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Abstract 

An efficient and robust method based on two moving average filters followed by a dynamic event 

duration threshold has been developed to detect c , d and e waves in the acceleration 

photoplethysmogram signals. The detection of a and b waves is  affected by the quality of the 

photoplethysmogram recordings, especially for the heat stressed collection. The developed a 

method detects a and b waves in Arrhythmia APG Signals that suffer from: 1) non-stationary 

effects, 2) low signal-to-noise ratio, The performance of the proposed method was tested on 27 

records collected in normal and heat-stressed conditions resulting in 99.95 percent sensitivity and 

98.35 percent positive predictivity. 

 

Keywords: acceleration photoplethysmogram, c wave detection, d wave detection, e 

wave detection, heat stress signal analysis 

 

1. Introduction 

It has been shown that atherosclerosis, the underlying cause of coronary heart disease, can 

occur even in children and adolescents. (Kimm et al.[1]; Strong et al. [2].; Leeson et al [3].). This 

fact leads to the belief that the primary prevention of atherosclerosis should commence in 

childhood. Monitoring arterial vascular walls as well as risk factors such as hypertension, 

hypercholesterolemia and other blood biochemical profiles can potentially help to identify 

individuals having an increased risk of developing atherosclerosis in adulthood. 

Pulse-wave analysis has been shown to provide valuable information on aortic stiffness and 

elasticity (Chrife et al.[4]; Kelly et al.[5], O'Rourke et al.[6]), and it has been widely used to 

evaluate the vascular effects of aging, hypertension and atherosclerosis (Darne et al.[7]; Kelly et 

al.[8], Takazawa et al. [9]; Bortolotto et al.[10]). 

Photoelectric plethysmography, also known as photoplethysmography and its acronym in some 

literature, is (PPG/PPG) and when it is called digital volume pulse, the acronym is  

(DVP). In this paper, the abbreviation PPG is going to be used according to Elgendi’s 

recommendation [11]. 

Fingertip photoplethysmography mainly reflects the pulsatile volume changes in the finger 

arterioles, has been recognized as a noninvasive method of measuring arterial pulse waves in 

relation to changes in wave amplitude (Fichett [12]). However, the wave contour itself has not 

been analysed because of the difficulty in detecting minute changes in the phase of the 
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inflections. Previous attempts at PPG analysis showed that such delicate changes in the waves 

were emphasized and easily quantified by quadratically differentiating the original PPG signal 

with respect to time (Seki [13]; Ozawa [14]). Accordingly, the second derivative of the PPG 

(APG) was developed as a method allowing more accurate recognition of the inflection points 

and easier interpretation of the original plethysmogram wave. In this paper, the abbreviation APG 

for the second derivative photoplethysmogram will be used based on Elgendi’s recommendation 

[11]. 

 

 

 

Figure 1 Signal Measurements [15] (i) fingertip photoplethysmogram (ii) second derivative wave of 

photoplethysmogram. The photoplethysmogram waveform consists of one systolic wave and one 

diastolic wave while the second derivative photoplethysmogram waveform consists of four systolic 

waves (a, b, c, and d waves) and one diastolic wave (e wave). 

 

 

 

As shown in Figure 1, The waveform of the APG consists of four systolic waves (a, b, c and d 

waves) and one diastolic wave (e wave) Takazawa et al. [16]. The height of each wave was 

measured from the baseline, with the values above the baseline being positive and those under it 

negative. 

This convenient and objective technique for analyzing the PPG wave has recently been 

performed more frequently than the conventional recordings. Several epidemiological studies 

have demonstrated that the information extracted from the APG waveform is associated closely 

with age and other risk factors for atherosclerotic vascular disease (Takada et al. [17]; Imanaga et 

al. [18]; Takazawa et al. [9]).  

Takazawa et al. [19] demonstrated that the c/a ratio reflects decreased arterial stiffness, hence 

the c/a ratio decreases with age. The c/a index was also used by Šimek et al (2005) [20] who 

found that the c/a index distinguishes subjects with essential hypertension from healthy controls. 

Baek et al [21] found that the c/a ratio decreases with age just as the b/a ratio, described above. 

They also demonstrated that the d/a ratio reflects decreased arterial stiffness, hence the d/a ratio 
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decreases with age. Moreover, they found the -d/a ratio is a useful index for the evaluation of 

vasoactive agents, as well as an index of left ventricular afterload. However, Baek et al [21] 

confirmed that the d/a ratios decreases with age.  

Takazawa et al. [19] also found that the increase of the e/a ratio reflects decreased arterial 

stiffness, and that the e/a ratio decreases with age. Baek et al [21] confirmed that the e/a ratios 

decreases with age.  Moeover,  the   e)/a-d-c-(b  index is useful for evaluating vascular aging 

and for screening of arteriosclerotic disease. Kimura et al. [22] calculated the vascular age as 

 65.9 45.5  e)/a-d-c-(b years old. 

 

Figure 2 APG waveforms and types of photoplethysmogram [23]. There are different types of APG waveforms. The 

first APG waveform A (far left) refers to good circulation, whereas the amplitude of b wave is lower 

than c wave. The last APG waveform G (far right) refers to distinctively bad circulation, whereas the 

amplitude of c wave is lower than b wave. 
 

