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The proposed model is based on J. Wheeler’s geometrodynamic concept, in which space
continuum is considered as a topologically non-unitary coherent surface admitting the
existence of transitions of the input-output kind between distant regions of the space in
an additional dimension. The existence of closed structures (macrocontours) formed at
the expense of interbalance of gravitational, electric, magnetic and inertial forces has
been substantiated. It is such macrocontours that have been demonstrated to form — in-
dependently of their material basis — the essential structure of stellar objects (SO) and
to determine the position of these objects on the Hertzsprung-Russell diagram. Mod-
els of the characteristic types of stellar objects: stars and compact bodies emerging in
the end of stellar evolution — have been presented, and their standard parameters at
different stages of evolution have been calculated. The existence of the Hertzsprung-
Russell diagram has been substantiated, and its computational analogue has been given.
Parallels between stellar and microcosmic objects are drawn.

Recognizing the Seeker, Nature
itself will come to meet him.

Rockwell Kent

1 Introduction

Wheeler’s geometrodynamic concept, in which microparti-
cles are considered as vortical oscillating deformations on a
non-unitary coherent surface, was earlier used by the author
to construct model objects of the microcosm [1, 2]. Those
works substantiated the existence of closed structures (con-
tours), determining the properties of microparticles. At the
same time, the idea about transitions between distant regions
of space in the form of Wheeler’s “wormholes” can be ex-
tended to the scale of macrocosm, and some contemporary
astrophysical theories has already made use of it [4]. In this
paper, the existence of closed contours is substantiated at the
cosmological scale, and grounds are given that they make the
basis of stellar objects (SO).

The work does not consider the nature of the cosmologi-
cal medium that forms stellar bodies, nor it does the nature of
mass/charge carriers, force interactions etc., or various phys-
ical manifestationsof the evolutionary behavior of stellar ob-
jects. These tasks are a subject of specific disciplines.

The model presented in the paper has an outline, illustra-
tive character and suggests a new look at the problem. For the
model, the only important thing is theexistenceof the afore-
mentionedentities, forming certain types of stellar structures
and determining their evolution. The work does use specific
SO terms, but only schematic SO models are considered, with
their evolution depending only on a few parameters reflecting
the most important features of the real objects.

The SO models used here are based on the balance be-
tween main interactions: electrical, magnetic, gravitational

and inertial — with no additional coefficients introduced. The
analysis gives good qualitative results and, in a number of
cases, plausible quantitative parameters for the statistically
averaged (typical) stellar objects.

2 Initial premises

As was shown earlier [1], from the purely mechanistic point
of view the so-calledchargeonly manifests the degree of the
nonequilibrium state of physical vacuum; it is proportional to
the momentum of physical vacuum in its motion along the
contour of the vortical current tube. Respectively, thespin
is proportional to the angular momentum of the physical vac-
uum with respect to the longitudinal axis of the contour, while
themagnetic interactionof the conductors is analogous to the
forces acting among the current tubes.

It is given that the elementary unit of such tubes is a unit
with the radius and mass close to those of a classical electron
(re andme).

It should be noted that in [1, 2] the expressions for the
electrical and magnetic forces are written in a “Coulombless”
form, with charge replaced by electron limiting momentum.
In this case, the electrical and magnetic constants (ε0 andμ0)
are expressed as follows:

ε0 =
me

re
= 3.33× 10−16 kg/m, (1)

μ0 =
1
ε0c2

= 0.0344 N−1. (2)

The electrical constant here is, in fact, the linear density
of the vortex tube, with the mass:

m= ε0 l , (3)
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wherel is the length of the vortex tube (thread) or contour.
To combine the interactions, let us express them in a di-

mensionless form with the common force dimension factor
1
μ0

. Taking into account (1) and (2),

Fe =
1
μ0

(
re

r0

)2

ze1ze2, (4)

Fm =
1
μ0

l
2πr0

r2
e

(c× [sec])2
ze1ze2, (5)

Fg =
1
μ0

1
f

(
re

r0

)2

zg1zg2, (6)

Fi =
1
μ0

re

r0

(v0

c

)2
zg, (7)

where v0, r0, ze, zg, f are the rotary velocity and rotary ra-
dius or distance between the vortex tubes, the relative values
of charge and mass in the parameters of electron charge and
mass and the ratio of electrical-to-gravitational forces, which,
under the given conditions, is expressed as follows:

f =
c2

ε0γ
= 4.16× 1042, (8)

whereγ is the gravitational constant.
The balance of electrical and magnetic forces Fe= Fm

gives a geometrical mean, a characteristic linear parameter
that is independent of the direction of the vortex tubes and
the number of charges

R� =
√

r0 l =
√

2π c× [sec]= 7.52× 108 m, (9)

a magnitude close to the Sun radius and the sizes of typical
stars.

Thebalance of magnetic and gravitational forces Fm= Fg
also results in a geometrical mean:

√
r0 l =

√
zg1zg2

ze1ze2

√
2π
f

c× [sec]=
√
ε

f
R� , (10)

where the ratio of the productsε= zg1zg2/ze1ze2 is an
evolutionary parameter, which characterizes the state of the
medium and its changes, as the mass carriers become pre-
dominant over the electrical ones and, as a matter of fact,
shows how the material medium differs from vacuum.

In the general case, expression (10) gives a family of
lengthy contours, consisting of contra-directional closed vor-
tex tubes (mg-contours). The evolutionary parameterε pro-
portionally increases the mass of the vortex tube for themg-
element:

m= εε0 l. (11)

The vortex tubes can consist, in their turn, of a number of
parallel vortex threads, whose stability is ensured by thebal-
ance of magnetic and inertial forces(Fm = Fi ; mi-zones). As
follows from this balance,

v0i =

√
ze1ze2

zg

√
re l
2π
× [sec−1] . (12)

Unidirectional vortex threads of the lengthl rotate, with
the rotary velocity v0i , about the longitudinal axis along an
orbit of indeterminate radius. When they are filled with the
chains of single charges, having the mass of an electron, and
their numberze = zg = l/re (or when the tubes consist of
single vortex threads in the quantity ofl/re), we get the fol-
lowing equation:

v0i =
l
√

2π
× [sec−1] . (13)

The balance of gravitational and inertial (centrifugal)
forces Fg = Fi gives avirial , from which one can derive the
maximal gravitational mass of the object, satisfying condi-
tion (9):

Mm =
R� c2

γ
= f R� ε0 = 1.012× 1036 kg. (14)

3 Structurizations of the primary medium and parame-
ters of stellar objects

Now let us consider objects in which more than one pair of
forces is balanced.

Let us assume that an initially unstructured maximal mass
evolves and becomes more complex — through the emer-
gence ofmi-zones, consisting of single elements of the length
li and massmi . As follows from the constancy ofμ0 in the
general case,

1
μ0

= ε0 c2 =
miv2

i0

ri
(15)

wheremi = ε0 li is the mass of a vortexmi-element. From
(13) and (15), one can obtain, having in mind (9), the ratio
for its geometrical parameters:

l3i
ri

= R2
� . (16)

Driven by gravitation, the single tubes (threads) will com-
bine into a local structure, the mass of which can also be cal-
culated from the virial:

Mi =
riv2

i0

γ
. (17)

Let the object containzi local zones; then its mass will
be M0 = zi Mi . Let us introduce a dimensionless parameter
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M = M0/Mm. Then, making some transformations, one can
eventually obtain uniform equations for all the parameters of
the evolving objects with an arbitrary relative massM:

number of local zones

zi =
1

M1/4
, (18)

zone radius
ri = M3/4R� , (19)

length of the vortex tube (thread)

li = M1/4R� , (20)

rotary velocity in the zone

v0i = M1/4 c, (21)

number of single vortex threads in the zone

n =
Mi

mi
= f M , (22)

and, having in mind (10), one can taken = ε.
Thus, as its mass decreases, theobject simultaneously be-

comes more and more complex, getting subtly structured with
mi-zones.

