96811 -0.50815 

MeOPhSNNSPhNO2, 12 1.95520 -0.66000 1.97950 -0.67136 1.99506 -1.06025 1.98925 -0.42937 1.98602 -0.67307 1.75890 -0.2714 1.96594 -0.51591 

MeOPhSNNSPhOMe, 13 1.94260 -0.6038 1.97832 -0.63032 1.99520 -1.04386 1.99298 -0.39626 1.98408 -0.64252 1.84130 -0.2377 1.96875 -0.48873 

NO2 PhNNSPhOMe, 14   1.96844 -0.6638 1.97880 -0.64962 1.99258 -1.02677 1.94626 -0.40533 1.98413 -0.65847 1.76605 -0.2583 1.97326 -0.50457 
 
 
 
 
 
 
 
 
 



Table 4.3. Natural Atomic Charge (Summary of Natural Population Analysis). 

Compound  S(O) S(O) N N C(H) C(H) 
HSNNSH, 1 0.20617 0.20617 -0.34617 -0.34617 0.14000 0.14000 
MeSNNSMe, 5 0.43040 0.43040 -0.36582 -0.36583 -0.82214 -0.82214 
CF3SNNSMe, 6 0.46738 0.41863 -0.35597 -0.33268 0.91719 -0.83834 
CF3SNNSCF3, 7 0.44754 0.44754 -0.32393 -0.32393 0.92009 0.92009 
t-BuSNNStBu, 8 0.44676 0.44676 -0.39127 -0.39127 -0.17485 -0.17485 
t-BuONNOtBu, 9 -0.40139 -0.40139 0.03831 0.03831 0.27345 0.27345 
PhSNNSPh, 10 0.46443 0.46443 -0.33875 -0.33875 -0.24887 -0.24887 
NO2ArSNNSArNO2, 11 0.52280 0.52280 -0.34857 -0.34857 -0.19027 -0.19027 
NO2ArSNNSArMeO, 12 0.47066 0.51759 -0.31186 -0.36855 -0.29337 -0.21934 
MeOArSNNSArMeO, 13 0.43042 0.43042 -0.33269 -0.33269 -0.29131 -0.29131 
MeOArSNNArNO2, 14 0.50817 n/a -0.32287 -0.23411 -0.29535 -0.11210 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

     The primary objective of this research was to study the effect of substituents, R, on the 

structure and the stabilities of RSNNSR systems. There were ten systems studied, using 

various combinations of R = H, CH3, CF3, tert-Butyl, C6H6,  p-NO2C6H6 ,  p-CH3OC6H6. 

     The calculations were performed using Gaussian 98 revision A.7 software suite. 

     For the calculations, we employed Hybrid Density Functional Theory (HDFT) -- 

B3LYP method with Becke’s three-parameter non-local exchange and Lee-Yang-Parr’s 

non-local correlation functionals.   

     Computational methodology was based on the locally dense basis set approach 

(LDBS) that assigns various levels of the basis sets according to the previously calibrated 

results that could be correlated to experimental data.    

     For the initial step we used only STO-3G basis set, with three primitive Gaussians. 

Subsequent steps involved Pople-type basis sets: split valence shell double-zeta plus 

polarization 3-21G* basis set, split valence shell double-zeta plus double polarization 6-

31G(*, *) basis set, and split valence shell triple-zeta plus double polarization 

6-311G(*, *) basis set. Polarization and diffusion functions of 6-31G and 6-311G basis 

sets have been adjusted according to the computational needs. The search for the global 

minima of the potentials was verified by screening the frequency calculations of the 

systems for imaginary frequencies.  
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     The most significant differences that could be found among molecules 1-8 and 10-13 

reside in their S-N bonds and, for 10-13, in their NSCC dihedral angles. The most 

noticeable difference in dihedral angles is between structures 13 (!NSCC = 88.9°) and 12 

(!NSCC = 20.8°).       

     A Natural Localized Molecular Orbital (NLMO) analysis, which is part of the NBO 

4.0 software package, helped us to understand the structural variations of 10-13. The 

NLMO analysis shows that the principal difference among systems 10 through 13 is in 

the degree of delocalization of one of the lone pairs of the sulfur atoms.      

