The partitioning of disparlure between hydrophobic organic solvents and water

Sierra Rayne^{a,*}, Kaya Forest^b

^aChemologica Research, 318 Rose Street, PO Box 74, Mortlach, Saskatchewan, Canada, S0H 3E0 ^bDepartment of Environmental Engineering, Saskatchewan Institute of Applied Science and Technology, Palliser Campus, 600-6th Avenue NW, PO Box 1420, Moose Jaw, Saskatchewan, Canada, S6H 4R4

Abstract

The partitioning behavior of disparlure ((7R,8S)-cis-7,8-epoxy-2-methyloctadecane) - a sex pheromone of the gypsy moth, *Lymantria dispar* - between aqueous solutions and the organic solvents chloroform and n-heptane has been re-evaluated. Prior estimates from the literature of the aqueous-organic solvent partitioning coefficients (log P) for disparlure in these two solvent systems appear to have been underestimated by about 5-6 orders of magnitude. In the current work, we provide corrected log P(chloroform/water) and log P(heptane/water) values for disparlure of 9.87 and 9.15, respectively.

Keywords:

disparlure, (7R,8S)-cis-7,8-epoxy-2-methyloctadecane, sex pheromone, gypsy moth, partitioning behavior

Introduction

The partitioning behavior of disparlure ((7R,8S)-cis-7,8-epoxy-2-methyloctadecane) - a sex pheromone of the gypsy moth, Lymantria dispar - at hydrophobic/aqueous interfaces is of interest to better understand the interaction of this compound with pheromone-binding proteins in vivo [1]. In their article, Reimer et al. [1] report the following experimental (expt.) and computationally (calc.) derived chloroform/water and n-heptane/water partitioning coefficients (log P) for disparlure: log P(chloroform/water): 3.4+/-0.3 (expt.), 3.1 (calc.); log P(heptane/water): 3.8+/-0.2 (expt.), 3.9 (calc.).

Figure 1: Structure of disparlure.

The SPARC software program (http://archemcalc.com/ sparc/; October 2011 release w4.6.1691-s4.6.1687) has been validated for accurately estimating the log P values for a wide range of organic compounds [2–4]. This program estimates log P(n-octanol/water), log P(chloroform/water), and log P(heptane/water) for disparlure of 8.24, 9.87, and 9.15, respectively, at 298.15 K. Previous works have also reported estimated log P(n-octanol/water) of about 8 for disparlure using other software [5, 6].

Disparlure is a long chain hydrocarbon with an epoxide moiety near the center of the alkyl chain. A substantial body of work has established that the difference in partitioning behavior for ether linkages is minimal between aqueous-organic partitioning systems where the organic phase is capable of hydrogen bonding (e.g., n-octanol) and where the organic phase is non-polar (e.g., chloroform, nheptane, cyclohexane) [7, 8]. Similar results are obtained where the functional group in question is a carbonyl moiety. Consequently, relatively little difference is expected in the log P(n-octanol/water), log P(chloroform/water), and log P(heptane/water) values for disparlure.

To confirm that SPARC is estimating accurate log P values for disparlure, the program was tested with other model compounds relevant to the study in question. For 1,2-epoxybutane, the experimental log P(n-octanol/water) is 0.68 [9], which compares very favorably to the SPARC estimated log P(n-octanol/water) of 0.94, and the SPARC estimated log P(chloroform/water) and log P(heptane/water) values of 1.31 and 0.88, respectively. Similarly, epichlorohydrin has an experimental log P(n-octanol/water) of 0.26 [10], which is in excellent agreement with the SPARC estimated log P(n-octanol/water) of 0.63, and the SPARC estimated log P(chloroform/water) and log P(heptane/water) values of 1.1 and 0.41, respectively.

As well, the environmental contaminant heptachlor epoxide has an experimental log P(n-octanol/water) of 5.40 [11], also in excellent agreement with the SPARC estimated log P(n-octanol/water) of 5.74, and the SPARC estimated log P (chloroform/water) and log P(heptane/water) values of 7.17 and 5.65, respectively. Thus, SPARC appears capable of accurately predicting log P(n-octanol/ water) values for a range of epoxides, and consistent with our state-of-the-art knowledge regarding aqueous-organic partitioning behavior between various organic solvents, SP-

^{*}Corresponding author. Tel.: +1 306 690 0573. E-mail address: sierra.rayne@live.co.uk (S. Rayne).

ARC also predicts little difference between the log P(noctanol/water), log P(chloroform/water), and log P(heptane/water) values for the various epoxides.

