Polynomial SATSolver

Algorithm Explanation

by Matthias Mueller (a.k.a. Louis Coder)
louis@louis-coder.com
Explanation Version 1.0 - December 1, 2013

Abstract

This document describes an algorithm that is sughts decide in polynomial time and space if arcefaor 3-
SAT CNF has a solution or not. To verify the algjam for correctness, it has been implemented agpuaten
program which successfully determined the solvigbdf more than 1 million exact-3-SAT formulas.

Contained Topics:

1 Introduction

1.1 Subject of this Document

1.2 State of the Art

1.3 Requirements of the Reader

2 Definitions

2.1 Task of the Solver

2.2 CNF

2.3 DNF

2.4 ClauseLine Notation

2.5 PossibleClauses

2.6 In Conflict

3 The Polynomial SAT-Solving Algorithm
3.1 The Idea of the 'ClauseTable'

3.2 Example ClauseTables

3.3 Mathematic Notation of a ClauseTable
3.4 ClauseTable Line Clauses are not in [@anf

3.5 Main Idea of Polynomial SAT Algorithm

3.6 Polynomial SAT Algorithm in Words

3.7 Polynomial SAT Algorithm in Pseudo Code

3.8 SAT Algorithm Example Run

3.9 How to evaluate exponential ClauseTablmlynomial Time
3.10 Failed Attempt of Simplification

3.11 SAT Algorithm needs Idea of ClauseTable

3.12 Why my Algorithm might work while othefialed

4 Complexity
4.1 Three nested Loops
4.2 PossibleClauseNumber

4.3 Total Complexity

4.4 Possible Speed-Up

5 Proofs

5.1 ClauseTable Evaluation tells SAT Soliigbi
5.2 Non-Conflict Clauses build a ClauseTdbie
5.3 Algorithm detects ClauseTable Linesataly

6 Meaning of the Algorithm
7 Acknowledgements

8 Summary

9 References

9.1 General Literature

9.2 Concrete References

1 Introduction
1.1 Subject of this Document

This is the manual that gives infoimatabout how the 'Polynomial SAT-Solver' by MadihiMueller
works. You can download this document you are cillyeeading, the solver program (source code amuddivs
binary) and instructions from:

http://www.louis-coder.com/Polynomial_3-SAT_SohRolynomial _3-SAT_Solver.zip

1.2 State of the Art

To solve Satisfiability Problem instas, there were only deterministic algorithms é@xgsthat need, in
the worst case, exponential time. The algorithmlarpd in this document is guaranteed to requiregeipe
polynomial time to solve any exact 2- or 3-SAT foten The author of the algorithm does furthermarppese
that the algorithm does always return correct tesul

1.3 Requirements of the Reader

The Polynomial SAT-Solver algorithmoslid be of use to computer scientists and matheraa who
are familiar with the P-NP-problem. | assume tlhat teader has some experience in theoretical cempcience,
in using Windows programs and in programming.
2 Definitions

In the following topics | want to dedi some expressions used throughout the solvergmogts source
code and all regarding documents.

2.1 Task of the Solver

The solver is meant to be used to fnd if a given problem instance of the such caltgatisfiability
Problem' has a solution or not. The output of tbé/es is either 'solvable’ or 'UNSAT' (abbreviatidor
unsatisfiable, that means not solvable).

2.2 CNF

The solver processes 'SAT(isfiabilifgymulas, which are mathematically called 'CNENF stands for
'‘Conjunctive Normal Form', which is, in common fd&ure, notated as follows (example):

CNF = (x, 0%, Ox,)0{x, 0%, 0%)0(x 0%, 0x,)
The OR-ed 'x's are called literals, the AND-ed &are called the clauses.
The task is to decide if there is a solution, if.&. is possible to assign each literal a valudrak or false so that
the whole CNF formula becomes true. If there iolaton, the CNF is "satisfiable" (or also callesblvable"),

otherwise it is "unsatisfiable" (or also called "BANT"). For the example CNF above, this is possihled a
concrete solution would be:

X, = true
X, =true
X, = true

because when we insert this into the CNF we get:
CNF = (trueOtrue Otrue) O(true D false D false) O(false Otrue Otrue)

which can be evaluated to 'true’.