Let us assume that the initial state of SO is a rotating disk,
which can further develop into larger structures (mg-contours)
of the sizeR0 × d0, where the contour length isR0 = l and
diameter isd0 = r0. With these designations, equation (10)
will look as follows:

√
d0 R0 =

√
ε

f
R� . (23)

Let us accept, quite schematically and roughly, thatmg-
contours in the disk are oriented radially-spirally and are
pulled in towards the center by the radial components of the
gravitational forces. These forces are approximately equal to
(d0/R0)Fg. Then, from the balance of centrifugal and gravi-
tational forces,

v0 =

√
d0

R0

√
γm
R0
, (24)

wherem andR0 are themg-contour mass and the averaged
disk radius respectively.

Let us define the number ofmg-contours as

z0 =
R0

d0
. (25)

With equation (11) in mind, the total mass of the object
will amount to

MMm = z0 m= z0 εε0 R0. (26)

Taking into account equations (8), (9), (23–26) and mak-
ing some transformations, we can find parameters of the
structured disk:

R0 = M1/3 R� , (27)

z0 =
f M2/3

ε
, (28)

v0 =
εc

f M1/3
. (29)

The parameters found are averaged when the disk struc-
tural elements are tightly packed, and they determine the core
of the object. Let us define the object boundaries — under
the condition that, if the system ofmg-contours is rotating as
a rigid disk, the rotary velocity of contours at the periphery
must not exceed the speed of light. In this case, the maximal
radius of the disk will be:

Rm =
R0 c
v0

= z0 R� . (30)

Let us further assume — within the framework of our sim-
plified model — that the mass of the object is concentrated
either in the center (thestate of core) or at the periphery (the
state of outer layer). Obeying the angular momentum conser-
vation law, velocity at the periphery cannot be higher than:

vm =
v0R0

Rm
=

v2
0

c
. (31)

Let the periods of core and outer layer rotation be ex-
pressed asτ0 = R0/v0 and τm = Rm/vm respectively (the
duration of the inner and outer cycles).

Having in mind (27–31) and taking into account that√
2π = 2.51, we obtain

τ0 = 2.51M2/3 f
ε
, (32)

τm = 2.51M4/3

(
f
ε

)3

. (33)

Indeed, star cores rotate much faster that their outer layers
[5]. As the medium condenses and becomes more and more
different from vacuum, the evolutionary parameterε grows.
There are at least two characteristic values of this parameter
satisfying the following conditions:

1. The number ofmg-elementsz0 is equal to the number of
mi-structureszi , which should correspond to the most
stable orbalancedstate of SO in the process of its evo-
lution. In this case (zi = z0) — as it follows from (18)
and (28),

ε = f M11/12 . (34)

2. The number ofmg-elements is reduced to one, which
will include all the mi-structures. This state corres-
ponds to the end of a certain period of object’s evo-
lution, i.e., to thedegeneratestate. Here, from (28),

ε = f M2/3 . (35)
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In the state of degeneration, whenz0 = 1, the period of
core rotation will — as follows from (30), (32), (35) — be
constant for any masses and amount to 2.51 sec, whereas the
size of the outer layer will be equal to the standard radiusR�.
In the general case, one can write, combining (34) and (35):

ε = f Mk , (36)

where the parameterk > 2/3.
Visible dimensions of stars, i.e., radii of their photosphe-

res, depend on many a specific factor; as a rule, they do not
equal to the radiusRm and can be evaluated only roughly. The
same can be said about star temperatures. Let us take the mass
of the Sun as a standard (the validity of such a choice will
be justified later) and consider the radius of the solar photo-
sphere being close toR�. Then, within the limits of the main
sequence for the stable state and taking into account our disk
model, the relative radius of the photosphereRf for a star of
arbitrary mass can be expressed via the mass of the Sun. It is
evident that for atwo-dimensionalmodel,

Rf =

(
M
M�

)1/2

(37)

and in the general case,

Rf =

(
M
M�

)i

, (38)

where i = 1 . . . 1/3 is a coefficient reflecting the density of
packing ofmg-contours in the object.

To evaluate the model object temperature, let us consider
its radiation as that of black body. Let the maximal temper-
ature of radiation be achieved at the Compton wavelength of
electron,k = 2.426× 10−12 m, and let us assume that the
radiation wavelength is inversely proportional to the rotary
velocity of the contour vortex tubes at a given radius. Then,
from Wien’s formula,

T =
b
λ
, (39)

whereb = 0.0029× 106 m× ◦K. Having in mind this propor-
tion, the radiation temperatures at the radii of core and pho-
tosphere (and an arbitrary radius as well) can be expressed
as

T0 = Tk

(v0

c

)
(40)

and

Tf = Tk

(v0

c

) (R0

Rf

)

, (41)

whereas the energy of radiation (here and so forth, in keV) as

E = 511
v0

c
keV, (42)

whereTk is the limiting temperature, corresponding toλk and
equal to 1.19× 109 ◦K.

Parameters Balanced state Degenerate state

ε 2.47× 1037 6.56× 1038

z 26.6 1

The core

R0 0.0126 0.0126

v0 4.7× 10−4 0.0126

τ0, sec 66.9 2.51

T0
◦K 5.6× 105 1.5× 107

The outer layer

Rm 26.6 1

vm 2.21× 10−7 1.57× 10−4

τm, sec 3× 108 = 9.6 years 1.58× 104 = 4.4 hours

Tm
◦K 263 1.89× 105

The photosphere

Rf 1 1

Tf
◦K 7050 1.89× 105

Table 1: Note — radii and velocities are expressed as fractions ofR�
andc.

4 Model adequacy

It seems improbable that such a schematic and simple model
would yield plausible results towards stellar objects. Yet it
does. Let us calculate some parameters of asolar-mass star.
The mass of the Sun equals to 2× 1030 kg; in relative units,
upon division byMm, M� = 2× 10−6.

Table 1 shows the results of calculations according to the
formulas given above.

In our notation,angular momentumof the Sun is equal to

0.4(2× 1030) v0 R0 = 0.4 M23/12
� Mmc R� =

= 1.09× 1042 kg m2/sec, (43)

where the coefficient 0.4 takes account of the spherical shape
of the body.

Comparing the calculated equilibrium-state parameters of
this averaged standard object (a solar-type star) with the ac-
tual parameters of the Sun, one can see a close correspon-
dence between their sizes, surface and core temperatures and
periods of the solar cycle activity. The Sun’s angular momen-
tum is calculated with almostperfect precision.

By the end of evolution, upon reaching the degenerate
state (atz0 = 1), the periods of the inner (τ0) and outer (τm) cy-
cles diminish to their limits (Table 1). In this case, the single-
thread spiral structure would flatten into a disk — thick as the
size of the core (R0) and radiating to the sector of the disk
plane. The period of radiation will beτm = 4.4 h; impulse
duration,τ0 = 2.5 sec; and temperatures of the core and outer
layer correspond to energies, 6.4 and 0.08 keV respectively.
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The presence ofmi-zones in themg-contour will bring un-
certainty into the period of radiation, which will be inversely
proportional to the number ofmi-zones. For an object of
the solar mass, the uncertainty in the period of impulses will
amount toτm/zi = 4.4h/26.6 = 598 sec.