Because of the polarity of the epoxy moiety, the log P value of an alkane will be reduced by introduction of such a functionality. As already noted above, 1,2-epoxybutane has an experimental log P(n-octanol/water) of 0.68. The corresponding alkane (n-butane) has an experimental log P(n-octanol/water) of 2.89, in excellent agreement with the SPARC estimated log P(n-octanol/water) of 2.72, and the SPARC estimated log P(chloroform/water) and log P(heptane/water) values of 3.14 and 3.32, respectively. The non-epoxylated analog of disparlure is 2-methyloctadecane, which has SPARC estimated log P(n-octanol/ water), log P(chloroform/water), and log P(heptane/water) of 11.22, 12.70, and 13.17, respectively. Thus, if we assume about a 2-3 log unit reduction in the log P of an alkane upon introduction of an epoxide moiety, disparlure would be expected to have log P values of about 8-10 in the various solvents under consideration, which is also in excellent agreement with the SPARC direct log P prediction for disparlure discussed above. Finally, Reimer et al. [1] quote an experimental log P(chloroform/water) of 6.57 for n-nonane, in excellent agreement with the SPARC log P(chloroform/water) estimate for this compound of 6.28 (of note, SPARC also predicts log P(n-octanol/water) and log P(heptane/water) of 5.47 and 6.49, respectively, for n-nonane).

Consequently, there is no reason to believe that the SPARC log P(chloroform/water) and log P(heptane/water) estimates (as well as prior log P estimates in the literature) for disparlure are not correct. It therefore appears that Reimer et al. [1] have underestimated the log P(chloroform/ water) and log P(heptane/water) for disparlure by about 5-6 orders of magnitude. The source of the discrepancy is unknown. If hydrolysis of the epoxide in disparlure had occurred during the experimental trials in ref. [1], this would still yield a highly hydrophobic (SPARC log P(chloroform/water)=8.19) long-chain alkane with a secondary alcohol near the center of the chain, which could not explain the very low experimental log P(chloroform/ water) for disparlure reported in ref. [1]. The authors in ref. [1] also state that "[t]he agreement between the experimental and calculated values validates the choice of the force field parameters, which can thus be used in future MD [molecular dynamics] simulations of the PBPpheromone interactions." Until the source of the large discrepancies in log P values for disparlure highlighted above are resolved by these authors, confidence in their force field parameters should be considered low.

References

 S. Reimer, C. Van Klei, Y. Yu, E. Plettner, N. Weinberg, Partition coefficients of disparlure at hydrophobic/aqueous interfaces: A comparative experimental and theoretical study, Canadian Journal of Chemistry 89 (2011) 568–572.

- [2] S. Hilal, L. Carreira, S. Karickhoff, Prediction of the solubility, activity coefficient, gas/liquid and liquid/liquid distribution coefficients of organic compounds, QSAR & Combinatorial Science 23 (2004) 709–720.
- [3] S. Rayne, K. Forest, Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and waste waters, and treatment methods, Journal of Environmental Science and Health, Part A: Toxic / Hazardous Substances and Environmental Engineering 44 (2009) 1145–1199.
- [4] S. Rayne, K. Forest, Dow and Kaw,eff vs. Kow and K^oaw: Acid/base ionization effects on partitioning properties and screening commercial chemicals for long-range transport and bioaccumulation potential, Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 45 (2010) 1550–1594.
- [5] P. Durkin, Control/Eradication Agents for the Gypsy Moth-Human Health and Ecological Risk Assessment for Disparlure (a.i.) and Disrupt II Formulation, United States Department of Agriculture: Atlanta, GA, USA, 2006.
- [6] A. Herrmann, The Chemistry and Biology of Volatiles, John Wiley and Sons, Ltd: Chichester, UK, 2010, 2010, Ch. Volatiles
 An interdisciplinary approach.
- [7] C. Chiou, Partition and Adsorption of Organic Contaminants in Environmental Systems, John Wiley and Sons: New York, USA, 2002.
- [8] R. Todeschini, V. Consonni, R. Mannhold, Molecular Descriptors for Chemoinformatics, Wiley-VCH: New York, USA, 2009.
- OECD, Screening Information Dataset Report for 1,2-Epoxybutane, Organisation for Economic Co-operation and Development: Paris, France, 2001.
- [10] USEPA, Technical Factsheet on Epichlorohydrin, United States Environmental Protection Agency: Washington, DC, USA, 2011.
- [11] Syracuse Research Corporation, Toxicological Profile for Heptachlor and Heptachlor Epoxide, Agency for Toxic Substances and Disease Registry, Public Health Service, United States Department of Health and Human Services: Atlanta, GA, 2007.