Predicting the Binding Energies of the 1s Nuclidewith High Precision, Based on Baryons
which are Yang-Mills Magnetic Monopoles
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Abstract: We employ the thesis that baryons are Yang-Millgmaic monopoles to predict the
binding energies of the alpiale nucleus to less than four parts in one milliohthe®He helion
nucleus to less than four parts in 100,000, anthefH triton nucleus to less than seven parts in
one million, all in AMU. Of special import, we &tig relate the neutron—proton mass
difference — which pervades all aspects of nugsssics and beta decay — to a function of the
up quark, down quark, and electron masses, whi¢arimenables us to predict the binding
energy for théH deuteron nucleus most precisely of all, to jusrd parts in ten million. The
thesis that Baryons are Yang-Mills magnetic monepthereby appears to have ample, indeed
irrefutable empirical confirmation, establishes asis for finally “decoding” the mass of known
data regarding nuclear masses and binding energied,may lay the foundation for
technologically realizing the theoretical promisenaiclear fusion.
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1. Introduction

In sections 11 and 12 of [1] we applied a pure ediedd Lagrangian® , .. to specify

the energy of the Yang-Mills magnetic monopolesoating to [11.7] of [1], part of which is
reproduced below:

E = ~[[[ gued®>x = 4 Tr[[[F,, F#dx. (1.1)

We then made use in (1.1) of the field strengtls@emfor protons and neutrons, [11.3] and
[11.4] of [11], respectively,

TrF ,uvP — _|[Zlf [nyyv]?lyd + 247/: [V”D}/]?‘UUJ , (12)
pd - rrli lpu - mJ
TrF llvN — _i(wu[y"u;/]t//u + zézd [yﬂmyv]wd J , (13)
p—m” P My

to deduce three relationships that yielded remaekadncurrence with empirical data:

First, we found in [11.22] of [1] that the massioé electron is related to the masses of
the up and down quarks according to:

3
(2n)’
where the diviso(Zn)% results as a natural consequence of a three-dioma$saussian

integration. Second and third, we found in [12.42¢ [12.13] that if onpostulategshe mass of
the up quark to be equal to deutert fucleus) binding energy based on a) empirical
concurrence within experimental errors and b) réiggrthe nucleons or nuclei to be bound
resonant cavitiesvith binding energies determined in relation teitlup and down quark
content, then the latent binding energies (enemradable for binding) intrinsic to the proton
and neutron, respectively, are:

m, = 0510998928MeV = (m, -m,), (1.4)

B, =2m, +m, - (md +4./m,m, +4mu)/(27r)g =7.640679M& (1.5)
B, =2m, +m, —(mu +4,/m m, +4m, )/(27r)g =9.812358M¢/ . (1.6)

So for a nucleus with an equal number of protords regutrons, the average binding energy per
nucleon is 8.726519 MeV. Not only does this explahy a typical nucleus beyond the very
lightest (which we shall be studying in detail henas a binding energy in exactly this vicinity,
but when applied to P&with 26 protons and 30 neutrons, which has théndison of using a
higher percentage of this available binding endhgyn any other nucleus, we find tmaaximum
availablebinding energy ipredictedto be (see [12.14]):

B, ., (Fe®) = 26x 7.64067MeV +30x 9.812358/eV = 493.02839MeV . (1.7)



This contrasts remarkably with the actudiservedinding energy92.253892 MeV That is,
precisely 99.8429093% of tlavailablebinding energyredictedby this model of nucleons as
Yang-Mills magnetic monopoles goes into bindingetihgr the F& nucleus, with the small
balance of 0.1570907% serving to confine the quarisn each nucleon.

However, in deriving (1.4) through (1.6) we glas®xer an aspect of (1.1) which, when
carefully considered, requires us to amend thel&rag-Mills magnetic monopole Lagrangian
(2.1) in a slight but important way. This amendineitl provide some further insights which
will allow us to theoretically derive the obsengidding energies for all of the tritofH
nucleus), helion®He nucleus) and very importantly, the alpha paet{tHe nucleus), all with
extremely close precision in relation to the enggiridata.

2. The Lagrangian of Nuclear Binding Energies

The Lagrangian used in (1.1), because of suppresdithe Yang-Mills matrix indexes,
actually has an ambiguous mathematical meaningcandbe either an ordinary matrix
multiplication, or a tensor (outer) product. Th#er, outer product, is the most general bilinear

operation that can be performed Bp,F**, while the former represents a contraction which

reduces the Yang-Mills rank by 2. When carefuttpsidered, this provides an opportunity for
developing a nuclear Lagrangian based on the t'Hoohopole Lagrangian in [2.1] of [2].

Now, if we know that; F; F/" =5 F F* as we do from the terms in [11.7] of [1] that
were omitted in (1.1) above, and also given fha' T’ =1 9", then with explicit indexes
A,B,C,D = 123 for the 3x3 Yang-Mills matrices of theU(3).. isospin-modified color group

developed in section 8 of [1], an explicit appeasaaf Yang-Mills indexes would cause (1.1) to
be written as:

E= —m,@gauged3x :%Tr”IFW O F“d3 :%TrJ.”FWABF””BDdE‘x

= 410 [P0 Toott ™= 4[] Foo TFuat™ | ey

where we suppress the spacetime indexes Usiilg = F,,F*’ to focus attention on the
contractions of the Yang-Mills indexes. That isthe fourth and fifth terms above, we perform
a contraction over theB” index, which means thak,g [F,, is aninner product formed with
ordinary matrix multiplication, and is a contractiof the most general bilinear Yang Mills

tensor, the fourth rank (3x3x3x3¥),; [F.,, down to rank two. In the sixth, final term, weite
the trace adrF,; [Fy, = Fag [Fga USING yet a second index contraction.

We point this out because (1.4) through (1.7) Wwisgccessfully match the empirical
nuclear binding data, and most particularly whigad to (1.5), (1.6) and (1.7), are in fact based
not only on (2.1), but also taking ttensor outer produadf F,; [Fy,, that is, on taking
(carefully contrast the Yang-Mills indexes as betwéhe final terms in (2.1) and (2.2):
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E= mssgauge x:%Tr”ijDF‘“’d3x:%Tr”_[FWABF‘“’CDdSX

(2.2)
=3 Tr[[[Fag TFepd®x =4 [[[ F oy (Fged®x
Here, in the final terms, we useF,; [(F., = F,,[Fy;, as opposed rF,; [Fy, = Fup [Fia,

which highlights the notational ambiguity in (1d9 well as the difference between the outer and
inner matrix products.

Now, in general, the trace of a product of two sgqumaatrices isot the product of traces.
The only circumstance in which the “trace of a prati equals the “product of traces” is when
one forms a tensor product using the most gendna¢ér operation:

Tr(AOB)=Tr(A)Tr(B). (2.3)

Specifically, to obtain the terms, +4,/m,m, +4m, andm, +4,/mm, +4m, in (1.5) and
(1.6), we are must use (2.2), while to obtam, + m, and2m, +m, in the same expressions, we

instead must use (2.1). So (1.5) and (1.6) areddrby a linear combination of both inner and
outer products. And because (1.5) and (1.6) prédgiciing energies per nucleon in the range of
8.7 MeV and yield an extremely close match to’fie binding energies, nature herself appears
to be telling us that we need to combine inner@unér products in this way in order to match up
with empirical data. This, in turn, gives us imjamt data for how to construct our Lagrangian.

To see this all most vividly, we start with [11a8}d [11.9] from [1] as reproduced below:

J’II(I// [y uyv]t//d +2l// [y uyv]l// j [Z?[yﬂmyl/]ﬁ,”d +24?f[y”DyV]lf/”Jd3x, (2.4)
P —m” Py —My Pu—M,

J'”(l/’ [V DV”]l//u +21//d[y DV’]l//d J(l/’ [mev]‘/’ ‘//'f’[yﬂuyv]l'fd Jd3x_ (2.5)
Pa My p.—mS” Py — My

Using these in (2.2) following the developmentéctson 11 and [12.12] and [12.13]

of [1], we rewritem, +4,/m,m, +4m, andm, +4,/m,m, +4m,, respectively, as the Yang-Mills
matrix outer products

1Trj”FPWDF‘”d x=1T rmFPAB oo x—lmFPAAEFPBBd X

NI

Jme 0 0 ) (Jm 0
1
=—=—Tr|| 0 {ym, O |Of O m, O : (2.6)
(27): o o0 Jm 0o 0 Jm

=1 (m, +4/mm, +4m,)=171569MeV
(27):




N

Tr[[[Fy,, O R dx=4Tr[[[Fy e Fuepd®x =3 [ Fy an Ty ged°x
Jmoo o) (ym
Jmg o |O] o

0

1

0o o0
Jmi O : (2.7)

= ~TIr(| O

e o o Jm 0 my
= L (m, +a/mm, +4m, )=2226690MeV

(27

The above connect the energy and Lagran@ian- I ”ﬁgauge X to a very-transparent matrix

format, and in turn, to the energy numbers thaewepart responsible for empirically-matching
the F&° binding energies.