These parameters are typical and correspond well to the
x-ray sources,barsters. For example, they perfectly fit the
parameters of the X-ray source 3U 1820-30 in the globular
cluster NGC6624 [5] etc.

Of course, the model presented here reflects only some
essential features of stellar object structure. A stellar ob-
ject can consist of toroids (balance of magnetic and grav-
itational forces), whose current-conducting elements rotate
above the closed longitudinal axis of the tor (balance of mag-
netic and inertial forces), whereas the toroids themselves are
oriented in the plane of the rotating disk (balance of gravita-
tional and inertial forces). Such a system should hardly be
stable. The core would rotate faster than the periphery, and
themg-contours would coil up, with their kinetic energy trans-
forming into other forms (and then, probably, transforming
back). Describing such a system as a multiturn plane-spiral
mechanical pendulum might be nave, yet in any case, there
should take place anoscillatory process of the object’s gravi-
magnitodynamical structure. Indeed, the paired dark spots in
the equatorial zone of the Sun seem to be the outlet ofmg-
contours — undergoing magnetic reversal and changing their
intensity and polarity with the period of 11 years. Their regis-
tered quantity (from several to a hundred) does not contradict
the calculated meanz0 = 26.6.

Now let us calculate thedensity of the SO core. In the
atoms of stellar matter (hydrogen, for the most part), sub-
stance circulates, according to our model, withinp+− e− —
contours with the massε0 r0, and circulation speed cannot be
higher than that of light [1].

At the same time, the magnitude of the chargee0 is con-
stant at any quantum number and equals to the momentum of
the contour massε0 r0 v0. At v0→ c, r0→ r0min, therefore

r0min =
e0

ε0 c
= 1.65× 10−12 m . (44)

The density of maximally condensed hydrogen atoms will
amount (for a spherical volume) to

ρmax =
3mH

4πr3
0min

= 8.82× 107 kg/m3 , (45)

wheremH is the mass of a hydrogen atom.
Now let us represent the mean density of the core matter

as a ratio of the core mass to its cubic radius. Having in mind
the corresponding expressions, one can see that the density is
invariable and depends only on the gravitational constant:

ρ0 =
MMm

R3
0

=
Mm

R3
�

=
1

2πγ × [sec]2
=

= 2.38× 109 kg/m3 . (46)

Fig. 1: The diagram “evolutionary parameter — mass”.

As follows from the density ratio, a volume equal to that
of a single hydrogen atom should contain 27 atoms of the
initial matter, which corresponds, by the number of protons,
to atoms of the iron group. The density is typical for white
dwarfs, such as the famous Kuiper star.

It is interesting that the parameters obtained:R�, ρ0 and
τ0 = 2.51 sec — practically indistinguishable from the values
that should characterize the neck of a hypothetical magnetic
“wormhole” of the massMm [4].

5 Analogues of the Hertzsprung-Russell (H-R) diagram
and their applications

The Hertzsprung-Russell (H-R) diagram shows the evolution-
ary position of stellar objects on the “spectral class (temper-
ature) — luminosity” coordinate plane. Let us consider its
analogues: diagrams “evolutionary parameter — mass”, and
“temperature — mass”.

5.1 The diagram “evolutionary parameter — mass”

On such a diagram (Fig. 1),ε(M) dependencies would better
be plotted on a logarithmic scale. At anyk, the diagram rays
converge on a point corresponding to the limiting massMm

and limiting evolutionary parameterεmax = f .
Specific parameters of SO will depend on the position of

the object on the diagram. In general, with the converging
point Mm approached then, as follows from (27–33), (40),
(41), the number ofmg-contours will tend to 1; the rotary
velocity, to the speed of light; the core and outer layer radii,
to R�; the periods of the inner and outer cycles, to 2.51 sec;
and the core and outer layer temperatures, toTk.

Evidently, for any given SO, the course of evolution may
go both towards largerε values (condensation of medium),
up toz= 1, and smallerε values (depression of medium), up
to the shedding of the envelope at the end of the evolutionary
process.Using the microcosm analogies, one can compare
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these states to the Bohr and ionized atoms respectively.
Let consider a stellar object which is in the main sequence

and has a value of the evolutionary parameter corresponding
to the line of equilibrium atk = 11/12. At ε = const, the
equilibrium massM0 will correspond to a smaller massMp

on the line of degeneration, for whichk = 2/3 andz0 = 1
(Fig. 1). In this case, one can obtain a mass ratio from (34)
and (35):

Mp = M11/8
0 . (47)

Since the mass of the Sun is considered standard, we shall
take the evolutionary parameter value on the line of equilib-
rium for the solar massεst as standard too.

5.2 Collapsing red giants

At the end of their evolution, stars become red giants and then
shed their envelope (transfer to the state of the core), turning
to white dwarfs, neutron stars or, in the case of the largest
masses, “black holes”.

Let us consider a star of chosen characteristic mass, for
which everymg-contour on the line of equilibrium has the
mass of the Sun, i.e., satisfying the conditionM0 = z0 M�.
Taking into account (28) and (34), we obtainM0 = M4/5

� =

2.76× 10−5 = 13.8 s.m. (masses of the Sun). Let us calculate
the typical mass of a white dwarf forming from the core of
such a star. Let us assume that on the line of star equilibrium,
its core (and, therefore, the massMp as well) are on the line
of degeneration (Fig. 1). Then, having in mind (47),

Mp = M11/8
0 = M11/10

� = 5.38× 10−7 , (48)

which corresponds to 0.27 s.m.
After the envelope and core are separated, they can be

considered discretely. Let the envelope evolve to a standard
parameterεst, and the core delay at the critical stage of the
transformation process. Combining these states, let take the
white dwarf massMp be proportional to the number ofmg-
contourszp — of the total number ofmg-contoursz0 of the
massM0 atεst:

Mp =
M0 zp

z0
. (49)

Having in mind (28), (34) and (48), one can find the num-
ber ofmg-contours in the core:

zp =
f M25/24

0

εst
= M−1/12

� = 2.98. (50)

Therefore, the total mass of the star will be equivalent to
M0/Mp = M−3/8

0 = M−3/10
� = 51.2 white dwarf masses, which

corresponds to the number of nucleons in the nucleus of iron
(more precisely, ifzp = 3, thenM� = 1.9×10−6 and the num-
ber of “nucleons” is equal to 52). Here we see another anal-
ogy with the microcosm:a standard red giant, containing
52 white dwarf masses, and a white dwarf, containing three

Fig. 2: The diagram “temperature-mass”.

mg-contours, will match an atom of iron, containing 52 nu-
cleons, and a nucleon, consisting of three quarks. Later,
other analogies with the microcosm will come into view.

Thus, it seems that the mass of the Sun and its evolutional
parameterεst on the line of equilibrium are, indeed, standard.
At z0 = 3, the parameterk ≈ 0.75, and it changes slightly
in a wide range of masses. One can, therefore, expect that
the condition (50) is optimal for other masses as well. Then,
from (50),

εst =
f M25/24

0

3
. (51)

5.3 The diagram “temperature-mass”

Since logarithms of luminosity and mass are approximately
proportional within the limits of the main sequence, it would
be convenient to draw the H-R diagram analog in the coordi-
nates of “temperature — mass”.