An exact 3-SAT CNF is a CNF with always exactlyetintiterals per clause, and an exact 2-SAT CNmkéswith
always exactly two literals per clause. For ourdse¢he same literal shall appear maximal oncelpgise.

There were already algorithms existing that solvBAZ CNFs in polynomial time, e.g. by using a ladic
resolution. It is possible to use the resolutispabn 3-SAT CNFs, but the problem is that specF€ can be
constructed that lead to an exponential amouninwd tvhen being resolved. An example for such asotdishard
to solve’ 3-SAT CNFs is the such-called 'PigeoneHBloblem’. Professor Haken proved in 1985 thatiutien-
based solvers need exponential time for solvingelaanough pigeon hole problems [1]. Note that myrémt)
algorithm is not resolution based, so the expoaéldiver bound of resolution-based solvers doesappty to my
algorithm.

2.3 DNF

'DNF' is the abbreviation of 'disjumet normal form'. While a CNF is a conjunction asjdnctions, a
DNF is the opposite, a disjunction of conjunctioBgample:

DNF = (x, Ox, 0x,)0(x, 0%, Ox,)0(x, Ox, Ox,)
As you surely know a conjunction is an AND-inteatgdn and a disjunction is an OR-interrelation. SONF
consists of OR-ed AND-terms.

2.4 ClauseLine Notation

In documents, solver output and itgree code, | use a special self-invented notatowrCNFs. | call it
'the ClauseLine notation'.

Traditionally, a clause is written like this:
(x 0% Ox)

1-0-1

| would write that clause like this:

There's a maximal index of the literals in the CNig-s0lve. | call this maximal possible index thigilNumber.
The example above has DigitNumber = 5, as the bighdex of a literal is 5.

A mathematical clause can be converted to a Clansels follows:

1. Write DigitNumber minus signs, for example (Digitmber = 5):- - - - - . A minus sign at position p means
that the literal p is not existing in the clause.

2. Loop through the literals of the clause. Eacérdit has an index. If the literal is negated, wat® at the
location denominated by the literal index, if thieral is not negated, place a 1 (in both casekcepthe
minus sign).

5
The whole CNF is written as a list of ClauseLinies, one ClauseLine after another, each in a sidgument

line. | decided to use the ClauseLine notation fusd it is a much better visualization of clausesl CNFs than
‘tons of' indexed x variables.

2.5 PossibleClauses

| call the 'PossibleClauses' the dealbclauses that can appear in a CNF with highistal index
DigitNumber.

Example for 2-SAT, Example for 2-SAT, Example for 3-SAT,
DigitNumber = 3; DigitNumber = 5; DigitNumber = 4;
PossibleClauses are: PossibleClauses are: PossibleClauses are:
00- 00--- 000-
01- 01--- 001-
10- 10--- 010-
11- 11--- 011-
0-0 0-0-- 100-
0-1 0-1-- 101-
1-0 1-0-- 110-
1-1 1-1-- 111-
-00 0--0- 00-0
-01 0--1- 00-1
-10 ... 01-0
-11 ---00 01-1
---01 e
---10 -111
---11

Note that the order of the PossibleClauses follawsfined pattern:

For an exact 3-SAT formula, there are three O odidits (respectively, for exact 2-SAT, two). Thesti

PossibleClause has those digits at the very l&knTthe 3rd digit (for exact 3-SAT) goes to thétigtep by step.
Then the 2nd digit moves one place to the rightthed3rd digit goes to the right again, and soBefore a digit

changes its place, all possible 0/1 combinatioesran through. For exact 3-SAT, there are 8 po#sgsi of 0/1

combinations and for exact 2-SAT, there are 4.