Further, in this form, we also see that the sinspleas>m, = 2m, +m, and

Zm, =2m, +m, of the quark masses in a profaor neutrom are similarly given by the Yang-
Mills matrix inner products

E,=3 ZH)ETrJ‘_U‘FPW Fod*x = 4(2n): Tr_[_”FPAB PBDdSXz%(Zﬂ)%HJFPAB [Fpgad’x

0 }m 0 0 (2.8)
0 o Jm, o =2m, +m, =9.356376MeV

SE, = 4(27): Tr[[[ Py, o d°x = 4 (272)° Tr [[[ Fy e TPy epd™x = 4 (277)7 [[[ Fy g P00

Jym, 0 0 ym 0 0 (2.9)
=Tr{| o Jm, o0 | 0 Jm, 0 ||=2m,+m, =12.03905MeV

o o Jym)|o o ym

These expressions use the ordinary matrix prodhathwappear in (2.1), and differ from (2.6)

and (2.7) only insofar as how the indexes are esteéd. The factor 0(1271)% recall, originates
from the three-dimensional Gaussian integration.

This means that we can reproduce equations (hcb§la6) for the latent binding energy
of a proton and neutron by combining (2.6) witt8j2and (2.7) with (2.9), ifinear
combinations of inner and outer Yang-Mills matriogucts as follows:



B, = 3, - E, =3 T [[[{(2n) Fo, " - Ry, OF JoPx= 370 []{(27) o P = oo oo o

Puy

:%JIJ((ZH)%FPABEFPBA FeanlF PBB)d3x 2m, +m = (271r)§( 4\/7+4”L)

(2.10)
Jmp 0 o )J/m, 0o o0 Jm 0 o) (ymy 0 o0
=T 0 Jym 0| 0 ym o |-—2lo Jm oo o Jym o
o o ymjo o ym) o o ym)lo o ym
=935637 MeV-171569'MeV = 7.640679M&/
B, =E, - 2E, =1 Tr[[[(2nf Fy Fy ~ Fu,, DR a3 =3 Te [[[ (27 Fiy o e = Fu e o A7
:%”'[((271)% Fuae Frvea— Fuaa EIFNBB)d3x: 2m, +m, ——— (mh +4./mm, +4md)
(2x) (2.11)
Jm o oYfm o o Jm o o) (ym o o
=1l o ym, o | o0 Jm o0 |—-1]o0o Jym o0 |00 Jm O
o o ymjo o ym) @0 o ym)lo o Jm

=1203905: MeV -2.22669(MeV = 9.812358M¢&/

This now provides a fully-covariant, Yang-Mills matexpression for the intrinsic, latent
binding energies of the proton and neutron, cotegchdown to the scalars which specify these
binding energies. And it is from these, that we ow clued into how we can amend the
Lagrangian in (1.1) to provide a foundation for siolering nuclear binding energies in general.

Contrasting (2.10) and (2.11) with (2.1) and (223 see that the general form of a
Lagrangian for théatentnuclear binding energy of a nucleon (which maylpeoton or neutron
or any other baryon) is:

Soang = 3Tr(27)F F F 7 = F,, D F )= 31270 Frp Ty~ Fop Fp)

binding 2

(2.12)
%( FAB EFBA - FAA EFBB)

Using this, we now start to amend the t'Hooft Lamgian [9.2] of [1], reproduced below:
v 2
£=-;F,FR" -1D,p D"y -%ﬂz%(ﬂa—%/l( a(ﬂa) : (2.13)

First, we applyTrT'T! =14 together withF*’ =T'F* and ® =T?g, to rewrite (2.13)
in the Yang-Mills matrix form:

©=-1Tr(F,, F*)-Tr(D, oD ®)- 12 Tr(dd) -1 A(Tr{®b))
—lTr(F F”V )—TI’(D CDABDNCDBD) ZTI’(CDABCDBD)

HV AB

LA(Tr(@ @) (2.14)

©
@™
>
—
N

1F F/JV -D q)ABD CDBA IUZCDABCDBA %A(CDAB

HV AB



with [9.4] of [11] also written in the compacted tmaform:
D,®=0,0-i|G, ®|. (2.15)

Now, we compare (2.14) closely with (2.12), esalégithe term-1F,  F* , In(2.14)

2 WwpaB B
with 1(277): F,, [F,, in (2.12). Based on this, wenstructa Lagrangian such that the leading
(pure gauge) terms specify the nuclear bindinggesy that is, we choose to make
%((271)% F s Fan— Far EIFBB) the leading Lagrangian term, because we know {f#rl.0) and
(12.11) that this yields latent binding energiesyvauch in accord with what is empirically
observed in nuclear physics. Thus, we take (2ifti¢pduce a factor of (271)% in front of all

the ordinary matrix products, subtract off a tefiy [Fg;, introduce similarly-contracted terms
everywhere else, and so fashion the Lagrangian:

L= (277')% [% FWABF”VBA + D,uq)ABDﬂq)BA + IUZCDABCDBA +%A(CDABCDBA)2]

; N (2.16)
VAAFIUVBB_DIUCDAADHq)BB_'U q)AACDBB _%A(q)AAq)BB)

_% F/J
It is readily seen that the pure gauge teffps=*" in the above are identical to (2.12), which

means that these terms now represent the empyrigladlerved latent nuclear binding energies.
However, in constructing this Lagrangian, we caingy same index structure forward to all the
remaining terms and thus extend this understartditige vacuum terms as well.

The value of all of this can be seen from (2.1 ¢2.11). For a nucleus wikhprotons
andN neutrons, which therefor hasZ+N nucleons, we may write ttavailable latent binding

energy,B as:

;B =3Z qjj((ZH)% Foae tFrea = Fran Fres 3X+% N EHJ((ZH)% Fuae (Pnea = Froan (Pues SXI (2.17)
=Z [7.640679Mé&/ + N [0.812358Mé&/

This simply restates in more formal terms, the ltsfound in sections 11 and 12 of [1]. But, it
ties the formal, invariant, theoretical expressibased on the general form(] —%Tr(F [F)

with energiesk = —”_[Ed3x, to a very practical formula for deriving real,meric, empirically-
accurate nuclear binding energies.

On the foregoing basis, we now show how to demiveonly theavailablebinding
energies (designatd®) via (2.17), but thebservedinding energies (which will be designated
throughout asB, with a “0” subscript) for several basic nuclideSpecifically, we now derive

3B, for the®H triton, B, for the®He helion, and most importantly given that it isiadamental

building block of the larger nuclei and many depagcess,, B, for the*He alpha, all extremely
closely to the empirical data. We also lay a fatmh for doing the same with larger nuclei.
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3. Foundation for Deriving Observed Binding Energes of the 1s Nuclides

Now, it is our goal to derive thebserved, empiricadbinging energies for all nuclides
with Z <2; N <2, on atotally theoreticalbasis. Using a nuclear shell model similar to wwha
used for electron structure, all of these nucliti@ge nucleons in the 1s shell and so we refer to
them as the 1s nuclides. We thereby embark oarttlertaking set forth at the end of [1], to
understand in detail, hoeollectionsof Yang-Mills magnetic monopoles — which monopole
collections we now understand to be nuclei whemtbaopoles are protons and neutrons —
organize and structure themselves.