Ushiroyama et al. [24] reported that patients with a sensation of coldness showed an 

improvement of the APG index   d)/a-c-(b upon treatment with a herbal supplement. 

Another study by Sano et al. [25] proposed a more comprehensive aging index  b)/a-d(c  as it 

increases with age.  

Homma et al succeeded in categorizing the APG into seven types depending on the waveforms, 

as shown in Figure 2. The clinical description of these categories has been demonstrated in Table 

1.  
 

Table 1 APG Wave Form Types [23] 
 

Beat Type Description 

A Good circulation 

B Good circulation but deteriorating 

C Poor circulation 

D-G Distinctively bad circulation 

 

Although the clinical significance of APG measurement has been thoroughly discussed, there is 

still a lack of studies focusing on the automatic detection of c , d and e waves in APG signals. 

Therefore this investigation, the first of its kind, aimed to develop a fast and robust algorithm to 

detect c , d and e waves in APG signals, especially in heat-stressed APG signal. 

 



In literature, there are no studies that analyse or detect c , d and e waves. However, there was 

an a serious attempt in 2009 by Matsuyama [26] to detect a waves in APG signals using nine QRS 

algorithms of Friesen’s ECG algorithms [27] after modifying the sampling rates and threshold 

values. The detection rate was below 63 per cent for all nine algorithms when tested on the 

PPG−Army Heat Stress Dataset. Therefore, this investigation aims to develop a numerically 

efficient and robust algorithm to detect c , d and e waves in APG signals. 

 

2. Data 

There are currently no standard PPG databases available to evaluate the developed algorithms. 

However, Charles Darwin University has PPG dataset measured at rest and after exercise, as 

shown in Figure 3. Two independent annotators annotated a , b , c , d and e waves in APG signal. 
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Figure 3 PPG signals: 20-seconds recording for the same volunteer, measured (a) at rest and (b) after 

exercise. It is clear that the heart rate after exercise is higher than at rest. This issue makes it 

challenging to detect heartbeats from APG signals. 
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Figure 4 Annotation of c, d, and e waves (i) c, d, and e waves are salient (ii) d wave is not salient (iii) 

d wave is not salient (iv) c, d, and e waves are merged. The first two cases occur in the 

before-heat measurement while the last two cases are quite normal in the after-heat 

measurement of APG signals. 
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The PPG data were collected as a minor part of a joint project between Charles Darwin 

University, the Defence Science and Technology Organisation (DSTO) and the Department of 

Defence. The background of the entire project can be found in [26]. 

PPGs of 27 healthy volunteers (males) with a mean±SD age of 27±6.9 were measured using a 

photoplethysmography device (Salus PPG), with the sensor located at the cuticle of the second 

digit of the left hand. Measurements were taken while the subject was at rest on a chair. PPG data 

were collected at a sampling rate of 200 Hz. The duration of each data segment is 20 seconds. 

Annotation is a difficult task due to inter-annotator discrepancy, as the two annotators will 

never agree completely on what and how to annotate the c, d, and e wave. Despite the annotation 

process being significantly time-consuming, discrepancies can be found in many records. Three 

cases will be discussed below to show how the discrepancies were adjudicated: 

 Case 1:  

Annotator 1 agrees with Annotator 2 on all of the c, d, and e waves positions 

within an APG record.  When both annotators have no discrepancies, it is an 

optimal situation. 

 Case 2:  

Both annotators agree on most of the c, d, and e waves positions. 

 Case 3:  

Annotator 2 considered the c, d, or e waves while Annotator 1 did not, and vice 

versa. 

One annotation file has been saved to present the two annotated c, d, and e waves by 

considering the c, d, and e waves that have been missed by one of the annotators, or perhaps 

isolating d wave that is salient between c and e waves. The final consideration of c, d, and e 

waves will be based on the saliency of wave itself, as shown in Figure 4. 

 

3. Methodology 

The proposed c, e and d waves detection algorithm consists of three main stages: pre-

processing (bandpass filtering, second derivative and squaring), feature extraction (generating 

potential blocks using two moving averages) and classification (thresholding). The structure of 

the algorithm is shown in Figure 5.  

 

Bandpass Filter 

To design an efficient bandpass filter, two types of challenging noise are addressed: 

i) High-frequency noise: this noise is could be due to the instrumentation amplifiers, 

the recording system pickup of ambient electromagnetic signals or other noises exist 

above 7 Hz, as shown in Figure 6 (a). High-frequency noise is usually caused by 

interference from mains power sources being induced onto the recording leads of the 

PPG. This phenomenon introduces a sinusoidal component into the recording. In 

Australia, this component is at a frequency of 50 Hz.  

ii) Low-frequency noise:  this noise is created by poor contact to the fingertip photo 

sensor. In addition, variations in temperature and bias in the instrumentation 

amplifiers can cause baseline drift. Regarding the PPG databases used in this thesis, 

the body movement was limited due short measurement time (20 seconds) and the 

fixed position of the arm during the PPG signal collection.  