     The lone pair delocalization has !-bonding character that is a result of the interaction 

of sulfur’s 3p orbital with 2p orbitals of the neighboring atoms and/or with !-orbitals of 

the aryl ring. This delocalization accounts for 10% - 12% of the electronic density of 

sulfur’s lone pair to the neighboring atoms. The most crucial direction of the electron 

delocalization that influences the dihedral angle "NSCC is a donation of the electron 

density to the aryl group. Dihedral angles of 11 and 12 are closest to the plane of the 

SNNS group, 35.1° and 20.8° respectively.  

     The study of the stabilities of the RSNNSR systems concentrated on the investigation 

of the homolytic Bond Dissociation Energy (BDE) of the S-N bonds.  

     The total energies of the RSNNSR systems and the total energies of the RS• and 

•NNSR radicals were calculated. The difference of the sum of the total energies of both 

radicals and the total energy of the whole system yielded the BDE of the S-N bond. 

     The BDE’s of the S-N bonds range from 14.22 kcal/mol for 13 to 237.33 kcal/mol for 

12. 
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     All molecules were divided into three groups according to the magnitude of the BDE 

of S-N bond.  

     The first group includes BDE’s of the S-N bond of structures 1, 2, 5, 7 and 8: their 

average BDE is ~ 29 kcal/mol. The second group consists of BDE’s of 10 and 13 whose 

average value is ~ 16 kcal/mol. The last group would include 6, 11, 12, and 14 whose 

BDE’s significantly surpass that of the former two groups. To explain the differences 

between the BDE’s of the above-mentioned groups we need to examine structural 

variations of the various compounds.  

     Molecules that belong to the first group are all symmetrical. Both of their sulfur atoms 

have identical substituents. It seems that electronegativities of the substituents do not play 

a significant role in strengthening the S-N bond.  Indeed, the inductive effect that changes 

significantly among the compounds of this group is not crucial for the BDE of the S-N 

bond.  

          The charge distributions between S and N play the important role in the stability of 

the S-N bond. Natural Atomic Charge values of S and N do not vary greatly from system 

to system (with the exception of 1 for S). The average negative charge on N is - 0.36, and 

the average positive charge on S is  + 0.44. The key point here lies in the difference 

between the charges of S and N. It was established that highly diffused sulfur lone pairs 

can considerably effect the resonance hybrid if S has a formal positive charge and if it is 

bonded to an electronegative group. In our case we have a range of charges going from  

+ 0.44 on S to - 0.36 on N. This difference in charges is the result of the S-N bond’s  

~30% ionic character. One of the sulfur’s lone pairs, which can be easily polarized, 

contributes to the electronic overlap between S and N.  
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     The second group of the BDE’s in Table 4.1 includes structures 10 and 13. BDE’s of 

this group are ~ 16 kcal/mol. The reason for the lower BDE of this group lies in the fact 

that the aryl substituents of 10 and 13 are mild electron-releasing groups. The 

combination of electron-donating inductive effect and sulfur’s neighboring group effect 

diminishes the magnitude of the S-N !-bonding, reinforcing S-C !-bonding instead. 

     The third group of molecules includes one symmetrical system (11, BDE =  

170.07 kcal/mol) and three asymmetrical ones (6, BDE = 31.46 kcal/mol and 64.42 

kcal/mol; 12, BDE = 237.33 kcal/mol and 230.73 kcal/mol; 14, BDE = 164.54 kcal/mol). 

The BDE’s of this group range from 31.46 kcal/mol (6) to 237.33 kcal/mol (12). There 

are several explanations for this. 

     The source of the high BDE of 11 (170.07 kcal/mol) could be explained by the fact 

that the nitro group is an electron-withdrawing group that has the ability to increase its 

positive charge on sulfur (+ 0.52), thus promoting resonance hybridization and 

establishing a !-bond between S and N.  In addition, an interaction of one of the sulfur’s 

lone pairs with the ! system of the aryl ring gives an enhanced stability of the S-N bond 

of 11, making the S-N bond part of the aryl ring conjugation.  