The nuclear weights (massgéM ) of the nuclides of immediate interest are sethfor
below in Table 1 (agai®d=Z+N). Because we wish to do very precise calculatiand because
nuclide masses are known much more precisely atam(ic mass units, AMU) than in MeV due
to the “relatively poorly known electronic chard@], we shall work in AMU. When helpful for
illustration, we shall convert over to MeV via E1931.494 061(21) MeV/c2, but only after a
calculation is complete. The data for these nesglihnd the electron mass below) is from [3]
and / or [4], and is generally known to ten-digigégision in AMU with experimental errors
specified at the eleventh and twelfth digits. &threr nuclides not listed at these sources, we
make use of a very helpful online compilation afraic weights and isotopes at [5]. Vertical
columns list isotopes, horizontal rows list isoten@nd diagonal lines link isobars of likRe-The
nuclides with border frames are ttablenuclides. M(n)=;M =100866491600u is the mass

of the neutron, and/(p)=;M =100866491600u is the mass of the proton.

sNuclide on H ,He

Table 1: Nuclear Weights ¢ M) of 1s Nuclides (AMU)

Theobservedinding energie8, are readily calculated from the above using tloeqor
and neutron massed(p)=;M and M(n)=/M via 2B, = Z[}M + NJM -2M , and are given by:

B, sNuclide on H ,He

w N R O Z

Table 2: Empirical Binding Energies (§B,) of 1s Nuclides (AMU)



Now let’s get down to business. We already showgdl2.9] of [1] that by identifying
the mass of the up quark with the deuteron bindmgrgy bydefiningvia hypothesis that
m, = B,. =2.224566MeV , we can not only establish very precise massethéup and down

quarks but also can explain the confluence of cemfient and fission and fusion’&te in a

very profound way, wherein 99.8429093% of &wailablebinding energy predicted by this
model of nucleons as Yang-Mills magnetic monopagtess into binding the E&nucleus and

only the remaining 0.1570907% is used to confimegiarks. And, we established that in some
manner, nucleons will fuse based on some formeagdnant cavity” analysis based on the quark
content of the nucleons. So we now write this ifieation of the up mass with the deuteron
binding energy, in the notations to be employe@ hand in AMU, as:

muEfBO = By fH) =0.002388170100 u . (3.1
In AMU, the electron mass is:
m, = 0.00054857999u. (3.2)

We then use (1.4) (see also [12.10] of [1]) witiJ3and (3.2) to obtain the down quark mass:
_(2n) _
my = Tme +m, =0.005268143209u . (3.3)

It will also be helpful in the discussion follovgrio use the mass construct:
Jm,m, =0.00354700186u, (3.4)

because this expression appears frequently indtierediscussion, starting with (1.5) and (1.6).

We then use the foregoing in (1.5) and (1.6) toudate in AMU, thelatent, available
binding energy of each of the proton and neutresjghated by without the “0” subscript:

3
2

B(p)=1B = 2m, +m, —(md +4,/m,m, +4m, )/ (2z): =000820260732u (3.5)
B(n)=B = 2m, +m, - (m, + 4/mm, +4m, ) (2x)} =001053400082u. (3.6)

Via (2.17), (3.5) and (3.6) are used to calculaeegally, thdatent, availablebinding energy:

tB=z2m, +m, - TNV A | o, 4, - LAV 24T
(271)2 (271)2 (3.7)

=Z[0.00820260732u + N [0.01053400082u

in AMU, for anynuclideZ, N. For the nuclides in Tables 1 and 2, thisoretically-available,
latentbinding energy, ipredictedto be:



sNuclide on H ,He

w N P O 2 W

Table 3: Theoretically Available Binding Energies ¢ B) of 1s Nuclides (AMU)

Taking theratio of theempirical values in Table 2 over thkeoreticalvalues in Table 3 yields:

B,/B(%) zNuclide on H ,He

o | .0.0000600000%|| .- A= A=3

1 30.7566598954%| .. P
2 81.0623286777%

3

Table 4: Used-to-Available Binding Energies {B,/4B(%)) of 1s Nuclides (%)

So we see, for example, that fike alpha nucleus uses about 81.06% of its total
available binding energy to bind itself togetheithwthe remaining 18.94% retained to confine
the quarks inside each nucleon. Tiee proton and neutron, of course, use 100% of thénta
energy to bind their quarks, but as soon as treey tst fuse together, they release some of this
energy and the negative of this energy goes irgarthss loss and binds together the nuclei. The
deuteron releases about 12.74% of what is avaitaldénd, while the isobars wi=3 use
about 31% of what is available for binding with thedance reserved for quark confinement.

As a point of comparison, f6PFe, which has the highest percentage of used-titable
binding energy, the nuclear weiglfiM =55920674421 (cf. Table 1), the empirical binding

energy isseB, =05284611% (cf. Table 2), the available binding energy;§8 = 05292878

(cf. Table 3), and the used-to-available percentageB,/ 5. B(%)= 9984382846 (cf. Table 4).

No nuclide has a higher such percentage tfam While®*Ni has a larger empirical binding
energyper nucleonits used-to-available percentage is lower, bex#us calculation in (3.7)
literally and figurativelyweights the neutrons more heavily than the protopna ratio of:

B(n) _ /B _ 0010534000@2u
B(p) !B 000820260732u

=128422588025 (3.8)

The above ratio also explains, at least in pary mdavier nuclides tend to have a greater
number of neutrons than protons: As a nucleon giavger, because the neutrons carry an
energy available for binding which is about 28.42%er than that of the proton, neutrons will
in general find it easier to bind into a large rwd by a factor of 28.42%. Simply put: neutrons
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bring more available binding energy to the tabntprotons and so are more welcome at the
table. The nuclides running froffGa to*®Cd tend to have stable isotopes with neutron-to-
proton number ratiog\(Z) roughly in the range of (3.8). Additionally, ahkkely for the same
reason, this is the range in which, beginning Wittb and**Mo, and as the N/Z ratio grows
even larger than (3.8), one begins to see nuclidesh become theoretically unstable with
regard to spontaneous fission.

Next, we subtract Table 2 form table 3, to obthmunusedy) binding energy;U for
each nuclide. Of course, for the proton and neytat of this energy is unused. This yields:

U sNuclide on H ,He

w N = O 2

Table 5: Unused Latent Binding Energies § U of 1s Nuclides (AMU)

Finally, to lay the groundwork for predicting thbserved binding energi@&g in Table 2,
let us return to (2.6) and (2.7), remove the traogl, define two (3x3)x(3x3) tensor (outer)
product matrices, one for the protoa(,;., ) and one for the neutrork( .., ), according to:

Jmg 0 0 Jm; 0 o0
(277)E P ABCD %277 IIIFPAB pcpd’X= 0 \/I‘TTU 0O (O] O ﬁ 0o |- (3-9)
o o Jm)lo o ym

m 0 o) (ym o o
0 o|0j o Jym o0
o o ym) [0 0 m

From the above, one can readily deduce that theesg diagonal outer produmimponents

(27 By poco = 5 (277) [[[ Fups TFrcod® = (3.10)

(nine for the proton and nine for the neutron)@igh E, ;. = Ey sscp =0 Otherwisg:
EN 1111 = EP 2222 = EP 3333 = EP 2233 = EP3322 = mu /(277-)E
_ _ _ _ _ . 3.11
P11 = En 2222 © Ex 3333 Ey 2233 ~ Ex aaz2 — My /(277 ( )
EP1122 = EP1133 = EP 2211 = EP3311 = EN 1122 = EN 1133 = EN 2211 = EN 3311 = \% mumd /(277.)E

This is why (3.1), (3.3&nd (3.4) will be of special interest in the developrm®llowing.
With the foregoing, we now have all the ingrediemtsneed to closely deduce the empirical
binding energies in Table 2 on totally theoretigalunds. We start with the alptaie.
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4. Prediction of the Alpha Nuclide Binding Energyto 3 parts in One Million

The alpha particle is tHéle nucleus. It is highly stable, and is centrah@ny aspects of
nuclear physics insofar as many other nuclei vattaly into more stable states by releasing alpha
particles via so-called alpha decay. In this wiaig a bedrock building block of nuclear physics.

Theunusedoinding energy for the alpha particleld = 0.007096629@9u, as shown in Table
5. Looking over the mass numbers developed in®e8t we see that this very closeo being

twice the value of/m,m, in (3.4), that is, thaR,/m ,m, =0.00709400332u. In fact, these
energies are equal to 2.26 paés million! Might this be an indication that the alpha péetic
uses all of its available binding energy, Im , for nuclear binding, with the balance of

2,/m,m, retained to confine the quarks inside each dbits nucleons? First, let’s look at the
numbers, then let's examine the theoretical reasdrysthis might make sense.

If in fact this numerical coincidence is not jastoincidence but has real physical
meaning, then this would mean that the empiricadlinig energy; B, of the alpha ipredictedto

be (3.7) for,; B, less2,/mm, , that is:

m, +4,/m,m, +4m, m, +4,/m,m, +4m —
;BOPredicted :2EE2mU + md - : (2 )éd J+2EE2md + mU - (2 )éd : _2 mumd 1 (41)
7T )? 7 )?

