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Abstract

We present a model that offers a resolution to the Horizon Problem of cosmology and
eliminates the need for Inflation. It also suggests a possible new origin for the Cosmic
Microwave Background Radiation. In addition, this model eliminates the need to invoke
Dark Energy and Dark Matter to explain the accelerated expansion of the universe. In
essence, it implies that there is no accelerated expansion by fitting the model to Type 1a
Supernovae and Gamma Ray Burst data with a reduced chi-square (goodness-of-fit) of 0.99,
using only the Hubble constant as a parameter.

1 The Horizon Problem

In cosmology, it is believed that regions of space on ‘opposite’ sides of the universe are too far
apart to have ever been causally connected. That is, they are outside each other’s ‘particle
horizon’. Consequently, it is difficult to explain the apparent similarities in their characteristics
as evidenced by COBE results. Inflation theory has been offered as a way to overcome this
‘Horizon Problem’. However, it is my intention, here, to show that it is unnecessary to postulate
Inflation in order to insure that all regions of spacetime are now, and have always been, causally
connected.

2 A Resolution to the Problem

Fig. 1 is a spacetime diagram in which the time coordinate (not shown) extends radially from
the origin in all directions and space exists on an expanding circle centered at the origin. The
‘radius’ of space r is a function of time. At the present time, the radius is r0, and the event P0

represents here and now. Imagine that a light pulse is emitted by a source and travels along
the expanding circle reaching P0 at the present time. The event P represents the position of the
pulse at an earlier time along the inner circle of radius r. The angle θ, which is also a function
of time, is the angular separation between events P0 and P .

We will assume that the speed of a light pulse is c relative to its location on the circle,
everywhere along the circle. If the speed of the pulse slowed as it progressed along the circle,
light from more distant sources would propagate more slowly than light from nearer sources.
Experience indicates that this is not the case. We also assume, for now, that the expansion rate
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ṙ = dr/dt is constant. The light pulse vector ~c and the expansion rate vector ~̇r are tangent and
normal to the circle, respectively, as shown in the figure.
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Figure 1: Light paths

A curve describing the light path, subject to the properties above, is known as a logarithmic
spiral, which we derive here.

We first imagine that a light pulse travels the distance ds along the circle with radius r at
the constant speed c in the time dt, so that

c =
ds

dt
(1)

The circle, along which the pulse travels, expands at a rate of ṙ, which is assumed to be constant
for the purposes of this derivation. In the time dt, the radius of the circle changes by dr, so

ṙ =
dr

dt
(2)

We note, using (1) and (2), that
dr

ds
=

dr/dt

ds/dt
=

ṙ

c
(3)

where ṙ/c is constant. The angle that intercepts ds is − dθ, since the pulse is traveling in the
negative θ direction, so that

ds = − rdθ (4)

Using (4), we can write (3) as

− dr

rdθ
=

ṙ

c
(5)
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Now, separating variables and integrating, we get

∫
dr

r
= − ṙ

c

∫
dθ (6)

ln r = − ṙθ

c
+ k (7)

r = e− (ṙθ/c)+k (8)

r = eke− ṙθ/c (9)

Setting θ = 0, we find that ek = r0, so that we finally get the equation for the light path

r = r0e
−ṙθ/c (10)

which is represented by the upper light path in Fig. 1. We must, of course, allow for a light
pulse traveling toward P0 from the opposite direction, which we represent by the lower light
path in the figure. The points of convergence of the upper and lower light paths occur at
θ = nπ, n = 0, 1, 2, 3... .

The recession velocity v between two comoving points on the expanding circle is

v = ṙθ (11)

Therefore, inserting (11) into (10), we get for the radius in terms of the recession velocity,

r = r0e
−v/c (12)

A point on the circle at an angular separation of θ = 1 would have a recession velocity, from
(11), of v = ṙ along the circle. Assuming for the moment, that ṙ = c and r = ṙt = ct, any
comoving light source at a greater angular separation than θ = 1 would have a recession velocity
greater than c, but would still be visible. This visibility is due to the fact that the speed of light
is equal to c relative to each point in space along its path.