     The remaining systems of this group, 6, 12, and 14 are asymmetrical, with one part 

having an electron-releasing substituent on one sulfur atom and the other having an 

electron-withdrawing substituent on the other S. The resultant push-pull effect 

(captodative effect) increased the BDE’s of both the S-N bonds of the molecules. A 

positive charge on one of the sulfur atoms and a negative charge on the adjacent nitrogen 

atom were increased, thus increasing delocalization of the S’s LP and, therefore, 



 66 

reinforcing the S-N bond by creating additional resonance contributors with 3p!-2p! 

interactions. 

     Therefore, we can conclude that in order to better stabilize the S-N bond in a 

RSNNSR system it is important: 

-to have the charge difference between the substituents and S atom, 

-to have substituents that would make the "-effect possible, and, 

-to have the push-pull effect.  
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APPENDICES 

 

 

Figure 14.1. 

Compare to the Figure 14. 

See Table 3.1. Basis set assignments to the atoms of 14. Numbers correspond to the 

atomic centers of 14 as it appears in the Gaussian input files.  

For 2*: 

 H 0 
 6-31d 
 **** 
 C N O S 0 
 6-311+(2d,p) 
 **** 
 

For 3*: 

 H 0 
 3-21g* 
 **** 
 O 0 
 6-31++(2d,2p) 
 **** 
 N S 0 
 6-311++(2d,2p) 
 **** 
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 C 0 
 6-31++(2d,2p) 
 **** 
 
For 4*: 

 9 10 11 12 15 16 17 24 25 26 27 0 
 3-21g* 
 **** 
 13 28 29 30 0 
 6-31++(d,p) 
 **** 
 1 2 0 
 6-311+(2df,2pd) 
 **** 
 31 0 
 6-311++(3df,3pd) 
 **** 
 3 4 5 6 7 8 14 18 19 20 21 22 23 0 
 6-31(d,p) 
 **** 
 

For 5*: 

 9 10 11 12 15 16 17 24 25 26 27 0 
 3-21g* 
 **** 
 13 28 29 30 0 
 6-31+(d,p) 
 **** 
 1 2 31 0 
 6-311++(3df,3pd) 
 **** 
 3 4 5 6 7 8 14 18 19 20 21 22 23 0 
 6-31+(d,p) 
 **** 
 

For 6*: 

 9 10 11 12 15 16 17 0 
 3-21g* 
 **** 
 24 25 26 27 0 
 6-31+(d) 
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 **** 
 13 28 29 30 0 
 6-31++(d,p) 
 **** 
 1 2 0 
 6-311+(2df,2pd) 
 **** 
 31 0 
 6-311++(3df,2pd) 
 **** 
 3 4 5 6 7 14 18 19 20 21 22 0 
 6-31(d,p) 
 **** 
 8 0 
 6-31+(2d,2p) 
 **** 
 23 0 
 3-21g* 
 **** 
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Figure 10.1. 

Compare to Figure 10. 

Basis set assignments to the atoms of 10. Numbers correspond to the atomic centers of 10 

as it appears in the Gaussian input files.  

 

 1 0 
 6-311++(3df,2pd) 
 ++++ 
 3 4 5 6 7 0 
 6-31(d,p) 
 **** 
 2 0 
 6-31+(2d,2p) 
 **** 
 8 9 10 11 12 0 
 3-21g* 
 **** 
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Figure 11.1. 

Compare to Figure 11. 

Basis set assignments to the atoms of 11. Numbers correspond to the atomic centers of 11 

as it appears in the Gaussian input files.  

 11 12 13 14 21 22 23 24 0 
 3-21g* 
 **** 
 5 6 8 9 10 15 16 17 18 19 0 
 6-31(d,p) 
 **** 
 7 20 0 
 6-31g+(2d,2p) 
 **** 
 25 26 27 28 29 30 0 
 6-31+(d,p) 
 **** 
 1 4 0 
 6-311++(3df,2pd) 
 **** 
 2 3 0 
 6-311+(2df,2pd) 
 **** 
 
 

 

 

 



 78 

 

Figure 12.1. 

Compare to Figure 12. 

     Basis set assignments to the atoms of 12. Numbers correspond to the atomic centers 

of 12 as it appears in the Gaussian input files.  