=0.03037922155u

where we have calculated using and m, from (3.1) and (3.3). In contrast, as we see from
Table 2, the empirica B, =0.03037658499u . The difference:

;B ,B, =0.03037921255u-0.03037658649 u = 0.0000026 5656 u (4.2)

OPredicted 2

is extremely small, with these two values, as ngistlabove, differing from one another by less
than 3 parts in 1 million! So, let us regard J4dLbe a correct prediction of the alpha binding
energy, at least to first, dominant order. Nowsldiscuss the theoretical reasons why this
makes sense.

In [1], a key hypothesis was to identify the makthe down quark with the deuteron
binding energy, see (3.1) here in which we agaiereed that identification. Beyond the
numerical concurrence, a theoretical explanationis, is that in some fashion the nucleons are
resonant cavitiesand so the energies that they will tend to reldas retain) during fusion will
be very closely tied to the masses / wavelengthiseo€ontents of these cavities. But, of course,
these “cavities” contain up quarks and down quaaks, their masses are given in (3.1) and (3.3)

together with,/mym, in (3.4), and so these will specify preferred thanics” to determine the
precise energies which are released for nuclealirmnor retained for quark confinement.
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We also see thabmponentsf the outer product&, ,,c, = [[[Fe s Fpcpd*x and
Ex asco :%J'” Fu as (Fnepd X in (3.9) and (3.10), time(Qﬂ)% which is naturally supplied by

Gaussian integration, take on one of four valugs: m,, ,/m,m, , and 0, see (3.11). So, in
trying to make a theoretical fit to empirical bindidata, and in an effort to not stray from the
discipline imposed by the outer produéig; ., = %”‘ F.s (Fopd®x, werequirethat empirical

binding energies be calculatedly from the outer productg ,; ., = %” F.s [(F,d°x for the

proton and neutron, usiranly some combination of a) tletemponentsf this outer product and
b) index contraction®f this outer product, see again the discussi@eation 2. So the
ingredients that we shall use to do this numefittatg, will be restricted to a) thiatent,
availablenuclide binding energies as calculated from (Y}he three energias,, m,,

4Jmm, and quantized multiples thereof, c) any of thefming with a(2rr)% coefficient or

divisor, as suitable, and d) the rest mass of lderen m,. This fitting involves essentially

poring over the numerical nuclear binding data, seeing if it can be arrived at closely using
only the foregoing ingredients. In the case of théa§4.1) meets all of these criteria. In fact,
rewritten using (2.6) through (2.9) and (3.11),fwe that (4.1) can be expresseatirelyin

terms of the outer tensor produt s, =4 [[[ Fas [Fepd’x, as:

;BOPredicted =2 EQ(ZH)% Er asen ~ Ep /—\ABB)+ 2 [((2”)% Exassa ~ Ep /—\ABB)_ (27T)g (EP1122 +Ey 1122)
m, +4mm, +4m, _m, +4ymm, +4m,
3 +2012m, +m, 3
(271')2 (27t)2

This totally theoretical expression yields the alfiinding energy to 2.26 parts per million.

(4.3)

=2EEZHM_ J-zm

In this light, (4.3) tells us that the alpha binglienergy is actually the 11 2Bmponent
of a (3x3)x(3x3) outer produdk ,;;, in linear combination with invariant traces Bf g -

This is reminiscent, for example, of the Maxweliger— 471 ¥ = F*F", —%U”VF”ﬂFaﬁ,
which has some components with both a componanttste and a trace term just like (4.3) (e.g.

—45m° =F%F% -1F“F,;) (we analogizem “'F°% to E,,,,, and F”F_; to
(277)° E sgan — E ange in (4.3)), and which has other components thatatanclude the trace term
(e.9.,— 4T * =F%F' -n*1F¥F,, =F%F',, wheren* filters out the trace). This latter
analogy allows us to represent (3.1) for the demeas a componemtithouta trace term, thus:
2B L =0+(271)2 Ey . (4.4)

OPredicted — m

So we now start to think about the individual, efved nuclear binding energies as
components of a (3x3)x(3x3) fourth rank Yang Mdrssorof which (4.3) and (4.4) are two
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samples. Thus, as we proceed to examine manyehtfauclides, we will want to see what
patterns may be discerned as to how each nuctglafo this tensor.

Physically, the alpha particle of course cont&vs protons and two neutrons, and at the
quark level, six up quarks and six down quarkss #een that in (4.1), the up quarks enter in a
completely symmetric fashion relative to the dowsaudss, i.e., that (4.1) is invariant under the

interchangem, - m,. The factor of 2 in front om of course means that two components
of the outer product are also involved. The deuteper (4.4), uses only one member of the
my, m “‘component toolkit” from (3.11), i.em,, while (4.4) uses two members of this
toolkit, i.e., Zm. Further, while each componentmf, m,, Min the (3.11) toolkit is
associated with several different components obtiter product, we have as a preliminary
matter hypothesized an associaggm,m, =E,,,,, +E so that the neutron pair and the
proton pair each contributg/m,m, to (4.3), and (4.3) thereby remains absolutefyragtric
under p - n andu  d interchange. The choice of tlg,,, elements appears to be

somewhat arbitrary given (3.11), and should besi®d once we study other nuclides not yet
considered and seek to understand the more geremglMills tensor structure of which the
individual nuclide energies are components.

P1122 N11227

One other physical observation is also particyladteworthy: Below in Figure 1, we
have included the well-known “per-nucleon” bindigigph to facilitate discussion. One of the
great mysteries of nuclear physics, is how, exattlaccount for the great “chasm” between the
°H, ®*H and®He nuclides, and the alpha nuclitiée for which we have now predicted the binding
energy to within a fraction of a percent. Conirag{4.1) for*He with (4.4) for’H, we see that
for the latter deuteron, we “start at the bottonithw/B, =0 for *H, and then “add®B, = 0+m,
worth of energy to bind the proton and the neutogether intdH. But for the alpha, we “start

at the top,” with the total latent binding enerf§ = 0.03747321508u, and then subtract off

2,/m,m, , to obtain the empirical resu{B, = 0.03747321508u-2,/m,m, . But as we learned

in section 12 of [1], any time we damt use some of the latent energy for nuclear bindimf,
unused energy remains behind to confine the queéBkswhat we learn is that for the alpha

particle, a total of2,/m,m, =0.007094004uis held in reserveéo confine the quarks, while the
balance igeleasedo bind the nucleons to one another.

Now to the point: for some nuclides, (e.g. the deart) the question is: how much energy
is releasedrom quark confinement to bind the nucleons? T “bottom to top” approach.
For other nuclides (e.g., the alpha), the questiohow much energy ieservedout of the
theoretical maximum available, to confine the qsarkhis is a “top to bottom” approach. For
“top to bottom” nuclides, there is an invariantcigan the tensors. For “bottom to top” nuclides
there is not. Using the Maxwell tensor analogy gliscussed, one might suppose that

somewhere there is a Kronecker delta and / oro*°co which filters out the trace from some
“off-diagonal”’ terms and leaves the trace intactdther “on-diagonal” terms. In this way, the
“bottom to top” nuclides are off-diagonal elememtsd the “top to bottom” nuclides are “on
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diagonal.” In either case, however, the “resonafmenuclear binding is established by the
components of th&, ., , which arem,, m,, \/mm, in some combination and / or integer

multiple. And, as regards Figure 1 below, the oh&sading up t8He, is explained on the basis
that each ofH, *H and>He are “bottom to top” “off-diagonal” nuclides, waifHe is the first
“top to bottom” “on-diagonal” nuclide.

Average binding energy per nucleon (MeV)

0 | | | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200 220 240
Mumber of nucleons in nucleus, A

Figure 1

Let us now peek ahead at some higher energy msclicthmely;Li and ;Be with Z=3
and Z=4, because they deepen the lessons learoed v the alpha. Using a nuclear shell
model similar to what is used for electron struetwd! the nucleons in tHéle alpha are in 1s
shells. The two protons are spin up and down eaithls, and as are the two neutrons. As
soon as we add one more nucleon, by exclusion, ug jump up to the 2s shell, which admits
four more nucleons and so can reach upBe before we must make a first incursion into the 2p
shell. The four additional nuclides we shall wislbriefly examine are shown in Table 6 below:

B, sNuclide on 1H ,He 5Li .Be

A W N PP O 2

Table 6: Empirical Binding Energies (;B,) of Selected 1s and 2s Nuclides (AMU)
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We note immediately from the above — which has besited by others before — that the
binding energy’B, = 00606547521 of ®Be is almost twice as large as that of the alptqbe
to just under one part in ten thousand AMU. Spesiy:

2B, —.B, = 2[0.030376586@9u—0.0606547521 = 0.00009842u . (4.5)

This is part of the explanation as to why ¥Be is unstable and invariably decays almost
immediately into two alpha particles 4e. ( It is°Be which is the stable Be isotope.) But what

is of particular interest here, is to subtracttb#f alpha;B, = 0.03037658689u from each of

the Li and Be isotopes shown in the above, and eoenfinem side by side with the non-zero
binding energies from H and He. The result of éxercise is shown in Table 7 below.

