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In dealing with calculations on a topological vector space it is very often convenient to take refuge 
to its dual space instead of doing so on the vector space itself. 
 
The obstacle for many not to do so is in the fear for the existence of non-reflexive (topological) 
vector spaces. 
However, the following may help: 
 
Proposition: Every metrizable locally convex vectorspace is a dense topological subspace of a 
(complete) reflexive locally convex space, namely its bidual. 
 
Since the topology of a metrizable locally convex space X is defined by a countable family of 
seminorms of X, it will be seen to follow from the proof of the following lemma: 
 
Lemma: The closure of every normed space X is reflexive, i.e.: every Banachspace is reflexive. 
 
 
Proof 1: Let ||·|| be the norm on X. Then the dual X* i.e. the vectorspace of all continuous linear 
functionals on X is well-known to be a Banachspace under the (naturally induced) norm 

|)(|supf :*|||| 1||||,
* xfX xXx ≤∈∋⋅ a . 

By this, each x in X, in turn is a continuous functional on X*, hence X is a subspace of the 
Banachspace X**, and the embedding is an isometry, since |)(|sup||||

1||||, ** xfx fXf ≤∈
= . 

We are hence left to prove that X** is contained in the closure of X: Let there be **Xx∈  which is 
not in the closure of X, and dividing by its norm, we can assume that 1|||| =x . Then there is an 

***Xf ∈  such that 1)( =xf . Then the kernel, fker , is a subspace of X** which is closed, since 

)0(ker 1−= ff  is the preimage of the closed set K⊂}0{ with K being the field over which X is 

defined. It follows that **** )()(: XxspanxyfyX ⊂∈∋ aπ  is a continuous projection. This allows 

the splitting of **X  into the direct sum of )(xspan  and its complement Cxspan )(  (which in turn is 

isomorphic to )(/** xspanX ). Since CxspanX )(⊂ , x  is a zero-functional on *X , and as an 

element of the dual of *X : 00)( * =⇒∈∀= xXffx . 

Therefore, no such x  can’t exist, and **X  must be the closure of X.  
 
Proof 2: A normed space is reflexive if and only if its unit ball is weakly compact. With the above 
notation, we may assume that X is complete and have to show that every *Xf ∈  maps the closed 
unit ball }1||||:{ ≤∈= xXxB  into a compact set. Since |||||)(| fBf ≤ , the image f(B) is bounded in 
K. To prove its compactness, it is left to prove that f(B) is closed. This is trivial for 0=f , so let 

0≠f , and let Xx∈  with 0)( ≠xf . There are two ways to prove this: 
The 1st is by applying the open mapping theorem which states that given two metrizable, 
complete locally convex spaces E and F, every continuous, surjective linear mapping from E onto F 
is open (i.e.: maps open sets into open, and thus closed into closed ones). Since the field K is a 1-
dimensional Banachspace and 0≠f  is continuous, the condition holds, and f(B) is closed. 
The 2nd is via quotient spaces: As in proof 1, the kernel fker  is a closed subspace of X, fX ker/  



isomorphic to a closed (1-dimensional) subspace of X, the canonical projection fXX ker/: →Φ  
continuous, open, and onto, )(BΦ  therefore closed in fX ker/ , and gf oΦ=  for some 

*))/(ker( fXg∈ . Since g is a continuous, injective linear mapping of 1-dimensional 
Banachspaces, it is also open and onto. Hence, g maps )(BΦ  into a closed subset of K.  
 
 
Since every (continuous) seminorm p on a locally convex vectorspace X analogously induces a 
seminorm |)(|sup: 1)(,/

** xffXp xpNXx ≤∈∋ a  with N being the (closed) subspace of all Xx∈  

with 0)( =xp , and since by the assumed metrizability we can construct a well-ordered sequence 
of refining seminorms defining the topology on X (which in turn induces a refining sequence of 
seminorms on X*) the lemma generalizes to the above proposition.  
 
 
Let's examine a well-known example and dig out some surprises: 
 
Let 0c  be the vectorspace of all null-converging sequences which is a separable Banachspace 

under the supremum norm. Its dual, 1l  is the space of all absolutely summable sequences, and 

have a look at its bidual **
0c : It is currently hold that the dual of 1l  were ∞l , the space of all 

bounded sequences. Let us see what goes wrong, and take a look at an always neglected 
superspace of 0c , namely the space ∞c  of all converging sequences, which again is a 

Banachspace with supremum norm, and it is a closed subspace of ∞l : Let 0)( >= kkaf  be a 

sequence converging to 1. Then for any 1>n : nn gff +=  where ,..)0,,...,( 11 −= nn aaf  and 

,..),,...,0( 1+= nnn aag .Now, as ∞→n , nf  on 0c  weakly converges to some element of the weak 

closure of 0c  (which is 0c  again), and ng  on 1l  weakly converges to 0, however ng  does not 

weakly converge to zero, since kk a∞→lim  defines a continuous linear form on ∞c  which does not 

vanish as ∞→k . Now, as nf  even converges weakly on *
∞c , nn ffg −=  converges weakly, and, 

since ∞c  is weakly closed, so this weak limit must be an element of ∞c . Since it is unequal zero 

and a zero linear form on 1l , it can’t be an element of *
1l . The point therefore is: Because all 

elements in 1l  vanish in infinity, so must all of *
1l ! 