The low-frequency noise can be removed using a high-pass filter. As shown in Figure 

6 (b), the low frequencies that cause baseline wandering exist up to 0.5 Hz. 



 
 

Figure 5 Flowchart for new c, d, and e wave detection algorithm. This c, d, and e waves 

algorithm is a time-domain algorithm that consists of three main stages: pre-

processing, feature extraction and classification. 
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Figure 6 Demonstrating the PPG signals frequency bands (a) PPG signal, (b) Fourier 

transform (spectrum) of the PPG signal. The spectrum illustrates peaks at the 

fundamental frequency of 50 Hz, as well as the second and third harmonics at 100 

Hz respectively. The spectrum shows that the main energy of the PPG signal lies up 

to 7 Hz. 

 

 

(b) 

(a) 



 

 

The periodic interference is clearly displayed as a spike in Figure 6 (b) not only at its 

fundamental frequency of 50 Hz, but also as spikes at 100 Hz and the higher harmonics.  

Extracting the main energy of a and b waves can be done using a bandpass filter which is 

typically a bidirectional Butterworth implementation [28], as it offers good transition-band 

characteristics at low coefficient orders making it efficient to implement [28]. 

A second-order Butterworth filter with bandpass 1−7 Hz has implemented by cascading a 

high- and low-pass filters to remove the baseline wander and high frequencies that do not 

contribute to the a and b waves. Since one complete heart cycle takes approximately one 

second, the frequencies below 1 Hz can be considered noise (baseline wander). The 7 Hz is 

chosen because most of the energy of the PPG signal is below 7 Hz, as shown in Figure 6 

(b). 

 

Figure 7 Demonstrating the zero-phase filtering in PPG signals 

 

 

The bidirectional Butterworth filter is implemented as shown in Figure 7. The S[n] output 

will be a filtered version of PPG[n] with no phase distortion. The same Butterworth filter is 

used twice in this scheme: the time reversal step is a straight left−right flipping of the time-

domain sequence, to produce zero-phase filtering, as follows:  
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Second Derivative 

To obtain the APG signals ][nZ , the second derivative will be applied to the filtered PPG 

][nS in order to analyse the APG signals. Equations 3 and 4 represent a non-causal filter; the 

three-point centre derivative creates with a delay of only two samples. 
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where T is the sampling interval and equals the reciprocal of the sampling frequency, and n is the 

number of data points. Figures 8 (a), 9 (a) and 10 (a) show the second derivative of the filtered 

PPG signal (APG signal) measured at rest and after exercise respectively. 

b wave Cancellation 

At this stage the a wave of the APG needs to be emphasised to distinguish it clearly for 

detection. This can be done by setting the negative parts of the signal equal to zero  

 
 a wave removal 

To boost c and d waves to be dominant features in the APG signal, the a wave is removed. This 

is done by setting the ][nZ signal to zero for the duration of the a wave, producing signal ][ny . 

Figures 8-10 (b) show the result of removing the a wave from the filtered signal of Figure 8-10 

(a). 

 

Generating blocks of interest 

This metodology is based on Elgendi’s methodlogy [29-32] in detecting a and b waves in APG 

signals using two moving averages. However, in here the c, d, e waves will be detected instead of 

a wave. Thus, the duration of the first moving average will be related to the minimum duration of 

the c, d, e waves which is about 8 ms while the duration of the second moving average will be 

related the average lenght of the ced segment which is about 40 ms, as follows: 

i) First Moving Average: the first moving average, shown as the dotted line in Figures 

8-10 (b), is used to detect the peaks of c and d waves. 

)1)/2-(Wny....ny1)/2-(W-n(y
W

1
nMA 11

1

Peak ][][....][][       Eq. 5 

where SFW1 *ms8 , which is the average duration for c, d, and e wave, is rounded 

to the nearest odd integer.  

ii) Second moving average: is used as a threshold for the first moving average, and is 

shown as a solid line in Figures 8-10 (b). 

)1)/2-(Wny....ny1)/2-(W-n(y
W

1
nMA 22

2

 SegmentCED ][][....][][     Eq. 6 

where SFW2 *ms40 , which is the average duration for the ced segment, is rounded 

to the nearest odd integer. 

When the amplitude of the first moving-average filter ( PeakMA ) is greater than the amplitude of 

the second moving-average filter (  segemntCEDMA ), the blocks of interest will be generated as 

follows: 

    

IF  ][nMAPeak > ][nMA  segemntCED   THEN 

][nBlocks =1 

ELSE   

  ][nBlocks =0 

END 

 

IF  0nZ ][   THEN 

0nZ ][  

END 
 



 
 
Figure 8 Case 1: Demonstrating the effectiveness of using two moving averages to detect c, d and e 

waves (a) filtered APG signal with Butterworth bandpass filter (b) generating blocks of 

interest after using two moving averages: the dotted line is the first moving average and the 

solid line is the second moving average (c) the detected c, d and e waves after applying the 

thresholds. 
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Figure 9 Case 2: Demonstrating the effectiveness of using two moving averages to detect c, d and e 

waves. (a) filtered APG signal with Butterworth bandpass filter, (b) generating blocks of 

interest after using two moving averages: the dotted line is the first moving average and the 

solid line is the second moving average, (c) the detected c, d and e waves after applying the 

thresholds. 