For example, assume that a source in a region of space at an angular separation of, say,
θ = 1.1 (which has recession velocity of 1.1c, relative to P0) emits a pulse toward P0. This pulse
would surely reach a region of space at an angular separation of, say, θ = 0.9 (which has recession
velocity of 0.9c, relative to P0), since the two regions have recession velocities of 0.2c relative to
each other. And since the pulse is traveling at speed c relative to space in this region, it will
reach P0.

Unfortunately, a logarithmic spiral never actually reaches the origin. Consequently, we would
never be able to see the origin of the universe. However, we would apparently be able to see our
own region of space as it appeared at earlier times (θ = 2nπ, n = 1, 2, 3...), providing that light
maintains its integrity as it passes through the convergence points.

If the expansion rate ṙ varies, the light curve no longer fits the definition of a logarithmic
spiral. However, since c is nonzero, its form would remain similar to a logarithmic spiral.

Equation (10) assures that all regions of space are causally connected at all times. Therefore,
there is no particle horizon, thus no ‘Horizon Problem’, in this model.
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3 Cosmological Redshift

The cosmological redshift, z, is

z =
∆λ

λ
=

λ0 − λ

λ
=

λ0

λ
− 1 (13)

where λ is the wavelength of light at emission and λ0 is the wavelength at reception. And since,
using (12),

λ0

λ
=

r0

r
=

r0

r0e−v/c
= ev/c (14)

we can insert (14) into (13) to get
z = ev/c − 1 (15)

4 Velocity Redshift and Distance Redshift Relations
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Figure 2: Recession Velocity vs. Cosmological Redshift

By rearranging (15), we find the the recession velocity as a function of redshift

v = c ln(1 + z) (16)

This would not be subject to a relativistic correction since the source is not traveling through
space, but is comoving with it. Fig. 2 shows the relationship between redshift and recession
velocity.
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In order to find the proper distance d between two comoving points on a circle with radius r,
measured along the circle, as a function of redshift, we first note that

d = rθ (17)

Rearranging (11) and inserting (16), we have

θ =
v

ṙ
=

c ln(1 + z)

ṙ
(18)

Plugging (18) into (17), we get

d = r

(
c ln(1 + z)

ṙ

)
=

r

ṙ
c ln(1 + z) (19)

The present proper distance d0 between two comoving points on the circle with radius r0, as a
function of redshift, is

d0 =
r0

ṙ
c ln(1 + z) (20)

If we take the Hubble constant H0, for constant ṙ and present radius r0

H0 =
ṙ

r0

(21)

and insert (21) into (20), assuming constant ṙ, we have for the present distance as a function of
redshift,

d0 =
c

H0

ln(1 + z) (22)

Combining (16) and (22), we get

v = c ln(1 + z) = H0d0 (23)

Equation (23) is my version of Hubble’s Law (v = cz = H0d0).
It is important to note that this model is not an empty universe model, but rather a model in

which the path of light is unaffected by matter (other than through direct contact with matter).
The path of light may appear to bend in response to the gravitational field of a massive body,
according to an observer at rest on the body. However, this ‘illusion’ of bending is a result of the
observer’s acceleration (or rather deceleration) in time, due to gravity. This is analogous to the
illusion of the bending of light experienced by an observer at rest in a rocket, due to the rocket’s
acceleration in space.1

5 A New Explanation for the CMBR?

At θ = π, if ṙ is made to equal c, we get

rπ = r0e
−cπ/c = r0e

−π (24)

1Please see “New Transformation Equations and the Electric Field Four-vector” at
http://www.softcom.net/users/der555
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This is about 5% of the present radius or 5% of the present age of the universe.
Radiation emerging from this period shares the property of omnidirectionality with the cosmic

microwave background radiation (CMBR). Furthermore, the possibility exists that it may share
all of the properties of the CMBR. At this time, these properties have not yet been investigated.
However, if these properties match those of the CMBR, the tantalizing possibility exists that the
radiation emerging from the convergence point at θ = π could be the CMBR.