B sNuclide H ,He By-Bo(alpha)  ;Nuclide sLi .Be

N
1 0,002388170700 _0.008285602824 3 __0.003970507__(.009988515
2 A=z 0,009305585413  0,030376586455 4 A=6"""_0.011753668 (030278165
; p o . g

Table 7: Comparison of Alpha-subtracted 2s Binding=nergies, with 1s Binding Energies
(AMU)

Equation (4.5) is represented above by the fattiBa—;B,1;B,. The chart on the left
is a “1s square” and the chart on the right issasQuare.” But they are both “s-squares.” What
is of interest is that the remaining three nucliskethe Li, Be “square” are not dissimilar either
from the pattern shown for the other three nuclidebe H, He “square.” This means that three
of the four nuclides in the 2s square start “atitbtom” “off-diagonal” just as in 1s, and the
fourth, ®Be starts “on diagonal” “at the top.” But, in tAe square, the “bottom” is

,B, =0.03037658699u from the alpha particle. So the complete 1s diwtw the 2s shell
provides a “platform,” a “zero-prime energy” foramining binding energies in the 2s square.

Finally, before turning tdHe in the next section, let us comment briefly @pezgimental
errors and the precision of the foregoing. Theligteon of the alpha in (4.1) to be

2 Boprediceg = 0.030379212%5u, in contrast to the empiricdIB, = 0.03037658689u, is an

exact match, in AMU, through the fifth decimal pabut is stillnot within experimental errors.
Specifically, the alpha mass listed in [4] and shawTable 1 is 4.001506179125(62) u, which
is accurate téeendecimal places in AMU. Similarly, the proton mds807276466812(90) u and

the neutron mass 1.00866491600(43) u used to etdciB, = 0.03037658689u are accurate
to ten and nine decimal places respectively. 8arthtch betweerlB,, ..., and the empirical
B, beyond five decimals to under 3 parts per mili@still not within the experimental errors,

which are known to at least nine decimal placesSNU. Consequently, (4.1) must be regarded
as a very close, but stdpproximaterelationship for the observed alpha binding energy
Additionally, because (4.1) is based on (3.1), whrethe mass of the up quark is identified with
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the deuteron binding energy, =B, = By(:H) = 0.002388170D0u , the question must be
considered whether this identification (3.1), whitzy close, is also still approximate.

Specifically, it ispossibleto make (4.1) for alpha into &axactrelationship, within
experimental errors, if we reduce the up quark rhgssxactly:=0.000000351251415 u (in the
seventh decimal place), such that:

m, =0.00238781889u [ 2B, = B,(:H) =0.002388170D0u . (4.6)

That is, we can make (4.1) for the alpha inteaactrelationship if we make (3.1) for the up
qguark into arapproximaterelationship, or vice versa, but not both. Sotdwawe do? A

further clue is provided by (4.5), whereby #rapirical B,/;B, 02 is a close, but still
approximate relationship. This seems to suggesina adds more nucleons to a system and
makes empirical predictions such as (4.1) baseti@np and down quark masses, that higher
order corrections (at the sixth decimal place inlAldr alpha and the fifth decimal place in
AMU for ?B,) will still be needed. So because two body systeath as the deuteron can
generally be modeled nearly-exactly, and becausiteron will suffer less from “larg&=Z+N
corrections” than any other nuclide, it makes sefsent evidence to the contrary to regard
(3.1) identifying the up quark mass with the deorelninding energy to be axactrelationship,
and to regard (4.1) for the alpha to beagproximaterelationship that still requires some
correctione in the sixth decimal place. Similarly, as we depeother relationships which, in

light of experimental errors, are also close hilitagpproximate, we shall take the view that these
relationships too, will require higher order cotress based on factors such as the complexities
of a multi-body system, growing nuclide size, ane fact that the nuclear interaction drops off
rapidly as between nucleons not immediately adjaiweane another in a nucleus. Thus, for the
moment, we leave (3.1) intact as an exact relatipns

In section 9, however, we shall show why (3.1)dsually not an exact relationship but is
only approximate to about 8 parts pem millionAMU. But this will be due not to the closeness
of the alpha particle predicted versus observedgese but due to our being able to develop a
theoretical expression for the differenki(n) — M (p) between the observed masses of the fee

neutron and the free protonhetter than one part per millioAMU.

5. Prediction of the Helion Nuclide Binding Energyto 4 parts in 100,000

Now, we turn to the’He nucleus, sometimes referred to as the heliorcoirrast with

the alpha and the deuteron already examined whehgeger-spin bosons, this nucleon is a
half-integer spin fermion. Knowing that our ingieuts for constructing binding energy

predictions arem,, m,, /m,m, , knowing as pointed out after (4.4) that we watdrt at the
bottom” for this nuclide, and knowing already tha “components” in the (3.11) toolbox we
have used so far am, for 2B, and2,/m,m, for ;B,, it turns out after some exercises strictly
with this toolbox of energies, that we can makaidyf close prediction by setting:
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BO( el_|e)3redicted:2380 Predicted Dz”L + rnde = 000832332076U ' (51)
The empirical energy from Table 2, in comparissn;B, = 0.0082856@824u , so that:

3B preaie—2B, = 000832334206 u - 0.00828560284 u = 0.00003779252u . (5.2)

While not quite as close as (4.2) for the alphaigar this is still a very close match to just end
4 parts in 100,000 AMU. But does this make sendgit of the outer products (3.9), (3.10)?

If we wish to write (5.1) in the manner of (4.3)da(4.4) in terms of the components of an
outer producte .., , then referring to (3.9), we find that:

2380 Predicted: (277-)g EP33AA = 2”11 + V ”Lmd = \/ﬁ(\/ﬁ + 2\/ ”L ) (53)

So the expressio@m, +,/m,m, in (5.1) in fact has a very natural formulatiohigh utilizes the

tracem, +2,/m, (AA index summation) of one of the matrices ir0j3times a\/ﬁtaken

from the third (or possibly second) diagonal congrarof the other matrix in (3.9). The use in
(5.3) of E, from (3.9) rather than of, from (3.10), draws from the fact that we needtthee

to be,/m, +2,/m, , and noty/m, +2,/m, as would otherwise occur if we used (2.7). Seher
the empirical data clearly causes us to choose oogrs fromE, rather than fronk, .

6. Prediction of the Triton Nuclide Binding Energyto 3 parts in One Million, and the
Proton — Neutron Mass Difference to 7 Parts in TeMillion

Now we turn to theH triton nuclide, which as shown in Table 2, hasraling energy
¥B, =000910558542u . As with the alpha and the helion, we use thegies from
components of the outer produdis,, of section 2, see again, (3.11). However, follayvi
careful consideration of all possible combinatiaghsye is no readily apparent combination of
m,, My, m together withm, and factors 0(271)% which yield a close match to well under

1 percent, to the observed binding ene}gy = 0.00910558542u .

But all is not lost, and much more is found: Wisadying nuclear data, there are two
interrelated ways to formulate that data. Fistpilook at binding energies as we have done so
far. Second, is to lookrauclear weight lossconversely known as “mass excess.” This
formulation, mass excess, is very helpful whenwhginuclear fusion and fission processes,
and as we shall now see, it is this approach thalbles us to match up the empirical binding data

for the triton to them,, m,, ,/mm, , m, and factors of277)° that we have already successfully

employed for the deuteron, alpha, and helion. &smendous bonus, we will be able to derive
astrictly theoreticalexpression for thebserved, empiricalifference:
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M (n) =M (p)=IM =M =0.00138844988 u (6.1)

between the free, unbound neutron miKs)=1008664916800u and the free, unbound proton
massM(p)=10072764668R2u, see Table 1.