3650 3700 3750 3800 3850 3900 3950 4000 4050 4100

-1

-0.5

0

0.5

1

x 10
-3

 

(a) 

(b) 

Blocks of 

Interest 

PeakMA  

 segmentCEDMA  

(b) 

3650 3700 3750 3800 3850 3900 3950 4000 4050 4100

-0.1

-0.05

0

0.05

0.1

Seconds

m
V

 

(b) 

3650 3700 3750 3800 3850 3900 3950 4000 4050 4100

-1

-0.5

0

0.5

1

x 10
-3

Seconds

m
V

 

(c) 

c wave 

e wave 

d wave 



 
 

Figure 10 Case 3: Demonstrating the effectiveness of using two moving averages to detect c, d and e 

waves. (a) Filtered APG signal with Butterworth bandpass filter, (b) generating blocks of 

interest after using two moving averages: the dotted line is the first moving average and the 

solid line is the second moving average, (c) the detected c, d and e waves after applying the 

thresholds. 

 

(b) 

(c) 

Blocks of 

Interest 

Peak
MA  

 segmentCEDMA  

(b) 

3350 3400 3450 3500 3550 3600

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

 

(b) 

(a

) 

3350 3400 3450 3500 3550 3600

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

 

3350 3400 3450 3500 3550 3600

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

Seconds

m
V

 

(a) 

(c) 

c wave e wave d wave 



Thresholding 

Blocks with a smaller width than the average window size of the c, d or e peak ( 1W ) are 

considered noisy blocks and rejected. The expected size for the c, d or e peak is based on 

observational statistics for healthy adults, which varies from 6 ms to 10ms.  

 

11ii W*/SF)a(a sizepeak_Block     Eq. 7 

 

where 1iiaa   is the aa interval that contains the blocks of interest and SF is the sampling 

frequency.  

 

 
Figure 11 Demonstrating c, d and e waves time occurrence regarding the current a peak and the next 

a peak. Where minica  represents the minimum interval between the c wave and the current a 

peak while, maxiea  represents the maximum interval between the e wave and the current a 

peak.  

 

 

 
 

Figure 12 Flowchart for selection of c and e waves. 
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In order to determine whether the detected blocks contain c, d or e waves, the number of blocks 

in each consecutive aa interval is first counted. A threshold is then applied based on the distance 

of the maximum point within a block to the a peak to distinguish c waves from e waves and 

noise.  

There are three possibilities for the number of detected blocks: 

1. More than one block: the distance of the maximum point within a block to the nearest a 

peak will be used as a measure for selecting the blocks that contain potential c, e or d 

waves. This consists of two steps:  

i. Detect potential c and e waves. a block will be considered as containing a c wave if 

the distance of the maximum point of the block to the nearest a peak is within a 

certain range as shown in Figures 11-12. The maximum absolute value within the 

first accepted block at the right-hand-side of the b wave is considered the c peak.  

The maximum absolute value of the second accepted block after the c peak is 

considered the e peak. Usually the c, e, and d waves do exist in APG signals 

measured at rest as shown in Figure 13 (a,d). 

ii. Detect d waves. the minimum value that lies between the c peak and the e peak is 

considered the d peak, as shown in Figures 8-10 (c).  

2. One block: the c and e waves are most likely merged within one block, which is marked 

with a  symbol, as shown in Figure 10 (c). The c, e, and d waves are usually merged in 

APG signals measured after exercise, as shown in Figure 14. 

The detected waves were compared to the annotated waves, discussed in Appendix C, to 

determine whether the c, d, and e waves were detected correctly.  

The following statistical parameters were used to evaluate the algorithm:  
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 If c, d and e waves exist, the statistical parameters will be defined as: 

-True Positive (TPc/d/e): the c/d /e wave has been classified as the c/d /e wave, as shown in 

Figure 13 (a,b,d). 

*With high heart rates, the d wave does not exist or may be smoothed [26]. In 

this case, the true positives will be defined as: 

 True Positive (TPd): the d wave does not exist and the algorithm did not detect it, 

as shown in Figure 13 (c). 

-False Negative (FNc/d/e):  the c/d /e wave has not been classified as the c/d /e wave. 

-False Positive (FPc/d/e): the non-c/d /e wave has been classified as the c/d /e wave. 

 

 If c, d and e waves are merged, the statistical parameters will be defined as: 

-True Positive (TPc,d,e): merged c, d and e waves has been classified as merged c, d and e 

waves (see Figure 14 (a−c)) , regardless of the location of merging 

[26]. 

-False Negative (FNc,d,e): merged c, d and e waves have not been classified as merged    

                                           c, d and e waves. 