From (27–30), (34), (40) and (41), one can obtain ex-
pressions of theT(M) form, corresponding to the equilibrium
temperatures at the radii of the outer layerRm and coreR0 at
k = 11/12. On a logarithmic scale (Fig. 2), they are straight
lines, converging on the pointMm (outside the diagram):

Tm = Tk M7/6 , (52)

T0 = Tk M7/12 . (53)

Stars of the main sequence have photospheres whose radii
are usually smaller thanRm. To construct dependenciesT(M)
for the photosphere, let us use formula (37). Taking into ac-
count (38), one can obtain, in the general case:

Tf = Tk Mi
� Mk−i . (54)
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For the equilibrium state atk = 11/12, we obtain three
lines corresponding to three possible variants of packing of
mg-contours: into one-, two- and three-dimensional structures
— i.e., ati = 1,1/2,1/3 (Fig. 2):

Tf1 = Tk M� M−1/12 , (55)

Tf2 = Tk M1/2
� M5/12 , (56)

Tf3 = Tk M1/3
� M7/12 . (57)

These lines converge on the point with coordinates close
to the real parameters of the Sun, and their crossing with the
outer-layer equilibrium line gives three characteristic masses:
M1, M2 andM3. The massM1 = M4/5

� = 13.8 s.m., i.e., this
mass also satisfies the conditionM1 = z0 M� and is equal to
the mass of a red giant, which was calculated in the previous
section. The massM2 = 79.4 s.m. is the largest possible
mass for a main-sequence star. According to (47), this mass
can give rise to an object whose mass will be 3 s.m., which
corresponds to the maximal mass of a neutron star. The mass
M3 = 277 s.m. is the largest possible mass for a star with the
most condense packing. According to our model, the struc-
ture of SO is two-dimensional; hence, stars of the main se-
quence are on the lineTf2 (bold line). Here, on the diagram
T-M, one can also see isolines of the parameterε, which, fol-
lowing (27–30), (41) and combining the constants, will look
as

Tf = 6.86× 10−77 ε
2

M2/3
. (58)

It should be noted that specific sequences of the globular-
cluster stars formed from a medium with the same evolution-
ary parameter are also located along their ownε isolines.

When stars leave the main sequence and evolve towards
lesserε andT (to the right on the diagram), SO parameters
change; particularly increasing is the envelope radius. Let us
assume that beyond the line of equilibrium,Rf = Rm (actu-
ally, the visible sizes of a star depend on many specific factors
but we shall abstract from them in our model).

When calculating temperatures of the star envelopes (41),
we implied that a part of the core radiation energy is trans-
formed into other forms or spent in the star inner processes.
But for the envelopes of giant stars, which are located to the
right of the equilibrium line on theT-M diagram, formula (41)
gives underrated results. The average density of giant stars is
extremely low, and the energy of hot core radiation will in-
significantly be absorbed by the rarefied atmosphere of these
stars. In this case, to determine temperature of the photo-
sphere, one can use the well-known formula for thermal radi-
ation power, considering core as a radiation source:

N = σT4S , (59)

whereσ is the Stefan-Boltzmann constant equal to 5.67×10−8

W m−2(◦K)−4. Having in mind the evident dependence of

temperature on the linear size, the temperature of the photo-
sphere can be expressed via the temperature of the core:

Tf = T0

(
R0

Rf

)1/2

. (60)

Taking into account (27–30), (40) and acceptingRf = Rm,
one can obtain, by analogy to (58),

Tf = 1.4× 10−55 ε
3/2

M1/2
. (61)

This formula should be used when the star evolves beyond
the equilibrium line and the radius of its envelope greatly in-
creases. It is evident that the formula gives a bit overrated
values ofTf . In Fig. 2, isolines plotted according to (61) are
indicated asεst.

Taking into account (51) and substituting theεst expres-
sion in (61), one can obtain the lineT(M), along which stars
turning into red giants are lined up:

Tfg = 0.192Tk M17/16
0 . (62)

The parameters of stars with the massesM1 andM2 cal-
culated for differentε values are shown in Table 2.

As for the “superstar” object, with the calculated mass
M3 = 277 s.m., its existence has been verified. The recently
discovered star R136a1 has the following parameters:M0 =

265 s.m.,Rf = 63R� andTf >40000◦K [7]. The calculated
parameters of such a star — assuming it to be on the extension
of the main sequence — are as follows:Tf2, according to
(56), is equal to 72500◦K; ε from (61) is equal to 4.8× 1038;
Rf = Rm and, according to (30), is equal to 57R�. In other
words, the object should be somewhere to the right of the
main sequence line.

Located in the bottom part of the diagram are red dwarfs.
Their typical parameters are the following: mass, 0.1, . . . , 0.8
s.m.; radius, 0.1 . . . 0.85R�; temperature, below 3800◦K [8,
9]. Since their radii are approximately proportional to their
masses, they are on the lineTf1, but their temperatures are
lower, so it looks like they are on the extension of the main
sequence. It is supposed that they evolve towards more con-
densed states, i.e., towards higherε andT.

Lying on the lower segment of theTf3 line are brown
dwarfs. Their typical parameters are: mass, 0.012. . . 0.08
s.m.; temperature, 3000. . . 300 ◦K. Their radii change in-
significantly over the range of masses and are approximately
equal to that of Jupiter [10, 11].

At the very bottom of the diagram is the massM4 =

1.95× 10−9 — the giant planet Jupiter. The temperature of
its outer layer on the lineTf3 is equal, according to (57), to
123◦K, i.e., it is close to the temperature of the outer atmo-
sphere layers. The densities of Jupiter, brown dwarfs and the
Sun are approximately equal; all these objects are near the
line Tf3.

Thus, all the types of SO are arranged logically on the
T-M diagram.
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Parameters M1 = 13.8 s.m M2 = 79.4 s.m

ε1 εst1 ε2 εst2 εst1

ε 2.76× 1038 2.47× 1037 1.37× 1039 1.53× 1038 2.47× 1037

v0 0.00219 0.000197 0.0061 0.00068 0.00011

R0 0.0302 0.0302 0.0542 0.0542 0.0542

Rm 13.8 153.4 8.9 80 495

Rf 3.7 153.4 8.9 80 495

τ0, sec 34.5 388 22.3 200 1242

τm, days 83 1.15× 105 7 5037 1.2× 106

τmz, days 6 752 0.78 63 2409

T0, ◦K 2.6× 106 2.34× 105 7.2× 106 8.07× 105 1.3× 105

Tm, ◦K 5710 3290 44000 21000 1370

Tf , ◦K 21200 3290 44000 21000 1370

Table 2: Note — radii and velocities are expressed as fractions ofR� andc.

5.4 Variability of stellar objects

The types of variability of SO radiation are very diverse, and
variability is intrinsic, to some degree, to all SO including the
Sun. The most common type of variability is optical alter-
nating variability (pulsations). According to our model, such
pulsations are a natural result of the existence of oscillatory
processes in the complex SO structure.

The most stable, in terms of amplitude and period of bril-
liancy oscillations, are pulsating stars of high luminosity —
Cepheids, yellow giant stars [12, 13]. On the diagramT-M,
their position would correspond to the massM1 on the equi-
librium line Tm, whereRf = Rm.

Leaving the main sequence, stars become variable upon
crossing the isolineε1 (instability strip), corresponding to the
equilibrium parameterε for the characteristic massM1. As
follows from the diagramT−ε, the parameterε decreases for
masses larger thanM1 and increases for masses smaller than
M1 — until it reaches the isolineε1.