To begin with, let us consider a hypothetical dmsprocess in which we seek to fuse a
+H nucleus (proton) with 4H nucleus (deuteron) to produc€ld nucleus (triton), plus

whatever by-products emerge from the fusion. Bsedhe inputsH and ?H each have a
charge of +1, and the outpfil also has a charge of +1, a positron will be nee¢d@arry off

the additional electric charge, and this will néethe balanced with a neutrino. Of course, there
will be some fusion energy released. So in slioetfusion reaction we now wish to study is:
{H+H - H +€" +v +Energy (6.2)

The question: how much energy is released?

As we can see, this process includg8’adecay. If we neglect the neutrino mass, i.e., if
we takem, [J Q and sincem, =m,, we can reformulate (6.2) using the nuclide massé&sble
1, as theempirical relationship:

Energy=IM +2M —3M -m_ = 0.00478038215u (6.3)
If we then return to our “toolbox” (3.11), we séat2m, = 0.00477638200u . The difference:
Energy-2m, =0.00478038625u —0.00477634020u = —0.00000408015u, (6.4)
is four parts per million! So, we now regafsergy]2m, to be very close relationship to the
empirical data for the reaction (6.2). In contdat,the deuteron, alpha and helion, our toolbox
matched up to a binding energy. But for the tritour toolbox instead matched up to a fission-

release energy. A new player in this mix, which hat heretofore become directly involved in
predicting binding energies, is the electron reassnwhich appears in (6.3). So, based on (6.4),

we setEnergy=2m,, and then rewrite (6.3), usiny =M p(, as:
fMPredicted:jM +fM _2mu _me = M (p)+fM _2mu _me' (65)
Now, to translate between Table 1 and Table 2, vo®wrse used:

2B, =ZEM + NEZM -2M (6.6)
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which relates observed binding enerfgy in general, to nuclear mabbin general. So let us
now use (6.6) specifically faiB, with Z=1 andN=2, and combine this with (6.5) using

oM =M(n), to write:

B, =1LM +2M =M =2M (n)—M +2m, +m, (6.7)

Predicted

Then, to take care of the remaining deuteron nilssn the above, we use (6.6) a second time,
now for 2B, with Z=1 andN=1, to write:

1Boprecicie=iM +oM —1M =M (p) + M ()M (6.8)

Predicted” 1

We then combine (6.8) rewritten in terms2M , with (6.7) to obtain:

*Bomediea = M (1) = M () *+2Bpy g 2, + M, (6.9)

OPredicted OPredicted

Now all that is left iS’By,, ... BUt this is just the deuteron binding energyt the have already
found in (4.4), namely; By, ... = M., @nd which we take to be amactrelationship, see the

discussion at the end of section 4. So final suitsth of IB,, ..., = M, into (6.9) yields:

fBOPredicted = M (n) - M (p) + 3mu + me (6'10)
So now, we do have a prediction for the tritordioig energy, and it does include the
electron rest mass, but it also includesdifference(6.1) between the free (unbound) neutron

and proton masses. It would be highly desirabierfany reasons beyond simply the present
exercise, to express this relationship as wellk aompletely theoretical basis.

To do this, we repeat the analysis just condudtatinow, we fuse twgH nuclei
(protons) into a singléH nucleus (deuteron). Analogously to (6.2), we thuite:

H+H - 2H +e" +v + Energy, (6.11)

and we again ask, how much energy? This fusiasalso noted, is the first step of the process
by which the sun and stars produce their energyjsathe simplest of all fusions, and so is
interesting from a wide variety of viewpoints.

As in (6.3), we first reformulate (6.11) using tégclide masses in Table 1, as the
empirical:

Energy=M +M —2M —m, = 2M(p)~’M —m_ =0.00045114003u, (6.12)
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As a point of reference, this is equivalent to 0225 MeV, which will be familiar to anybody to
who has studied hydrogen fusion. As before, we peer the “toolbox” in (3.11), including

(271)% divisors, to discover tha,/m, m, /(27r) =0.00045042092u . Once again, we see a
very close match, specifically:

Energy-2,/m,m,/(2z): =000045114103u - 0.00045042492u = 0.00000076911u. (6.13)

Here, the match is foist over 7 parts in ten milliorThis is a mere 0.000667798 MeV, which is
a scant 0.1306848742% of the electron mass, asdhié closest match yet! So we take this to
be a significant relationship as well, and use thisewrite (6.12) as:

3
2

2/m,m/(2z) =2M(p)-:M —m,, (6.14)

Now we need to reduce this expression. First,gi8rl), namely;B, = m,, we write (6.8) as:
IM =M (p)+M(n)-m,. (6.15)

Then we combine (6.15) with (6.14) and rearrangertte:

[M(N) = ME)]sregeeq = M, =M, =2 (r;" ;?d =0.00138916099u. (6.16)
T 2

Thisis an extremely important relationship, as it relates the difference (6.1) between the
neutron and proton mass solely to the up, down géextron masses. This is useful in a wide
array of circumstances, including all forms of beé¢égay and the relationships between nuclear
isobars (along the diagonal lines of likewhich are shown in the Tables here) whigh
definitionconvert one into the other via a beta decay whiadhanges a neutron with a proton.
Comparing (6.16) with (6.1), we see that:

[M(n)_ M(p)]Predicted_ [M (n) - M ( p)]observed

. 6.17
=0.00138916609u-0.00138844988 u =0.00000076911u ( )

This is the exact same degree of accuracy, tmpest7 parts in ten millionPAMU, which we
saw in (6.13).

So now, taking (6.16) as a given relationship,use this in (6.10) to write:

A/mm
BO (3H )Predicted:fBOPredicted = 4mu - 2 L = 000910225308U ’ (618)

3

(2r):
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As a result, we finally have a theoretical expr@sdor the binding energy of the triton, totally in
terms of the up and down quark masses. The erapiradue’B, = 0.00910558412u is shown
in Table 2, and doing the comparison, we have:

B, °B, = 000910225688 u —0.00910558542u = -0.00000332104u. (6.19)

Predicted 1

We see that this result is accurate to just oveetiparts in one million!

As to the theoretical expression for (6.18) usiogiponents of an outer produ€t,; g,
asin (4.3), (4.4) and (5.3), one way to write 8&.ik:

fBOPredicted: (27T)2 (EP 2222 + EP 2233 + EP 3322 + EP3333)_ EP1122 - EP1133 = 4”]1 -2 (27;)3 ' (620)

As earlier noted, there will be some ambiguity insthéensor component assignments until we
have developed a wider swathe of binding energiesrizbthe “1s square,” and begun to discern
the wider patterns. But we have now reached ourafa#ducing precise theoretical
expressions for all of the 1s binding energies, s@slg function of elementary fermion masses.
In the process, we have also deduced a like-expreksitime neutron-proton mass difference!

7. Excess Mass Predictions

Let us now aggregate some of the results so far. dfigdl, let us go back to (6.5), and
use (6.15) and the neutron-proton mass difference (6.16)tta€6.5) as:

M =M (p) + 2M(n) - 4m, PRI (7.1)

Predicted — 3
(2r)

Specifically, we have refashioned (6.5) to include pregon mass and two neutron masses,
because thigH triton nuclide in fact contains one proton and tveatnons. Thus, the additional

terms—4m, +2,/m m, /(271)% represent a theoretical value of the mass excessessqul as a

mass loss (negative number). We see this is equaégnitude and opposite in sign to binding
energy (6.20).

Let us do a similar thing for the Helium nuclei. Eine use (6.6) to write:
3B, = 20M +,M —3M =2M(p) + M (n)—>M (7.2)
We then placeM on the left side and use (5.1) to write:

M =2M(p)+M (n)-2m, - /m,m, . (7.3)
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Here, -2m, —,/m,m, is helion mass loss, also equal and oppositentiirty energy (5.1).
Next, we again use (6.6) to write:
4B, = 20M +2[3M —iM = 2[M (p) + 2IM (n)—sM (7.4)

Combining this with (4.1) then yields:

M = 2M () +2M () - 6m, ~6m, + - +10?L )+31 S o
21 |2

The mass loss for the alpha — much larger than footther nuclides we have examined — is
given by the lengthier terms aft@M (p) + 2M (n). Again, this is equal and opposite to the

alpha binding energy in (4.11), with terms consobdan (7.5) above.

Finally, from (3.1), via (6.6), it is easy to deducetfur deuteron, that:
2M =M (p) +M(n)-m,, (7.6)
with a mass loss represented simply-by, , again, equal and opposite the binding energy (3.1).