-False Positive (FPc,d,e): non-merged c, d and e waves have been classified as   

                                             merged c, d and e waves. 
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Figure 13 Detected c, e and d waves in APG signals before exercise. This contains (a) 

stationary signals, (b) low amplitudes, (c) irregular heart rhythm, (d) high frequency 

noise. ‘O’ represents the c wave, ‘*‘ represents the d wave and ’+’ represents the e 

wave. 
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e wave, the algorithm has 

detected them effectively 

as true positives. 
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Figure 14 Detected c, e and d waves in APG signals after exercise. This contains (a) stationary signals, 

(b) low amplitudes, (c) irregular heart rhythm, (d) high-frequency noise. ‘O’ represents the 

c wave, ‘+’ represents the e wave, and ‘ ’ represents the merged c, e, and d waves. 

 

 

 

 

(a) 

(c) 

(b) 

(d) 

c, d and e waves are fully 

merged and they have 

been classified as true 

positives. 

d wave does not exist and 

it has been classified as a 

true positive. Although c 

and e wave are very close 

and c waves have slightly 

higher amplitude than e 

wave, the algorithm 

classified c, d and e 

waves as true positives. 

c, d and e waves are 

merged and the algorithm 

detected c, d and e waves 

as true positives, 

regardless of the location 

of merging. In future 

work, the merging of c, d 

and e waves needs to be 

clinically investigated.   



Table 2 c wave detection performance on the PPG-Army Database 

 

Before exercise After exercise 

Record 
No of 

beats 
TP FP FN 

Se 

(%) 

+P 

(%) 

No of 

beats 
TP FP FN 

Se 

(%) 

+P 

(%) 

A1 26 26 0 0 100.0 100.0 45 45 0 0 100.0 100.0 

A2 24 23 1 0 100.0 95.8 44 39 5 0 100.0 88.6 

B1 17 17 0 0 100.0 100.0 36 35 1 0 100.0 97.2 

B2 26 25 1 0 100.0 96.2 43 42 1 0 100.0 97.7 

C2 20 20 0 0 100.0 100.0 33 32 1 0 100.0 97.0 

C3 20 20 0 0 100.0 100.0 30 28 1 0 100.0 96.6 

D2 22 21 1 0 100.0 95.5 33 28 5 0 100.0 84.8 

D3 19 19 0 0 100.0 100.0 23 23 0 0 100.0 100.0 

E1 22 22 0 0 100.0 100.0 25 24 1 0 100.0 96.0 

E2 22 22 0 0 100.0 100.0 25 24 1 0 100.0 96.0 

E3 19 19 0 0 100.0 100.0 34 32 2 0 100.0 94.1 

G2 30 28 2 0 100.0 93.3 48 48 0 0 100.0 100.0 

G3 19 19 0 0 100.0 100.0 33 31 2 0 100.0 93.9 

H3 23 22 1 0 100.0 95.7 31 31 0 0 100.0 100.0 

I1 22 22 0 0 100.0 100.0 30 28 2 0 100.0 93.3 

I2 17 17 0 0 100.0 100.0 28 26 2 0 100.0 92.9 

J2 23 22 1 0 100.0 95.7 36 35 1 0 100.0 97.2 

L2 24 24 0 0 100.0 100.0 36 36 0 0 100.0 100.0 

L3 24 24 0 0 100.0 100.0 35 33 2 0 100.0 94.3 

N2 18 18 0 0 100.0 100.0 23 23 0 0 100.0 100.0 

N3 20 20 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

O1 24 24 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

O2 17 17 0 0 100.0 100.0 32 26 6 0 100.0 81.3 

P1 26 26 0 0 100.0 100.0 35 33 2 0 100.0 94.3 

P2 20 20 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

Q1 22 22 0 0 100.0 100.0 27 26 1 0 100.0 96.3 

Q2 18 18 0 0 100.0 100.0 33 33 0 0 100.0 100.0 

27 

volunteers 584 577 7 0 100.0 98.97 885 848 36 0 100.0 95.98 

 

 



 

Table 3 d wave detection performance on the PPG-Army Database 

 

Before exercise After exercise 

Record 
No of 

beats 
TP FP FN 

Se  

(%) 

+P 

(%) 

No of 

beats 
TP FP FN 

Se 

(%) 

+P 

(%) 