The masses of Cepheids are in the range 4. . . 20 s.m. The
minimal Cepheids mass is defined by the intersection of the
isolineε1 and the lineTf2, giving M = 4.1 s.m. which agrees
with the value indicated in [14]. One should bear in mind that
this intersectionpoint on the diagramT-M corresponds to a
segmenton the diagramε-M — from the line of equilibrium
to ε1. This segment corresponds to the initial period when
the star begins to descend the main sequence. During this
process,Rf → Rm, which results in the star luminosity to
grow. The growth is not reflected on theT-M diagram; on the
diagramH − R, it corresponds to the initial segment of the
star’s evolutionary track.

Going on, stars evolve in the direction of lowerε val-
ues and reach the isolineεst1 (asymptotic branch of giants,
ABG). The isoline corresponds to the equilibrium parame-
ter εst for the standard solar mass (Fig. 1), under which the

sizes of the star envelopes and the periods of their outer cy-
cles reach their maxima. Located on ABG arelong-period
variable stars(with the period of brilliancy oscillations up to
1000 days),semi-regular variable stars(with the period of
brilliancy oscillations up to 2000 days) and so on. Within the
framework of our model, their variability can be explained
not only by the existence of the outer layer period,τm, but
also by a heterogeneity of their outer layer radiance [15, 16].
The heterogeneity results from the passage — along the star
disk perimeter with the intervals ofτmz— of hot (cold) zones,
containingmg-contours.

The calculated parametersRm, Tm and τmz for M1 (Ta-
ble 2) are in a reasonable agreement with the averaged obser-
vation data for Cepheids atε1 and for long-period variables
atεst1 [12, 17].

The parameters of SO of the massM2 on the line of equi-
librium atε2 approximately correspond to those of hot super-
giants PV Tel-type, with the period of pulsations from 0.1 to
1 day. On the lineTfg at εst2, they correspond to the parame-
ters ofα Cyg-type super-giants, with the periods from several
days to several weeks [12]. Further evolution of such stars in
the direction of smallerε values results in the formation of
red super-giants.

6 Compact stellar objects

This group of SO includes white dwarfs, having the maxi-
mally compact packing of atoms, with the densityρ0, and
stellar bodies based on neutron stars, whose matter is com-
pressed to the nuclear densityρ j . Such objects are formed in
the extreme cases, when SO evolve in the direction of either
the largestε values (whenRf → R�; “outer-layer state”) or
the smallest ones (when the envelope is shed; “core state”).
In both cases, the initial oscillatory process is replaced with
the rotation of the final compact object, of the massMp, with
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the rate vp.
At the final stage of evolution, there is, as indicated in

[18], the possibility of a physical “coupling” of the star enve-
lope with the core. Let us assume that there exists aprocess
analogous to the absorption of an electron by the proton;
i.e., the final compact object acquires the momentum of the
outer layer, with the transition to an “excited” state. We
cannot consider the mechanism of this phenomenon within
the framework of our model (moreover, the envelope and the
core are considered here as different states of the same single
object), so let us restrict ourselves to a formal application of
the momentum conservation law:

M0 vm = Mp vp. (63)

6.1 White dwarfs

A white dwarf resulting from the star evolution towards lesser
ε values, should inherit the parameters of the star core by the
moment of the envelope shedding. For a star of the massM1

the parameters will be as follows: core temperature,
234000◦K; period of rotation, 388 sec (Table 2). According
to (47), (27) and (46), the mass, radius and mean density of
white dwarfs are 0.27 s.m., 0.0082R� and 2.38×109 kg/m3 re-
spectively. Indeed, very young white dwarfs can be observed
in the X-ray range; the periods of their pulsations are in the
range of tens to thousands of seconds, and they have typi-
cal sizes and densities being in agreement with the calculated
parameters [12, 19, 20].

A white dwarf resulting from the evolution of a low-mass
star towards largerε values (without shedding of the enve-
lope) should have the massMp ≈ M0. Then, its vp ≈ vm.

Having in mind (29), (31) and (36), let us represent vm as

vm = cM2k−2/3
0 (64)

and the period of rotation as

τm =
R0

vm
= 2.51M1−2k

0 . (65)

At z= 1 andk = 2/3, an object of the mass 0.27 s.m. will
have the following parameters: vm/c = 6.7× 10−5; τm = 308
sec; and the energy of radiation, according to (42), equal to
0.034 keV (T = 79000◦K). Here, the calculated parameters
are, too, typical for a young white dwarf. As the object on
the T-M diagram shifts to the right, the parameterk grows,
which corresponds to the decline of the rotary velocity and
temperature of the white dwarf.

On the diagram“spectrum-luminosity”, the zone of white
dwarfs seems much narrower than that on the diagramT-M,
since their luminosity is determined by the radius, which, ac-
cording to (27), is proportional to cubic root of the object
mass.

6.2 Neutronization

In the context of our model, the process of neutronization can
be represented as a loss of stability of the structure ofmg-
contours and the transition of the structure (through its inver-
sion along the vertical axis) from the plain two-dimensional
into a one-dimensional configuration, which is energetically
more favorable. Let us assume that the result will be a single
mg-contour or just a single vortical tube (neutron object).

Roughly, the parameters of such a primitive object can be
defined as in Chapter 3. Placing the parameterR along the
vertical axis and consideringz= 1, one can obtain:

vn =
f Mn c
ε
, (66)

dn =
ε2R�
f 2Mn

, (67)

Rn =
f Mn R�
ε

, (68)

τn = 2.51
(ε/ f )3

M2
n
. (69)

Rotary velocity cannot exceed the speed of light. There-
fore, at vn 6 c, ε > f Mn. Thus, for compact objects, the
parameterk in (36) should be6 1 (in any event, as follows
from the comparison of the calculated and actual data,k can-
not be much larger than 1). Let us limit ourselves to defining
parameters at vn = c. Expressingε from (66), one can obtain:

dn = Mn R� , (70)

Rn = R� , (71)

τn = 2.51Mn. (72)

It should be noted that a high-frequency modulation with
τn up to 10−6 sec is present on the radiation diagrams of some
neutron stars — pulsars [6].

As the evolutionary parameter grows, the sizes of a neu-
tron object shrink along the axes, and on the line of degener-
ation, atz = 1, one can rewrite expressions (67–69), having
in mind (35), in the following form:

dn = Rn = M1/3
n R� , (73)

τn =
R�
c

= 2.51 sec. (74)

Of course, this scheme is ideal. In reality, the objects
based on neutron stars are in some intermediate state, and in
the general case,

dn = M j
n R�, (75)

where j = 1/3, . . . , 1 is a coefficient taking account of the
object packing (shape).

It seems that the neutron state should be realized, to some
extent, in the core of any star — and this can be proved. Let
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represent the mass of a single vortex tube as that of a cylinder
of the lengthRn and radiusdn. Taking into account (70) and
(71),

Mn Mm = ρn (MnR�)
2 R�, (76)

whereρn is the vortex tube averaged density. Let us assume
thatρn cannot exceed the nuclear densityρ j , which shall be
considered equal tomp/r3

e = 7.47× 1016 kg/m3, wheremp is
the mass of a proton. Then, as follows from (76),

Mmin >
Mm

ρ jR3
�

, (77)

which, upon substitution of values, gives 3.19×10−8Mm. This
mass corresponds to 0.016 solar masses or 17 Jupiter masses
— exactly what the smallest cosmological mass, which is still
considered a star, should be.