8. A Theoretical Review of the Solar Fusion Cyclegnd a Possible Approach to Catalyzing
Fusion Energy Release

As a practical exercise, let us now use all of thegoireg results to examine the solar
fusion cycle. The first step in this cycle is (6.1fb),the fusion of two protons into a deuteron.
It was from (6.11) that we determined that an enerdy2{@s released in this fusion, which
energy, in light of (6.14), now becomes:

A/Mm m
Energ)(llH +11H - fH +e"+v+ Energ)): 2 ( ”)3d =0.00045114103u. (8.1)
21 )?

This equates to the well-known 0.420235 MeV ascdhetwlier. The positron annihilates with an
electrone” +e - y+y to produce an addition@m, worth of energy as well.

The second step in the solar fusion cycle is the imract
*H+/H - JHe+ Energy (8.2)

wherein the deuterons produced in (8.1) fuse with prampsoduce helions. We write this
reaction in terms of the masses as:
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Energy="M +:M —3M (8.3)

The proton mass idM , and these other two masses have already beed, fiergpectively, in
(7.6) and (7.3). Thus, (8.3) may be reduced to:

EnergﬁH +H - JHe+ Energ)): m, +/m,m, =000593517186u, (8.4)
which equates to 5.528577 MeV, also a well-knowmber in the study of solar fusion.

The final step in this cycle fuses helions togetbgrroduce alpha particles plus protons,
which themselves are available to repeat the stelding at (8.1), according to:

SHe+>He- JHe+H +H + Energy (8.5)

The mass equivalent of this relationship is a®od:

Energy=;M +>M —iM =M =M (8.6)

Here we again make use f¥l =M p (, tbgether with (7.3) and (7.5) to write:
Energ)(jHe+23He_. JHe+rH+H + Energ;)

=2m, +6m, —4,/mm, _10m, +10m, +16/mm, =001373252808u 87

(2x)

This equates t62.791768 MeV also a well-known number from solar fusion stsdie

Now, as is well known (see, e.qg. [6]), the reac(i®4) must occur twice to produce the
two JHe which are input to (8.7), and the reaction (8aljst occur twice to produce the two

*H which are in turn the input to (8.4). So pullihgs all together from (8.1), (8.4), (8.7) and
e’ +e - y+y,we may express the entire solar fusion cycle as:

Energf4iiH +2e” - ‘He+y (1279MeV) + 2 (552MeV) + 2(42MeV) +4y(e) + 2v)

:[2”11 +6m, _4m_lomd +1022Ln')|'%16\/”14md J+2(m, +M)+ {2@J+4(me)+2(m/)' (8.8)

= am, +6m, +4m, ~2,/mm, +1O'(2“n;12“ MM _ 56733389MeV

Above, in the top line, we show in detail each ggaelease from largest to smallest. In the
middle line, we have segregated in separate pasistreach contribution that is shown in the
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top line, including the neutrino mass presumedet@iltually zero. In the bottom line, we have
consolidated terms.

The above shows at least two things. First, dked energy of approximatel6.73 MeV
known to be released during solar fusion is exgeesntirely in terms of a theoretical
combination of the up, down and electron massds, nathing else added! Consequently, this is
anentirely theoreticakalculation of the known solar fusion energy reteaxpressed totally as
a function of elementary fermion massasd it portends the ability to do the same ftweot
types of fusion as well, as the analysis of thiggras extended to larger nuclides Z>2, N>2.

Secondly, because the results throughout thisrfzgsen to validate modeling nucleons
as resonant cavities, this tells us how to catdlygsonant fusion” in a more practical manner,
because (8.8) tells us the precise resonancegdhato releasing the tot&6.73 MeV of energy
in the above. In particular, if one wished ascht®logical matter to facilitate fusion by creating
an artificial “sun in a box,” one would be inclinemlamass a large store of helium, and subject
that helium store to gamma radiati@nor near the specified discrete energies thategppn
(8.8), so as to facilitate resonant cavity vibrationsratear the energies required for fusion to
occur. Specifically, one would bath the heliumhaat combination of gamma radiation at the

following energies / frequencies, some without, aache with, the Gaussid@z)® divisor (we
convert to wavelengths vige =1/(197MeV)):

6m, = 2944MeV = 669F
m, = 222MeV = 8856F
2m, (harmoni¢ = 445MeV = 44.28F
4m,(harmonig = 890MeV = 2214F . (8.9)

m,m, = 330MeV =5962F
2,/m,m, (harmoni¢ = 661MeV = 2981F
4,/m,m, (harmoni¢ =1322MeV =1491F
10m,/(2z): = 312MeV = 6323F
10m,/(2z): = 141MeV =139.4F
2/m,m,/(2z): = 0.42MeV = 46953F

)

3 . (8.10)

4./mm, /(2z):(harmonig = 84MeV = 234.7F

12,/mm,/ (harmoni¢ = 252MeV = 7826F

(22)
16,/m,m, /(27 (harmoni¢ = 336MeV = 58.6F

In the above, we have explicitly shown each basigdency / energy which appears in the
middle and bottom lines of (8.8) as well as harrosttihat play a role in those equations. Also,
one ought not to neglect the electron mass andat®length.
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So, what do we learn? If the nucleons are trease@sonant cavities and the energies at
which they fuse depend on the masses of their toest quarks as is made very evident by
(8.8), and given the particular energies and harosshown above which appear to play roles in
solar fusion, the idea for harmonic fusion is tbjeat a helium store to high-frequency gamma
radiation proximate at least one of the frequen(8eR0), with the view that these harmonic
oscillations will catalyze fusion by perhaps redgcihe amount of heat that is required. In
present-day approaches, fusion reactions are tedgesing heat generated from a fission
reaction, and one goal would be to reduce or ehaithis need for such high heat and especially
the need for any fissile trigger. That is, weeatst wish to posit the possibility that providihg t
proper harmonics in (8.9) and (8.10) to a heliuonestan catalyze fusion better than known
methods are able to do, with less heat and idé&tlby/or no fission trigger required.

Of course, these energies in (8.9) and (8.10) ang bgh, and aside from the need to
produce this radiation via known methods such asnbt limited to, Compton backscattering
and any other methods which are known at presemiagrbecome known in the future for
producing gamma radiation, it would also be neaggsaprovide substantial shielding against
the health effects of such radiation. The higleesrgy componentm, =2944MeV = G69F ,

is extremely high and would be very difficult toeld (and to produce), but this resonance arises
from (8.8) which is for the finafHe+ He- jHe+H+!H + Energyortion of the solar fusion
cycle. If one were to forego this portion of thusibn cycle and focus only on fusing protons into
deuterons according tiH+H - ?H +e" +v+ Energy (8.1), then the only resonance needed

is 2,/m,m, /(27:)% =0.42MeV =46953F . Not only is this easiest to produce becausen&qgy

is the lowest of all the harmonics in (8.9) and.(8, but it is the easiest to shield and the least
harmful to humans.

Certainly, a safe, reliable and effective method associated hardware for producing
energy via the fusion of protons into deuteronsti@reaction (8.1), and perhaps further fusing
protons and deuterons into helions as in (8.4)ntygducing at least one of the harmonics in
(8.9) and / or (8.10) into a Helium store perhapsdambination with other known methods,
while insufficient to create the “artificial sun”adeled above if one foregoes the final alpha
production in (8.7), would nonetheless represemel@ome, practical addition to the sources of
energy available for all forms of peaceful humadesavor.

9. Recalibration of Masses and Binding Energies &ian Exact Relationship for the
Neutron — Proton Mass Difference

At the end of section 4, we briefly commented opezimental errors, and as between the
alpha particle and the deuteron, we determinedishahs more sensible to associate the binding
energy of the deutergureciselywith the mass of the up quark, thus making thereteally-
predicted alpha binding energy a close but nottexgroximation to its empirically observed
value, rather than vice versa vis-a-vis the deuateut the prediction in (6.16) for the neutron —
proton mass difference to just over 7 parts inntdhon is a very different matter. This is even
more precise by half an order of magnitude tharathka mass prediction, and given the
fundamental and pervasive nature of the relatigniiri M(n) - M(p) anywhere and everywhere

that beta-decay takes place, we now argue why)6Hduldbe taken as aexactrelationship
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with all other relationships recalibrated accordiyngo that now the up quark mass will still be
very close to the deuteron binding energy, but mallonger bexactlyequal to this energy.