A1 26 26 0 0 100.0 100.0 45 45 0 0 100.0 100.0 

A2 24 24 0 0 100.0 100.0 44 44 0 0 100.0 100.0 

B1 17 17 0 0 100.0 100.0 36 36 0 0 100.0 100.0 

B2 26 26 0 0 100.0 100.0 43 43 0 0 100.0 100.0 

C2 20 18 2 0 100.0 90.0 33 33 0 0 100.0 100.0 

C3 20 19 1 0 100.0 95.0 30 30 0 0 100.0 100.0 

D2 22 22 0 0 100.0 100.0 33 33 0 0 100.0 100.0 

D3 19 19 0 0 100.0 100.0 23 21 2 0 100.0 91.3 

E1 22 22 0 0 100.0 100.0 25 24 1 0 100.0 96.0 

E2 22 22 0 0 100.0 100.0 25 24 1 0 100.0 96.0 

E3 19 19 0 0 100.0 100.0 34 34 0 0 100.0 100.0 

G2 30 30 0 0 100.0 100.0 48 48 0 0 100.0 100.0 

G3 19 19 0 0 100.0 100.0 33 32 1 0 100.0 97.0 

H3 23 22 1 0 100.0 95.7 31 28 3 0 100.0 90.3 

I1 22 22 0 0 100.0 100.0 30 30 0 0 100.0 100.0 

I2 17 17 0 0 100.0 100.0 28 28 0 0 100.0 100.0 

J2 23 23 0 0 100.0 100.0 36 36 0 0 100.0 100.0 

L2 24 23 1 0 100.0 95.8 36 36 0 0 100.0 100.0 

L3 24 24 0 0 100.0 100.0 35 35 0 0 100.0 100.0 

N2 18 17 1 0 100.0 94.4 23 23 0 0 100.0 100.0 

N3 20 19 1 0 100.0 95.0 29 27 2 0 100.0 93.1 

O1 24 24 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

O2 17 16 1 0 100.0 94.1 32 32 0 0 100.0 100.0 

P1 26 21 5 0 100.0 80.8 35 35 0 0 100.0 100.0 

P2 20 20 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

Q1 22 22 0 0 100.0 100.0 27 27 0 0 100.0 100.0 

Q2 18 18 0 0 100.0 100.0 33 33 0 0 100.0 100.0 

27 volunteers 584 571 13 0 100.0 97.81 885 875 10 0 100.0 98.66 

 

 

 



Table 4 e wave detection performance on the PPG-Army Database 

 

Before exercise After exercise 

Record 
No of 

beats 
TP FP FN 

Se  

(%) 

+P 

(%) 

No of 

beats 
TP FP FN 

Se 

(%) 

+P 

(%) 

A1 26 26 0 0 100.0 100.0 45 45 0 0 100.0 100.0 

A2 24 24 0 0 100.0 100.0 44 39 5 0 100.0 88.6 

B1 17 17 0 0 100.0 100.0 36 36 0 0 100.0 100.0 

B2 26 26 0 0 100.0 100.0 43 41 2 2 95.3 95.3 

C2 20 20 0 0 100.0 100.0 33 32 1 0 100.0 97.0 

C3 20 20 0 0 100.0 100.0 30 29 0 0 100.0 100.0 

D2 22 22 0 0 100.0 100.0 33 33 0 0 100.0 100.0 

D3 19 19 0 0 100.0 100.0 23 23 0 0 100.0 100.0 

E1 22 22 0 0 100.0 100.0 25 25 0 0 100.0 100.0 

E2 22 22 0 0 100.0 100.0 25 25 0 0 100.0 100.0 

E3 19 19 0 0 100.0 100.0 34 34 0 0 100.0 100.0 

G2 30 30 0 0 100.0 100.0 48 48 0 0 100.0 100.0 

G3 19 19 0 0 100.0 100.0 33 33 0 0 100.0 100.0 

H3 23 21 2 0 100.0 91.3 31 31 0 0 100.0 100.0 

I1 22 22 0 0 100.0 100.0 30 30 0 0 100.0 100.0 

I2 17 17 0 0 100.0 100.0 28 28 0 0 100.0 100.0 

J2 23 23 0 0 100.0 100.0 36 36 0 0 100.0 100.0 

L2 24 24 0 0 100.0 100.0 36 36 0 0 100.0 100.0 

L3 24 24 0 0 100.0 100.0 35 35 0 0 100.0 100.0 

N2 18 18 0 0 100.0 100.0 23 22 1 0 100.0 95.7 

N3 20 20 0 0 100.0 100.0 29 28 1 1 96.6 96.6 

O1 24 24 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

O2 17 17 0 0 100.0 100.0 32 32 0 0 100.0 100.0 

P1 26 26 0 0 100.0 100.0 35 35 0 0 100.0 100.0 

P2 20 20 0 0 100.0 100.0 29 29 0 0 100.0 100.0 

Q1 22 22 0 0 100.0 100.0 27 27 0 0 100.0 100.0 

Q2 18 18 0 0 100.0 100.0 33 33 0 0 100.0 100.0 

27 volunteers 584 582 2 0 100.0 99.68 885 874 10 3 99.70 99.01 

 

 

 



Discussion and Conclusion 

The proposed algorithm was tested on the PPG-Army dataset. As mentioned in Chapter 4, this 

dataset contains 27 APG recordings measured before and after exercise. The main objective 

behind testing the algorithm against the APG measured after exercise is to test the robustness of 

the algorithm against non-stationary effects, low SNR, and high heart rate. All of the reasons for 

detection failure are described below. 

1) Stationarity. the APG signals for volunteers I2 -before exercise and G2 (after exercise) 

are stationary. The proposed algorithm detected the c, d, and e waves correctly in 

stationary APG signals as shown in Figure 13 (a). In Figure 14 (a), the c, d, and e waves 

are merged because of the high heart rate of the subject. 

2)  Low Amplitude. the APG signals of volunteers O2 (before exercise) and B2 (after 

exercise) have low amplitude. The proposed algorithm handled very poor amplitudes, as 

shown in Figures 13 (b) and 14 (b).  

3)  Non-Stationarity.  the proposed algorithm detected the c, d, and e waves correctly in non-

stationary APG signals as shown in Figures 13 (c,d) and 14 (c,d). 