6.3 Masses of “black holes”

The diagramsε-M andT-M show the boundary of a critical
mode, where the rotary velocity of a vortex tube reaches that
of light. On the diagramε-M, the ray indicating the critical
situation looks — taking into account thatMn is the mass of
the compact object to be raised — as

ε = f Mn = f M11/8 . (78)

On the diagramT-M, the same ray has — upon substitu-
tion of ε in (61) — the following form:

Tf lim = Tk M25/16. (79)

As follows from this construction, a ray segment is lim-
ited by the ordinates of the massesM2 andM3 and intersec-
tion with the isolinesεst1 and εst2 — there are almost per-
fect ternary points of intersection. It is these masses that give
rise to neutron objects with the masses, according to (47),
3, . . . , 16 s.m., which are the sources of hard X-ray radiation
andcandidates for the star mass “black holes”[18].

Indeed, for giant stars of a massM2−M3, the critical mode
begins before the moment they reach the asymptotic branch
of giants (super-giants). With further decrease of the param-
eterε, a star should release the excess of angular momentum
— probably, by means of dropping the excess mass, which
can be interpreted as shedding of the envelope with the for-
mation ofsupernova. Next, the star core of a massMn < ε/ f
transforms to an object which presently is classified as the
“black hole” candidate. If neutronization of SO occurs far
beyond the critical boundary (at lowε values), the mass of
the emerging object will be very small. The latter might be
one of the causes of the supernova remnants to contain few
compact objects.

6.4 Radio pulsars

In our model, the simplest radio pulsar is a vortex tube which,
by definition, is in the regionY (“boson”). The vortex tube
is a macro-oscillator or radiator, with oscillations forming as
longitudinal vibrations along the entire tube, while propagat-
ing to theX region as a cross wave from their source (the en-
trance of the vortex tube to theY region; orifice) [2]. Presum-
ably, radiation in the observable regionX has a wavelength
λp commensurable with the characteristic size of a single el-
ement of the vortex tube. A vortex tube, according to (22),
consists ofn = ε single vortex threads — therefore, the char-
acteristic linear size of a single element (region of radiation)
will amount, under the condition of maximally compact pack-
ing of vortex threads in three dimensions, to

dp = ε1/3re . (80)

The speed of vortex tube rotation can be expressed as a
proportion of light speed — using the analogies described in
Chapter 3:

vp = c
λk

dp
. (81)

Taking into account (36) and combining the constants,
one can find the period of a pulsar:

τp =
dp

vp
=
ε2/3r2

e

cλk
= 282.5 M2k/3

p sec. (82)

Along the vortex tube of the pulsar, radiation is formed
by mi-zones, the number of which is determined by the pulsar
mass. The averaged profile of the radiation pulse is a result
of random superposition of many single pulses. Therefore
the duration of the generalized pulsar pulseτpi can be in the
range from the duration of a singlemi-zone pulse to the total
duration of pulses of all the zones, i.e. fromri/v0i to zi ri/v0i .
Having in mind (18), (19) and (21),

τpi = 2.51M1/2...1/4
p . (83)

For a pulsar, the standard mass is taken as 1.4 of that of
the Sun. Then the pulsar period atk = 2/3 . . . 1 will be, ac-
cording to (82), in the range from 0.97 to 0.045 sec; and the
duration of the generalized pulse will be, according to (83),
in the range from 0.1 to 0.0042 sec, this corresponding to the
temporal parameters of the majority of radio pulsars [21–23].

Radio radiation of pulsars covers a broad range and is ex-
tremely heterogeneous in time, intensity and frequency. Nev-
ertheless, there are stable averaged spectra of energy distri-
bution over frequency obtained by multiple instant measure-
ments of radiation at different frequencies over large periods
of time.

Let λp = 2πdp, then thefrequency of radiation, taking
into account (80–82), will be as follows:

νp =
c

2πdp
=

c

2πε1/3re
Hz, (84)
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which, having in mind (82), can be reduced to

νp = 1.77τ−1/2
p GHz. (85)

Sincedp is the minimal parameter provided thatmi-zone
are packed most compactly, expression (84) will givemaxi-
mal frequencies. However, the averaged spectrum extends far
in the region of low frequencies and has an energy maximum.
On the basis of our model, this fact can be accounted for by
pulsation of the vortex tube in the limits ofdn, formula (75),
and the existence of its optimal packing, less than 3, which the
pulsar assumes most of the time. As indicated in [3], it may
be the fractal dimensione = 2.72. In this case, the power
of the parameterε will be equal to 1/e, and, as follows from
(84), νp/νm = ε0.0345. Having in mind (82), one can obtain,
for the frequency of the maximum:

νm = 0.0804τ−0.55
p GHz. (86)

Formulas (85) and (86) are virtually identical to the inter-
polation formulas given in [23].

Although radiation of pulsars is not thermal, thepower of
radiation Np can be determined on the basis of a formal use
of the Boltzmann formula for thermal radiation of black body
under the following conditions:

• taken as the area of the radiating surface is the cross-
section of the vortex tube,S = d2

p;

• taken as the effective temperatureTe f is the tempera-
ture corresponding to the radio frequencyTν increased
proportionally to the relative length of the vortex tube
(i.e. proportionally to the ratio of the initial-object∗ ra-
dius to the diameter of the vortex tube,Te f = TνR0/dp).

Since, having in mind (39, 40),Tν = Tkλk/dp, one can ob-
tain, taking into account (36) and (80) and combining the
constants,

Te f = 1.06× 107M1/3−2k/3
p . (87)

Finally, after calculating the constants, we get an expres-
sion forNp:

Np = σT4
e f S = 1.45× 1020M4/3−2k

p W. (88)

Thus, our model predicts that atk → 2/3, a radio pulsar
should have alower limit for radiation power (Nmin), which
the pulsar will be approaching as its rotation is getting slower.
The limit Nmin is equal to 1.45× 1020 W and does not depend
on the pulsar mass. Atk = 1, expression (88) will give an
upper limit Np, which is dependent on the pulsar mass. The
limits do exist [23], and no pulsars has been found at the lu-
minosity belowNmin.

On the basis of (82) and (88), a dependenceN(τp) can
be constructed (Fig. 3), which corresponds to the correlation
given in [23]. To cover the zone of millisecond pulsars, the

∗The object of the initial mass (before neutronization).

Fig. 3: Dependence of the radio pulsar radiation power on its period.
Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1.

dependence is plotted in the range of masses 3. . . 0.016 s.m.
— i.e. up to the minimal masses still able to neutronize (see
Chapter 6.2). (The question on the range of radio pulsar
masses is still open, since they can be determined only in rare
cases).

6.5 Excited states. Gamma-pulsar

Essentially, pulsar or vortex tube is a lengthy solenoid. In
our model, the full length of a threadzi li does not depend,
according to (18) and (20), from the mass and is equal to
R�; the length of a turn is, in general case,πM j

p R�, and the
number of turns in the initial state is N= M− j/π.

Let us assume that the configuration of the vortex tube
can change — e.g., upon the formation of a secondary spiral
structure. In this case, the initial radius can diminish to the
minimal radius of the vortex tubedp, and the number of turns
can grow to the number Nm = R�/πdp. Then, taking into
account (36) and (80),

Nm

N
= 1.66× 109M j−k/3

p = 105 . . . 109, (89)

which will result in the correspondingly increased magnetic
power and activity of the pulsar.