First of all, as just noted, thiel(n)— M(p) mass difference is the most precisely predicted

relationship of all the relationships developedwaydo under one part in one million AMU.
Second, we have seen that all the other nucledingrenergies we have predicted are close
approximations, but not exact, and would expedtttha inexactitude will grow larger as we
consider larger nuclides. So, rhetorically spegkimhat should make the deuteron “special,” as
opposed to any other nuclide, that it gets to leavéexact” relation to some combination of
elementary fermion masses while all the other deslido not? Yes, the deuteron should come
closestto the theoretical prediction (namely the up ma$s)l the nuclides, because it is the
smallest composite nuclide. Closer than all othexlidesbut still not exact After all, even the
deuteron should suffer from the effects of “lafgeZ+N,” even if only to the very slightest
degree of parts per ten million.

Third, if this is so, then we gain a new footingomable to consider how the larger
nuclides differ from the theoretical ideal, becaagen for this simple#t=2 deuteron nuclide,
we will already have a precisely-known deviationathwe may perhaps be able to extrapolate
to larger nuclides for which this deviation certgibecomes enhanced. Fourth, in a basic sense,
the deuteron, which is one proton fused to onernauhas a mass which is a measure of
“neutronplus proton,” while M(n)— M(p) is a measure of “neutraninusproton.” So we are

really faced with a choice between who gets toXaetand who must be only approximate:

n+p, or n-p. Seen in this lighkl(n)— M(p) measures an energy feature of neutrons and protons
in their native, unbound states, as separate atithcti entities, and thus is a function of these
elemental nucleons in their purest form. In thetden, by contrast, we have a two-body

system which is less-pure, so if we are to choesedren one or the other, we should choose
M(n)—M(p) to be arexactrelationship, with the chips then falling whereytwill for all other

relationships, including the deuteron binding egeryow, the deuteron is relegated to the same
“approximate” status as all other compound polyhades, and only the proton and neutron as
distinct mono-nuclides get to enjoy an “exact” g$at

Let us therefore do exactly that. Specifically, tlee reasons given above, we now
abandon our original hypothesis that the up quaaksmsexactlyequal to the deuteron binding
energy, and in its place we substitute the hypadhbat (6.16) is aexactrelationship, period.
That is, we now define, by hypothesis, thatéRactrelationship which drives all the others, is:

A/m
[M(n)_ M(p)]observed: 000138849188U = rnu - rne - 2 ﬂmd = [M(n)_ M(p)]Predicted- (91)

(22}
Then, we modify all the other relationships accogtiy.

The simplest way make this adjustment is to maitiéyoriginal hypothesis (3.1) to read:

m,=?B, + £ = B,( H) + £ =0.002388170D0u + £, (9.2)
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and to then substitute this into (9.1) wittaken as the unknown. This is most easily sotvabl
numerically, and it turns out that=-0.00000083073 u, which is just over 8 parts in ten
million u. That is, substituting = —-0.00000083073 u into (9.2), then using (1.4) to derive the
down quark mass, then substituting all of that {(®d.), will make (9.1) exact through all twelve
decimal places (noting that the experimental erapesin the last two places).

As a consequence, the following critical energiegeloped earlier, become nominally
adjusted starting at the sixth decimal place in AMB such (contrast (3.1), (3.3), (3.4), (3.5) and
(3.6) respectively):

m, = 000238733927 u, (9.3)
m, = 0005267312526 u, (9.4)
Jm,m, =000354610536 u, (9.5)

B, = 2m, +m, - (m, +4/mm, +4m, )/ (2)} =000820060681u (9.6)

B, =2m, +m, —(rnJ +4,/mm, +4m, )/(2n)% =0.01053199971u. (9.7)

Additionally, this will slightly alter the bindingnergies that were predicted earlier. The
new results are as follows (contrast (4.1), (510 @.18) respectively):

By (*HE)=1By, yceq = 00303730022, (9.8)
By( HE)roieeq = 000832078380 . (9.9)
By( H)preqioeg = 000909904708 U . (9.10)

and, via (9.3) and this adjustment of masses,

Bo (*H ) predicted= 2 Bopragieg = My = 000238733927 u, (9.11)

In (9.11), we continue to regard the predicted eieut binding energ, (*H ) p,.queq @S beING
equal to the mass of the up quark, but because#iss of the up quark has now changed
slightly, the observed energy (whichBs(°H)=.002388170100) will no longer beexactly
equal to the predicted energy, but rather, wendil haveB,(°*H) # B,(°H) p,cqicies With @

difference of less than one part in a million AMUhe precise, theoretical exactitude now
belongs to theM(n)— M(p) difference specified in (9.1). As a bonus, theand down masses

now have a ten-digit precision in AMU, with expedntal errors in the Iland 13" digits.
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One other point is worth noting. With an entirddgoretical expression now developed
for the neutron—proton mass difference via (9.8 start to assault the full, dressed proton and
neutron masses themselves. Specifically, it wbel@xtremely desirable to be able to specify
the proton and neutron masses solely and exclysageh function of the elementary up, down,
and electron fermion masses. Fundamentally, byei¢ary algebraic principles, taking each of
the proton and neutron masses as an unknown, weechute these masses if we have can find
two independent equations, one of which contains antexpression related to teemof these
masses, and the other which contains an exactssiprerelated to theifferenceof these
masses. Equation (9.1) achieves the first hakisfobjective: for the first time, we now have a
theoretical expression for tldg#ferencebetween these masses. But we still lack an intpe
expression related to their sum.

Every effort should now be undertaken to find arotielationship related to the sum of
these masses. In all likelihood, that relationshipich must inherently explain the natural
number just shy of 1840, between the masses ofubleons and the electron, and / or similar
ratios of about 420 and 190 involving the up andoasses, will need to emerge from an
examination of Lagrangian terms we have negledted far, and / or the perturbations which as
explained in section 11 of [1], have been set to #eroughout the course of this development.
While analyzing binding energies and excess magsaalear reactions as we have done here is
a very valuable exercise, the inherent limitat®that all of these analyses involliéferences
What is needed to obtain the “second” of the dddine® independent equations, are sums, not
differences.

10. Summary and Conclusion

Summarizing the results developed here, we now trevéllowing theoretical
predictions for the binding energies shown in Table

Table 8: Binding Energies (B,) of 1s Nuclides (Theoretical, AMU)

Above, we have also referenced the equations istwihiese predictions are derived. The mass
losses (excess masses) discussed in section 7 whretvery helpful to the exercise of
examining the solar fusion cycle in section 8,snaeply the negative (positive) of the above.
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Having just considered thil(n)—M(p) mass difference, it is useful to also look atdiference
between théH and®He isobarsA=3 in the above. Given th¥tle is the stable nuclide and that
®H undergoes3™ decay into’H, we may calculate the difference in binding efe=rgo be:

B(*He) - B(H) =-2m, +| 1+ 2 ~ y/mm, =-0000778263&9u. (10.1)
(277)2

Similar calculations may be carried out as betwéerisotopes and isotones in Table 8, and it is
helpful to contrast the above to (the negativg@f}) which represents the most elementary
decay of a neutron into a proton.

The numerical values of these theoretical bindimgrgies in Table 8, in AMU, from the
updated (9.8) through (9.11), are predicted tohimkows:

B

sNuclide oNn H ,He

predicted

w N = O

Table 9: Binding Energies (B,) of 1s Nuclides (Predicted, AMU)

These theoretical predictions should be carefutlnpared to the empirical values in
Table 2. Indeed, subtracting each entry in Table 2 froocheantry in Table 9, we find:

Bpredicted-observed ZN uclide on
N

w N = O

Table 10: Predicted Minus Observed Binding Energie$;B,) of 1s Nuclides (AMU)

This shows us how much eagtedictedbinding energy (mass excess) differs fromdhserved
empiricalenergies, in AMU.

As has been reviewed, every one of these predgifaccurate to under four parts in
100,000 AMU {He has this largest difference). Specifically: vewe now used the thesis that
Baryons are Yang-Mills magnetic monopoles to prietie binding energies of the alptde
nucleus to undedour parts in one millionof the®He helion nucleus to undésur parts in
100,000 and of thé'H triton nucleus to undeseven parts in one millionAnd of special import,
we have exactly related the neutron — proton méfesehce — which pervades all aspects of
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nuclear physics and beta decay — to the up quavk djuark, and electron masses, which in turn
enables us to predict the binding energy fortheleuteron nucleus most precisely of all, to just
over8 parts in ten million

The thesis that Baryons are Yang-Mills magneticopmles now appears to have ample,
indeed irrefutable empirical confirmation, estaldis a basis for finally “decoding” the
abundance of known data regarding nuclear masselsiading energies, and may lay the
foundation for technologically realizing the thetoral promise of nuclear fusion.
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