4) Regular Heart Rhythm. the proposed algorithm detected the c, d, and e waves correctly in 

APG signals with regular heart rhythms as shown in Figures 12 (a,b,d) and 13 (a ,b, d). 

5) Irregular Heart Rhythm. Figures 13 (c) and 14 (c) have irregular rhythms and the c, d, 

and e waves have been detected successfully. Figure 13 (c) shows that d wave is smoothed 

with c and e waves; after exercise (or high heart rate), the d wave usually vanishes and the 

c, d and e waves are merged.  

6) High Frequency Noise. as shown in Figures 13 (d) and 14 (d), the proposed algorithm is 

very robust to noise, for volunteers Q1 (before exercise) and A1(after exercise). 

Although the duration of c, d and e waves changed dramatically after exercise, the proposed 

algorithm succeeded in detecting the c, d and e waves efficiently as shown in Tables 2-4. 

Few false negative occur in N3 and B2 subjects measured after exercise, this is because e wave 

was not salient enough to be detected, about to merge with c and d waves. Due to high noise the 

APG signals, a number of false positives occurred. However, the number of false positives in the 

detection of c waves was the highest because of its morphology and small duration.  

Most research relating to the APG has been done in Japan. In addition to cardiovascular risk 

factors, the APG has also been described as a potential diagnostic tool for other disorders, varying 

from a sensation of coldness and stress experienced by surgeons to exposure to lead, pneumonia, 

intracerebral haemorrhage and acute poisoning. 

Currently a full understanding of the diagnostic value of the different features of the PPG 

signal is still lacking and more research is needed. Moreover, the detection algorithm of c , d and 

e waves in APG signals can hardly be found in litrature.  

However, a promising algorithm has been proposed to detect c , d and e waves simulternously 

and robustly against high-frequency noise, low amplitude, non-stationary effects and irregular 

heartbeats in APG signals measured before and after exercise. This numerically-efficient 

algorithm was evaluated using 27 records, containing 1,469 heartbeats resulting in 99.95 percent 

sensitivity and 98.35 percent positive predictivity.  

The accurate detection of c, and d and e waves in the APG offers a non-invasive method of 

evaluating cardiac functioning and identifying individuals at risk. 

 

 

 

Acknowledgement 
 



Mohamed Elgendi would like to gratefully acknowledge the Australian government and Charles 

Darwin University whose generous scholarships facilitated this research. He would like also to 

thank Prof. Friso De Boer and Mrs. Mirjam Jonkman for their valuable comments and annotation 

of the used dataset. He also would like to thank Dr Gari Clifford for helpful discussions. 

 

References 
1. Kimm SY, P.G., Stylianou MP, Waclawiw MA, Lichtenstein C  National trends in the management of 

cardiovascular disease risk factors in children: second NHLBI survey of primary care physicians. 

Pediatrics, 1998: 102:E50. 

2. Strong JP, M.G., McMahan CA, Tracy RE, Newman WP, Herderick EE, Cornhill JF . Prevalence and 

extent of atherosclerosis in adolescents and young adults. Implications for prevention from the 

pathobiological determinants of atherosclerosis in young study. JAMA 1999: 281:727-737. 

3. Leeson CP, W.P., Cook DG, Mullen MJ, Donald AE, Seymour CA, Deanfield JE  Choresterol and 

arterial distensibility in the first decade of life: a population-based stud. Circulation 2000: 101:1533-

1538. 

4. Chrife R, P.V., Spodick DH Measurement of the left ventricular ejection by digital plethysmography. 

American Heart Journal, 1971(82:222-227). 

5. Kelly RP, H.C., Avolio AP, O'Rourke MF, Noninvasive determination of age-related changes in the 

human arterial pulse. Circulation, 1989: 80:1652-1659. 

6. O'Rourke MF, K.R., Avolio AP, The arterial pulse. Philadelphia : Lea & Febiger, 1992: 3-14. 

7. Darne BM, G.X., Safar ME, Cambien FA, Guize L Pulsatile versus steady component of blood 

pressure. A cross-sectional and prospective analysis on cardiovascular mortality. Hypertension, 1989: 

13:392-400. 

8. Kelly RP, H.C., Kerber S, Vielhauer C, Hoeks AP, Zidek W, Rahn KH, Different effects of 

hypertension, atherosclerosis and hyperlipidemia on arterial distensibility. Hypertension, 1995: 

13:1712-1717. 

9. Takazawa K, T.N., Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, Ibukiyama C, Assessment of 

vascular agents and vascular aging by the second derivative of photoplethysmogram waveform. 

Hypertension, 1998: 32:365-370. 

10. Bortolotto LA, B.J., Kondo T, Takazawa K, Safar ME Assessment of vascular aging and 

atherosclerosis in hyperetensive subjects: second derivative of photoplethysmogram versus pulse wave 

velocity. . Hypertension 2000: 13:165-171. 

11. Elgendi, M., Standard Terminologies for Photoplethysmogram Signals. Current Cardiology Reviews, 

2012; 8(3): 215-219. 