This state can be considered as an “excited” state of the
radio pulsar. If the effective temperature grows proportion-
ally as well, the energy corresponding to this increase will be
transferred into the gamma range. Multiplying (87) by (89)
and taking into account that for the vortex tubej = 1, one can
obtain

Te f = 1.76× 1016M4/3−k
p . (90)

Thus, at certain combinations of the parameters, formula
(90) will give (upon conversion into electron-volts) values up
to 1013 . . . 1014 eV. This explains, for example, the observed
gamma radiation of the famous pulsar in the Crab Nebula
(more than 1012 eV). Ratio (89) serves estimation purposes,
yet it can be used in other cases as well.
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6.6 X-ray pulsars

Massive stars give rise to neutron objects. Let us assume
that such an object can be formed at any stage of star evolu-
tion, with the envelope momentum transferred to this newly
formed object. Let us also assume that further evolution of
this system as a whole can go both to the right (up to the state
of outer layer) and left (up to the state of core) of the equi-
librium line with the eventual formation of anx-ray pulsar of
the massMp.

As a rule, X-ray pulsars do not radiate in the radio range.
According to the model considered, we can assume this resid-
ual compact object to be already in the neutron state, while its
vortex tube (or a part of the tube) excited at the expense of an
additionally absorbed momentum to be still in theX region
and to radiate in the X-ray range.

Let us determine the pulsar’s parameters. Having in mind
(63) and (64) and substituting, according to (47),M8/11

p for
M0, one can obtain for the pulsar:

vp = cM1.454k−0.7575
p , (91)

Ep = 511M1.454k−0.7575
p keV . (92)

The pulsar perioddn/vp, in the case of arbitrary pulsar
form, will be equal to

τp =
M j

p R�
vp

= 2.51M0.7575−1.454k+ j
p . (93)

It should be noted that atk = 0.75 and j = 1/3, theMp

factor in (93) will be zero andτp = 2.51 sec — the same
period for any mass.

Let us consider the pulsar radiation to be mainly thermal.
Then, one can calculate its power according to the Boltzmann
formula, taking as theradiating surfacethat of the vortex
tube of the lengthR0 (i.e. S = πdp R0). In this case —
analogously to (88), taking into account (27), having in mind
Tp = (Tk Ep)/511 and after transformations — one can ob-
tain, for an X-ray pulsar:

Np = 1.22× 1038M6.15k−2.7
p W . (94)

The parameters of most of the known X-ray pulsars fit
into the intervals calculated according to (92–94) for the stan-
dard mass 1.4 s.m. atk = 2/3 . . . 1 and j = 1/3 . . . 1: τp =

0.002. . . 260 sec,Ep = 0.07. . . 35 keV, Np = 1020 . . . 1030

W. Periods of more than 1000 sec are characteristic for small
masses or for the cases when momentum is not fully trans-
ferred from the outer layer to the emerging compact object.
Thus, there exist restrictions on the magnitudes of periods,
energy and radiation power; and it is them that explain, to a
certain degree, the partially non-thermal form of the pulsars
energy spectrum (a cut-off in its high-energy region) [18, 24].

Radiating in the X-ray region are also some radio pul-
sars. Let us demonstrate the adequacy of our model on these

Fig. 4: Dependence of the radio pulsarx-ray luminosity on the
parameter (dτp/dk)/τ3.5p . Mp = 3 . . . 0.3 s.m., k = 0.66. . . 1,
j = 0.68. . . 0.73. Observation data are taken from [23].

objects — on the example of correlation betweenx-ray lu-
minosity and the parameter (dτ/dt)/τ3.5, given in [23]. The
period derivativedτ/dt, the rate of deceleration of pulsar rota-
tion, is determined from observations. In our model, rotation
slowdown is determined by the general process of evolution
of the object’s medium, i.e., by the parameterk. So let us use
a derivative of the period in respect tok, considering the pa-
rameterj constant and replace the aforementioned expression
by corresponding equivalent. In the end, differentiating (93)
and combining the constants, one can obtain

dτp/dk

τ3.5p
= −3.35 lgMp τ

−2.5
p . (95)

Fig. 4 shows the dependence of X-ray luminosity of a
radio pulsar on the parameter (dτp/dk)/τ3.5p in the range of
masses 3. . . 0.3 s.m. The dependence fits the observation data
at the values of the parameterj = 0.68. . . 0.73. In Fig. 4, the
size of squares is approximately proportional to the number
of observation points (41 points in total according to [23]). In
our case, the derivative does not require a scale coefficient to
satisfy the initial conditions.

It is known that duringoutbursts, the power of radiation
(luminosity) reaches a magnitude of the order of 1032 W and
higher [25]. According to our model, such an increase in lu-
minosity can be explained by periodical excitation of the vor-
tex tube (see Section 6.5). In this case, multiplying (94) by
(89), one can obtain

Npm = 2.03× 1047M5.82k+ j−2.7
p . (96)

Formula (96) gives rational results. For the massM = 1.4
s.m.,Np will reach, depending on the parameters, magnitudes
of 1038 . . . 1039 W, which agrees with the power of the giant
gamma-ray outburst from the source SGR 1900-14, which
was registered in August 1998 (about 1038 W) [27].
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Fig. 5: The solution region: dependence of the radio pulsar radiation
power on its period.Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j =

0.33. . . 1.

It would be interesting to get independent estimates of the
mass of compact objects, which, as one can see, have a sim-
ilar origin. Let us assume that in the process of their possi-
ble inter-transformations, their masses and periods change in-
significantly. Let the X-ray and radio pulsar periods are equal
in the marginal cases — when the initial SO, giving rise to
a compact object, evolves towards the largest or smallestε
values.

Let us consider the case when evolution goes towards
largerε. With ε increasing, the massMp should grow and
at z→ 1 become equal to the original massM0 (Fig. 1). Per-
haps, such a process should be associated withaccretion in
binary star systems. Proceeding to the massM0, let us sub-
stituteM11/8

0 for Mp in (91). Thendn = M j
0 R� and (93) will

take a form of
τp = 2.51M1.042−2k+ j

0 . (97)

Equating (82) to (97) for the periods, combining the con-
stants and making transformations, one can obtain in the end:

lg M0 =
2.052

1.042− 2.667k+ j
. (98)

In the limit, k = 2/3 and j = 1/3 (sphere), thenM0 =

8×10−6 or 4 s.m. This mass can be considered as the total one
of a low-mass binary star systemcontaining an X-ray pulsar,
this being in agreement with the accepted estimate (2.5 s.m.
+ 1.4 s.m.) [18]. Such a pulsar will have a relatively hard
X-ray radiation [25], and, with the growth of the parameters
j, its period will decrease.

The obtained mass value is, in fact, coincides with the
minimal mass of a Cepheids (see Section 5.4). Thus, an SO
with the mass 4 s.m. can evolve both to the right of the equi-
librium line (shedding the envelope) and to the left (forming
a binary star system). In both cases, a compact object will be
formed at the end of evolution, and one can suppose that the

Fig. 6: The solution region: dependence of the X-ray pulsar ra-
diation energy on its period.Mp = 3 . . . 0.3 s.m.,k = 0.66. . . 1,
j = 0.33. . . 1.

stellar mass of 4 s.m. is theminimal massable to give rise to
neutron stars.

Let an X-ray pulsar evolve towards lesserε values. Equat-
ing expressions (82) and (93), one can obtain

lg Mp =
2.052

0.7575− 2.121k+ j
. (99)

In the limit, k = 1 and j = 1 (vortex tube), thenMp =

2.3 × 10−6 or 1.15 s.m. Here, we have got a typical pulsar
mass. Such a pulsar will have a relatively soft X-ray radia-
tion, and with the parameterj growing, the pulsar period will
increase. Such objects can correspond tosingle neutron stars
[26]. Indeed, as follows from the observation data, pulsars of
binary systems will mainly speed up their rotation, whereas
single objects will slow down.