 11 12 13 14 27 28 29 0 
 3-21g* 
 **** 
 21 22 23 24 0 
 3-21g* 
 **** 
 5 6 8 9 10 15 16 17 18 19 26 0 
 6-31(d,p) 
 **** 
 7 20 0 
 6-31+(2d,2p) 
 **** 
 25 30 31 32 0 
 6-31+(d,p) 
 **** 
 1 4 0 
 6-311++(3df,2pd) 
 **** 
 2 3 0 
 6-311+(2df,2pd) 
 **** 
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Figure 13.1. 

Compare to Figure 13. 

     Basis set assignments to the atoms of 13. Numbers correspond to the atomic centers 

of 13 as it appears in the Gaussian input files.  

 1 4 0 
 6-311++(3df,2pd) 
 **** 
 2 3 0 
 6-311+(2df,2pd) 
 **** 
 5 6 8 9 10 15 16 17 18 19 0 
 6-31(d,p) 
 **** 
 7 20 0 
 6-31+(2d,2p) 
 **** 
 25 26 0 
 6-31(d,p) 
 **** 
 11 12 13 14 21 22 23 24 28 29 30 32 33 34 0 
 3-21g* 
 **** 
 27 31 0 
 3-21g* 
 **** 
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Figure 9.1. 

Compare to the Figure 9. 

     Basis set assignments to the atoms of 9. Numbers correspond to the atomic centers of 

9 as it appears in the Gaussian input files.  

 

For 1*: 

 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
 1 2 0 
 6-311g(2df,2pd) 
 **** 
 3 4 0 
 6-311g(2df,2pd) 
 **** 
 6 19 0 
 6-31g(2d,2p) 
 **** 
 5 10 11 18 23 24 0 
 6-31g(2d,2p) 
 **** 
 

For 2*: 

 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
 1 2 0 
 6-311g+(2df,2pd) 
 **** 
 3 4 0 
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 6-311g++(2df,2pd) 
 **** 
 6 19 0 
 6-31g(2d,2p) 
 **** 
 5 10 11 18 23 24 0 
 6-31g(2d,2p) 
 **** 
 
For 3*: 
 
 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
 1 2 0 
 6-311g(2df,2pd) 
 **** 
 3 4 0 
 6-311g+(2df,2pd) 
 **** 
 6 19 0 
 6-31g(2d,2p) 
 **** 
 5 10 11 18 23 24 0 
 6-31g(2d,2p) 
 **** 
 
For 4*: 
 
 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
 1 2 0 
 6-311g+(2df,2pd) 
 **** 
 3 4 0 
 6-311g(2df,2pd) 
 **** 
 6 19 0 
 6-31g(2d,2p) 
 **** 
 5 10 11 18 23 24 0 
 6-31g(2d,2p) 
 **** 
 
For 5*: 
 
 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
 1 2 0 
 6-311g(3df,2pd) 
 **** 
 3 4 0 
 6-311g+(3df,2pd) 
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 **** 
 6 19 0 
 6-31g(2d,2p) 
 **** 
 5 10 11 18 23 24 0 
 6-31g(2d,2p) 
 **** 
 

For 6*: 

 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
 1 2 0 
 6-311g+(2df,2pd) 
 **** 
 3 4 0 
 6-311g(3df,2pd) 
 **** 
 6 19 0 
 6-31g(2d,2p) 
 **** 
 5 10 11 18 23 24 0 
 6-31g(2d,2p) 
 **** 
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Figure 8.1. 

Compare to the Figure 8. 

          Basis set assignments to the atoms of 9. Numbers correspond to the atomic centers 

of 9 as it appears in the Gaussian input files.  

 3 4 0 
 6-311(3df,2pd) 
 **** 
 1 2 0 
 6-311+(2df,2pd) 
 **** 
 5 10 11 18 23 24 0 
 6-31(d,p) 
 **** 
 6 19 0 
 6-31(2d,2p) 
 **** 
 7 8 9 12 13 14 15 16 17 20 21 22 25 26 27 28 29 30 0 
 3-21g* 
 **** 
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Figure 1.1. 

Compare to the Figure 1. 