12. Fitchett, D.H., Forearm arterial compliance: a new measure of arterial compliance? . Cardiovascular 

Research, 1984: 18:651-656. 

13. Seki, H., Classification of wave contour by first and second derivative of plethysmogram (in Japanese). 

Pulse Wave, 1977: 7:42-50. 

14. Ozawa, T., Pattern of second derivative of volume pulse wave, the relation between non-invasive index 

of ventricular function and peak acceleration and effect of preloading to peak velocity (in Japanese). 

Pulse Wave 1978: 8:22-31. 

15. Elgendi, M., On the Analysis of Fingertip Photoplethysmogram Signals. Current Cardiology Reviews, 

2012; 8(1): 14-25. 

16. Takazawa K, F.M., Kiyoshi Y, Sakai T, Kobayashi T, Maeda K, Yamashita Y, Hase M, Ibukiyama C, 

Clinical usefulness of the second derivative of a plethysmogram (acceralation plethysmogram). 

Cardiology, 1993: 23:207-217. 

17. Takada H, W.K., Harrel JS, Iwata H Acceleration plethysmography to evaluate aging effect in 

cardiovascular system. Using new criteria of four wave patterns. . Medical Progress through 

Technology, 1996: 21:205-210. 

18. Imanaga I, H.H., Koyanagi S, Tanaka K  Correlation between wave components of the second 

derivative of plethysmogram and arterial distensibility. Jpn Heart J 1998: 39:775-784. 

19. Takazawa K, T.N., Fujita M, Matsuoka O, Saiki T, Aikawa M, Tamura S, Ibukiyama C, Assessment of 

vasocative agents and vascular aging by the second derivative of photoplethysmogram waveform. 

Hypertension, 1998: 32:365-370. 



20. Nousou, N., Urase, S., Maniwa, Y., Fujimura, K., and Fukui, Y., Classification of Acceleration 

Plethysmogram Using Self-Organizing Map. Intelligent Signal Processing and Communications, 2006. 

ISPACS '06. International Symposium on, 2006: 681-684. 

21. Baek, H.J., Kim, J.S., Kim, Y.S., Lee, H.B., and Park, K.S., Second Derivative of 

Photoplethysmography for Estimating Vascular Aging, in The 6th International Special Topic 

Conference on Information Technology Applications in Biomedicine, 2007. 

22. Kimura, Y., Takamatsu, K., Fujii, A., Suzuki, M., Chikada, N., Tanada, R., Kume, Y., and Sato, H., 

Kampo therapy for premenstrual syndrome: Efficacy of Kamishoyosan quantified using the second 

derivative of the fingertip photoplethysmogram. Japan Society of Obstetrics and Gynecology, 2007. 

23. Homma, S., Ito, S., Koto, T., and Ikegami, H., Relationship between accelerated plethysmogram, blood 

pressure and arterior elasticity. The Japanese Society of Physical Fitness and Sport Medicine, 1992; 

41: 98-107. 

24. Ushiroyama, T., Kajimoto, Y., Sakuma, K., and Ueki, M., Assessment of chilly sensation in Japanese 

women with Laser Doppler Fluxmetry and Acceleration Plethysmogram with Respect to Peripheral 

Circulation. Bulletin of the Osaka Medical College, 2005; 51(2): 76-84. 

25. Sano, Y., Kasokudo Myakuha ni kansuru Kenkyuu no Gaiyou (in Japanese), 2003: 

http://jsspot.org/sano/. 

26. Matsuyama, A., ECG and APG Signal Analysis during Exercise in a Hot Environment, in School of 

Engineering and Information Technology, 2009; Charles Darwin University: Darwin, Australia. 

27. Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R., and Nagle, H.T., A comparison 

of the noise sensitivity of nine QRS detection algorithms. Biomedical Engineering, IEEE Transactions 

on, 1990; 37(1): 85-98. 

28. Oppenheim, A. and Shafer, R., (eds). Discrete-time Signal Processing NJ: Prentice Hall; 1989. 

29. Elgendi, M., Jonkman, M., and De Boer, F. Measurement of a-a Intervals at Rest in the Second 

Derivative Plethysmogram. Proceedings of IEEE Conference in Bioelectronics and Bioinformatics, 

2009; RMIT University, Melbourne. 

30. Elgendi, M., Jonkman, M., and De Boer, F. Heart Rate Variability Measurement Using the Second 

Derivative Photoplethysmogram. Proceedings of The 3rd International Conference on Bio-inspired 

Systems and Signal Processing (BIOSIGNALS2010), 2010; Spain. 

31. Elgendi, M., Jonkman, M., and De Boer, F., Heart Rate Variability and Acceleration Plethysmogram 

measured at rest, in Biomedical Engineering Systems and Technologies, A. Fred, J. Filipe, and h. 

Gamboa, Editors. 2011, Springer. p. 266-277. 

32. Elgendi, M., Jonkman, M., and De Boer, F. Applying the APG to measure Heart Rate Variability. 

Proceedings of The 2nd International Conference on Computer and Automation Engineering, 2010; 

Singapore. 

 

 

http://jsspot.org/sano/