Since dual spaces of separable locally convex spaces are weakly (and strongly) closed, ∞c  is seen 

to be the direct sum of 0c  and its complement which is the space of limits of ∞c  in infinity, or, 

profanely a one dimensional Banachspace. 
In fact, ,..)0,,...,( 11 −= nn aaf  weakly converges in 0c  for every ∞> ∈= caf kk 0)( , and therefore 

0110 ,..)0,,...,(lim)(: caaac nnkk ∈∋ −∞→>∞ aπ  is a well-defined, continuous projection. 

As a consequence, *
∞c  is the direct sum of 1l  and the one-dimensional Banachspace of all 

functionals on the infinite – and oops: we're into boundary values and functionals just by 
toplogical closure and completion. 
 
Wait: we can do even better: We calculated the complement of 0c  in ∞c . Wouldn’t you like to 

know what the complement of 0c  in ∞l  is? 

First, let us prove that 0c  really has a toplological complement in ∞l : 

For natural 0>n  let 010 ...)0,0,,..,()(: caaal nkkn ∈∋ >∞ aπ . With this, 0)( >nnπ  is a bounded 

sequence of projections which weakly converges in 0c  as ∞→n . Since 0c  is weakly closed, 



nn ππ ∞→= lim  is a continuous projection from ∞l  into 0c . So, we can split ∞l  into the direct sum 

of 0c  and its complementary subspace )( π−
∞l

idrange  which in turn is isomorphic to ∞l / 0c . 

(Alternatively, you may follow [Robertson/Robertson, Topological Vector Spaces, 2nd ed, 
Cambridge University Press, Ch. VI, Corollary 2 of Proposition 13], which states that for Fréchet 
spaces direct sums of two closed subspaces are topological direct sums.) 
Next, it is straightforward to prove the following: Let 0)( >= kkaf  be as above a sequence 

converging to 1. Then – with K being the field over which the Banachspace ∞l  is defined – for 
each ∞∈lh  there is a triple ),,( 210 gkkh ⋅  with Kkkch ∈∈ 2100 ,,  and g  being a sequence with 

1||suplim =∞→ kk g , 0||inflim =∞→ kk g , such that gkfkhh 210 ++= . That means: ∞l  differs from 

0c  by the one-dimensional space spanned by f  plus the Banachspace spanned by those 

alternating sequences g with the norm ||suplim kk gg ∞→a  modulo 0c . That subspace of 

alternating, bounded sequences modulo 0c  is known to have an overcountable dimension. 

Visually speaking, the complementary space of 0c  in ∞l  is the Banachspace of all countable, K-
valued, bounded tuples (“sitting on the infinite” – ouch!) with supremum-norm. 
 
 
Look at that: Given an open subset U of Rn equipped with the topology of compact subsets of U, 
and consider the space )(UCc  of all continuous functions of compact support in U with the 

supremum norm. Its completion is the analogue to 0c . These functions all vanish on the boundary 

of U, and so do their dual functionals. However, the space )(UCb  of all bounded, uniformly 

continuous functions on U does not, and so *** ))(()()( UCUCUC bcb Γ⊕=  is the direct sum of 
*)(UCc  plus its complement *))(( UCb Γ , where UUU \ )( =Γ  is the “boundary” of U. (Note that 

the metric on U  and )(UΓ  are given by restriction of the metric of Rn which well-define the 
spaces )(UCb  and ))(( UCb Γ  as the space of continuous functions on U  and )(UΓ , and 
therefore their dual and bidual spaces are well-defined.) 
 
 
Now, let U be even bounded. Then the Hilbertspace )(2 UL  of square Lebesgue-integrable 
functions on U is seen to be the closure of )(UCc . But – contrary to what is often said – it does 

not  embed )(UCb , since ))(( UCb Γ  is projected to zero under the norm of )(2 UL , where )(UΓ  

again denotes UU \ . Of course, one can embed )(2 UL  into )(2 nRL , but still the obstacle will be 
that often )(UΓ  is a set of Lebesgue measure zero. The commodity of self duality and the 
restriction of Borel measures to the Lebesgue measure thus have to be paid by the loss of 
continuity and a unified general approach. 
 
It should now be straightforward to figure out the complementary subspace of the space )(0 UC  

of uniformly continuous, bounded functions on nR  vanishing outside the open set nRU ⊂  in the 
space )(UC∞  of all continuous, bounded functions in U. 