          Basis set assignments to the atoms of 1. Numbers correspond to the atomic centers 

of 1 as it appears in the Gaussian input files.  

 1 5 0 
 6-311g(3df,2pd) 
 **** 
 2 4 0 
 6-311g+(2df,2pd) 
 **** 
 3 6 0 
 3-21g* 
 **** 
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Figure 2.1. 

Compare to the Figure 2. 

      Basis set assignments to the atoms of 2. Numbers correspond to the atomic centers of 

2 as it appears in the Gaussian input files.  

 
 1 5 0 
 6-311g(3df,2pd) 
 **** 
 2 4 0 
 6-311g+(2df,2pd) 
 **** 
 3 6 0 
 3-21g* 
 **** 
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Figure 3.1. 

Compare to the Figure 3. 

     Basis set assignments to the atoms of 3.  

 N 0 
 6-311g+(2df,2pd) 
 **** 
 O 0 
 6-311g(3df,2pd) 
 **** 
 H 0 
 3-21g* 
 **** 
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Figure 4.1. 

Compare to the Figure 4. 

     Basis set assignments to the atoms of 4.  

 N 0 
 6-311g+(2df,2pd) 
 **** 
 O 0 
 6-311g(3df,2pd) 
 **** 
 H 0 
 3-21g* 
 **** 
 
 

 

 

 

 

 

 

 

 

 

 

 



 88 

 

Figure 5.1. 

Compare to the Figure 5. 

     Basis set assignments to the atoms of 5. Numbers correspond to the atomic centers of 

5 as it appears in the Gaussian input files.  

 1 2 0 
 6-311g+(2df,2pd) 
 **** 
 3 4 0 
 6-311g(3df,2pd) 
 **** 
 5 9 0 
 6-31g(2d,2p) 
 **** 
 6 7 8 10 11 12 0 
 3-21g* 
 **** 
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Figure 6.1. 

Compare to the Figure 6. 

     Basis set assignments to the atoms of 6. Numbers correspond to the atomic centers of 

6 as it appears in the Gaussian input files.  

 4 3 0 
 6-311++(3df,2dp) 
 **** 
 1 2 0 
 6-311+(2df,2pd) 
 **** 
 5 6 0 
 6-31+(2d,2p) 
 **** 
 7 8 9 0 
 3-21g* 
 ****  
 10 11 12 0 
 6-311++(2d,2p) 
 **** 
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Figure 7.1. 

Compare to the Figure 7. 

     Basis set assignments to the atoms of 7. Numbers correspond to the atomic centers of 

7 as it appears in the Gaussian input files.  

 4 3 0 
 6-311++(3df,2dp) 
 **** 
 1 2 0 
 6-311+(2df,2pd) 
 **** 
 5 6 0 
 6-31+(2d,2p) 
 **** 
 7 8 9 10 11 12 0 
 6-311++(2d,2p) 
 **** 
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Figure 15.1. HOMO  (24th orbital).  
Z-H-S-N=N-S-H 

                  

Figure 15.2. HOMO -1 (23th orbital).  
Z-H-S-N=N-S-H 

                                      
Figure 15.3. HOMO -2 (22th orbital).  

Z-H-S-N=N-S-H 
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Figure 15.4. HOMO -3 (21th orbital).  
Z-H-S-N=N-S-H 

                                                     
Figure 15.5. HOMO -4 (20th orbital).  

Z-H-S-N=N-S-H 

                                                          
Figure 15.6. HOMO -5 (19th orbital).  

Z-H-S-N=N-S-H 



 93 

 

                                                              
Figure 15.7. HOMO -6 (18th orbital).  

Z-H-S-N=N-S-H 

                                                             
Figure 15.8. HOMO -7 (17th orbital).  

Z-H-S-N=N-S-H 
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Figure 15.9. HOMO -8 (16th orbital).  
Z-H-S-N=N-S-H 

 

                                                  

Figure 15.10. HOMO -9 (15th orbital).  
Z-H-S-N=N-S-H 
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Figure 15.11. HOMO -10 (14th orbital).  
Z-H-S-N=N-S-H 

                                                   

Figure 15.12. HOMO –11 (13th orbital).  
Z-H-S-N=N-S-H 

 

 