6 The Limits of Observation

If the radiation emerging from the convergence point at θ = π is the CMBR, then the era
associated with the CMBR would be much later than commonly believed. The cosmological
redshift associated with this era (found by inserting ṙ = c into (11), and (11) into (15)) is
z = eπ − 1 ≈ 22. This value for z is much less than the current value associated with the CMBR
in standard cosmology (z ≈ 1088).2

The possibility exists that radiation passing through the convergence point at θ = π originated
from luminous bodies3 nearer the origin (as well as standard CMBR sources). However, if
radiation does not maintain its integrity (for example, through interference) as it passes through
the convergence points, it is conceivable that those bodies may no longer be discernable as bodies
to an observer at P0. (This, however, is not to say that radiation originating from those bodies
could not be observed at P0.) If this is the case, an upper limit of z ≈ 22 would be placed on
the observation of discernable luminous bodies.

7 Do We Need Dark Energy or Dark Matter?

The concepts of dark energy and dark matter arose from the attempt to reconcile a discrepancy
between theory and observation. It is my intention to show that there is no such discrepancy
when my model is compared to observation. The Type 1a Supernovae data used for comparison
here is the ‘gold’ sample from Table 6 of Riess et al. 2007 (astro-ph/0611572). This is combined
with Gamma Ray Burst (GRB) data from Table 6 of Schaefer 2006 (astro-ph/0612285v1). In
order to get the best values of H0, a magnitude of 0.32 has been subtracted from the distance
modulus µ of both sets of data.

We need to compare my values for the distance modulus, which I will call µ1, to the values for
µ in the data, as a function of redshift z. To find the equation for µ1, we first find the luminosity
distance dL.

The flux density F of the light emitted isotropically from a source and passing through a
spherical surface centered on the source is

F =
P

A
(25)

2It is important to note that radiation originating from sources nearer the origin than the convergence point
may have already undergone significant redshift prior to its arrival at the convergence point.

3By “luminous bodies”, I am referring to luminous objects with finite extension in space, such as stars, galaxies,
supernovae, etc..
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where P is the total power of the light passing through the surface and A is the proper area of
the surface. The proper area of the surface at reception, in my model, is

A = 4πd0
2 (26)

where d0 is my proper distance d0 = (c/H0) ln(1 + z). However, the power of the light passing
through the surface at reception is reduced, compared to its power at emission, due to the
expansion of space between emission and reception. The energy of each photon at reception is
redshifted by a factor of 1/(1+z), and photons emitted at time intervals δt arrive at time intervals
δt(1+z). Taking both of these factors into account, the total power P passing through the surface
at reception is the total power L (absolute luminosity) emitted by the source multiplied by the
factor 1/(1 + z)2, or

P =
L

(1 + z)2
(27)

So the flux density at reception in my model, after inserting (26) and (27) into (25), is

F =
P

A
=

L

4πd0
2(1 + z)2

(28)

Another way to write F is through the flux-luminosity relationship

F =
L

4πdL
2 (29)

Comparing (28) and (29), we see that my luminosity distance is, therefore,

dL = d0(1 + z) (30)

Recalling from (22) that

d0 =
c

H0

ln(1 + z) (31)

we then combine (30) and (31) to get

dL =
c

H0

(1 + z) ln(1 + z) (32)

The distance modulus µ1, using (32), is

µ1 = 5 log10(dL) + 25 (33)

Finally, in Fig. 3, we compare µ1 from (33) with µ from the two sets of data, above. Ac-
cording to the graphing utility Gnuplot4, an optimum fit of (33) to the data occurs for H0 =
69.245 km s−1 Mpc−1 with reduced chi-square (goodness-of-fit) of 0.99.

The curve for µ1 in Fig. 3 is a very good fit to the data. However, contrary to the current
concordance model, my model does not imply an accelerating universe, and requires neither dark
energy nor dark matter in order to fit observation.

4All graphs were created using Gnuplot (http://www.gnuplot.info/). Thanks very much to its creators.
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Figure 3: Distance modulus µ vs. Redshift z
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