The properties of SO are determined by the totality of
their parameters; that is why two-parameter diagrams always
have a wide scatter of experimental points. Let us represent
the solution region of the dependenceN(τp) for radio pulsars
more extensively — expressing its period according to (93),
which contains the parameterj, and considering some radio
pulsars evolved from the X-ray ones, with their periods being
approximately the same (Fig. 5). The region of observation
values [23] fits well the solution region.

Analogously, using formulas (92) and (93), one can plot a
solution region of the dependenceE(τp) for the X-ray pulsars
(Fig. 6). Clusters on the images may indicate regions where
pulsars have preferable parameters — e.g., the right bottom
part in Fig. 6 may indicate, by the combination of parameters,
a region of single neutron stars.

There appears a question: can slow X-ray pulsars trans-
form into radio pulsars, whose period will not exceed several
seconds? One can suppose that comparatively to radio pul-
sars, X-ray ones have an excessive angular momentum (since
their radius in the regionX is much larger than that of ra-
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Fig. 7: The solution region: dependence of the radio pulsar radia-
tion power on its magnetic field —N(B) to the left; N(Bm) to the
right. Mp = 2 . . . 0.2 s.m.,τp = 0.003. . . 3 sec,k = 0.66. . . 1,
j = 0.33. . . 1. Observation data are taken from [23].

dio pulsars in the regionY, and as they “submerge” into the
regionY, their period shortens).

Thus, it can be supposed that gamma, X-ray and radio
pulsars are different forms of excited vortex tube or, using
another analogy with the microcosm, three species of neu-
trino. The primary state — radio pulsar — possesses only
the initial angular momentum of the vortex tube or spin.

6.7 Magnetic properties of pulsars

Our model explains the correlation between the magnitude of
the magnetic fieldB and other pulsar parameters. According
to SI definition, for a lengthy solenoid,B = μμ0 nI, wheren is
the number of turns per unit of length,I is the current strength
andμ is the relative magnetic permeability.

The initial solenoid length is equal toR0. Let n = N/R0.
Let us define the coefficientμ as the compactness of the sol-
enoid coil in the initial state Ndp/R0. The current strengthI in
the “Coulombless” form iszeme c(R�/re) × 1/[sec] (see Sec-
tion 2), whereze is the number of single charges per coulomb,
equal to 1/e0.

In our model, SI units forB are m−1. To switch from SI
to the Gaussian system of units, introduction of an additional
factor of 10−4 is needed. Opening the expressions forμ0, ε0
andR�, taking into account that N= M− j/π, as well as (27),
(36) and (80), and making transformations, one can finally
obtain

B = 1.27× 10−4Mk/3−2 j−2/3
p G. (100)

Many radio pulsars have largerB values. For the excited
state, multiplying (100) by (89), we will have

Bm = 2.1× 105M− j−2/3
p G. (101)

Fig. 7 shows the solution regions for the dependences
N(B) (to the left) andN(Bm) (to the right) calculated accord-
ing to formulas (88), (100) and (101) in the range of masses

Fig. 8: The solution region: dependence of the efficiency of transfor-
mation of rotation energy in-to radio radiation on the pulsar period
(initial state).Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j = 0.33. . . 0.55.

2 . . . 0.2 s.m. and periods 0.003. . . 3 sec. The figure also rep-
resents the observation data for the pulsars with smallB val-
ues taken from [23]. Masses and periods are connected using
formula (93), which contains the parameterj. It is known
that according to the strength of their magnetic field, pulsars
are clustered near values of the order of 109 and 1013 G [18],
which agrees, in general, with the distributions obtained.

To analyze pulsar parameters, the functionη(τp) is also
used, which includes the magnetic forceB [23]:

η =
3Np c3τ4p

8π4B2R6
∗
, (102)

whereη is the pulsar efficiency, i.e., the effectiveness of trans-
formation of the pulsar rotation energy into radio radiation.

According to [23], formula (102) takesR∗ = 106 cm. For
more objectiveness, let us replace this constant with the di-
ameter of the vortex tube according to (75). Having in mind
(82), (88) and (100), let us transform (102) to the form (in the
Gaussian system):

lg η = 8.5+ (2.667− 2 j) lg Mp . (103)

Together with formula (82), this gives the region ofη(τ)
solutions for radio pulsars (Fig. 8). Sinceη < 1, there are
limitations for some combinations of the parameters. In the
accepted, according to [23], range ofη values, the parameter
j is limited by the range 0.33. . . 0.55, which is characteristic
for pulsars with smallB values. The orientation of clusters on
the diagram indicates the increase ofη with the growth of the
period.

Analogously, substituting the parameterBm into (102),
one can obtain

lg η = −11.9+ (0.667k− 4 j + 2.667) lgMp. (104)

In this case (Fig. 9), in the accepted range ofη values,
the parameterj is limited by a narrow range of large values,
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Fig. 9: The solution region: dependence of the efficiency of transfor-
mation of rotation energy in-to radio radiation on the pulsar period
(excited state).Mp = 3 . . . 0.016 s.m.,k = 0.66. . . 1, j = 0.94. . . 1.

0.94. . . 1, which corresponds to pulsars with a strong mag-
netic field. In this range of parameters,η will grow as the pe-
riod decreases. These solution ranges complement each other
and agree with the body of the observation data of the dia-
gramη(τ) given in [23]. Thus, there are at least two pulsar
populations, with different magnitudes of their magnetic field
and different form factors (parameterj), which was also indi-
cated in [23].

From (101), one can find that the magnitude of the pulsar
magnetic field can reach 1014 . . . 1015 G. Such a growth of the
magnetic field also explains the phenomenon ofmagnetars
[27, 28].

As follows from our model — and it is getting evidence
now — there are no essential differences between magne-
tars and X-ray pulsars. For example, the sources SWIFT
J1822.31606 [29] and PSR J18460258 [30] possess features
of both objects.

7 Conclusion

Thus, our model, which is built exclusively on the balances of
basic interactions, describes different kinds of stellar objects.
It is shown that SO features are mainly determined by their
masses and the state of the evolving medium that they are
made of. Together with the basic constants, these parameters
(M andε) determine the evolutionary behavior of stellar ob-
jects and the very existence of the well-known Hertzsprung-
Russell diagram. In a number of cases, they are sufficient
for the calculation of basic SO parameters: the mass of the
final compact objects, radiation energy, radiation power and
periods or rotation.

The model reveals analogies between the macro- and mi-
crolevels of matter: cosmological masses and elementary par-
ticles.

Indeed, thegeneral range of stellar masses can be
roughly divided into three subranges — by the analogy with
the three families of elementary particles:

• stars with masses less than 4 s.m., which in the end of
evolution will become white dwarfs;

• giant stars with masses 4. . . 79 s.m., which in the end
of evolution will give raise to neutron stars;

• super-giant stars with masses 79. . . 277 s.m., which in
the end of evolution will give raise to X-ray sources —
candidates for black holes.

It is the stars of small masses and their final states (cold
white dwarfs, “protons”) that are the “first family” of stel-
lar population. They make the majority of it and are stable
on the cosmological scale, since their lifetimes are immeasur-
ably longer than the lifetimes of other stellar objects.

Hopefully, the results obtained and the presented model
can be useful for further theoretical studies in the field.
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