It might be helpful to view the code of the implentation:

PossibleClauseNumber = 0; // reset

for (int D1 = 0; D1 < DigitNumber - 2; D1 ++)
// position of first 0 or 1 digit in PossibleClause
{

for (int D2 = D1 + 1; D2 < DigitNumber - 1; D2 ++)
{/ position of second 0 or 1 digit in PossibleClause

for (int D3 = D2 + 1; D3 < DigitNumber; D3 ++)
// position of third 0 or 1 digit in PossibleClause
{

for (int ¢ = 0; C < 8; C ++) // combination index
é/ o0oo, 001, 010, 011, 100, 101, 110, 111

// we arrive here 0(DigitNumberA3) times!
// So there are 0(DigitNumberA3) PossibleClauses!

for (int m = 0; m < DigitNumber; m ++)
PossibleClauses[PossibleClauseNumber][m] = '-"';

PossibleClauses[PossibleCclauseNumber][D1] = (C & 4 ? '1' '0");
PossibleClauses[PossibleClauseNumber][D2] = (C & 2 ? '1' '0');
PossibleClauses[PossibleCclauseNumber][D3] = (C & 1 ? '1' '0");

PossibleClauseNumber ++;

6

The PossibleClauses are always enumerated in thisdefined order. The PossibleClause indices hegin
especially in the implementation, with O.

2.6 In Conflict

Two clauses are 'in conflict' if thegve at least one literal once negated and onceegated at the same
position within the two ClauseLines. Examples:

In conflict:
00---
-1--0

or
1--0-
0--1-

Not in conflict:

00---
-0--0
or

3 The Polynomial SAT-Solving Algorithm
3.1 The Idea of the 'ClauseTable'

| allege that we can determine theaulity of any exact X-SAT Satisfiability Proble@NF with X >= 2
in the following way:

Loop through all possible solutions the SAT CNF Idoave. If the DigitNumber was 5 for example, first
possible solution is 00000, then 00001, then 0081 00011, then 00100, and so on. For each pessitution,
write down a term that contains in AND-ed form péissible clauses that are not in conflict with tugrent
solution. (‘Possible Clauses' are explained inctdhb and 'not in conflict' is explained in topids 2of this
document. The notation of clauses and 'DigitNumibexkplained in topic 2.5.)

Example of how to create a ClauseTable:
Imagine we have a 2-SAT CNF with DigitNumber = 3.

The first possible solution is: 000

So the first AND-term is:
(00- & 0-0 & -00).

The second possible solution is: 001

The second AND-term is:
(00- & 0-1 & -01).

The 8th possible solution is: 111

The 8th AND-term is:
(11- & 1-1 & -11).

When you OR all AND-terms, you get the 'ClauseTdblenula.

7

For the just shown example, we get the followinguSkeTable formula:

(00- & 0-0 & -00) | <- "clauseTable 1line 1"
(00- & 0-1 & -01) | <- "cClauseTable Tine 2"
(01- & 0-0 & -10) | <-...

(01- & 0-1 & -11) |

(10- & 1-0 & -00) |

(10- & 1-1 & -01) |

(11- & 1-0 & -10) |

& &

(11- & 1-

A "ClauseTable column 1"
A "ClauseTable column 2"

It will be from use to have defined the expressi@iauseTable lines' and -columns', as follows:

* All clauses within the same one AND-term shall 8ul'ClauseTable line'. For example, 00-, 0-0 &ddouild
ClauseTable line 1.

* All clauses at the same position within each ANBrehall build a 'ClauseTable column'. For exam@e,
01-, 10- and 11- build ClauseTable column 1.

The ClauseTable formula is evaluated in the foltaywvay:

* You treat the clauses within the ClauseTable foenasl Boolean variables.

* '& denominates a Boolean AND and '|' denominatBe@ean OR.

* If a clause from the ClauseTablent existing in the SAT CNF to solve, replace thatiskaby true.
» If a clause from the ClauseTable is existing in$#d CNF to solve, replace that clause by false.

If the ClauseTable formula, as a whole, is truattie SAT CNF has any solution. If the ClauseTébtmula, as
a whole, is false then the SAT CNF is unsatisfiathlat means it has no solution. That means taCthuseTable
formula is then true if all clauses from at leasé cClauseTable line are albt existing in the SAT CNF to solve.
For example, a 2-SAT CNF with DigitNumber = 3 isvatle if it contains neither 00-, nor 0-0, nor -00

3.2 Example ClauseTables

I want to show you three example-Cédlables for three different CNF sizes. "|" shalha@minate a
logical OR and "&" shall denominate a logical ANDhe examples are used to help to explain the wleegurse
it is not from practical meaning to solve CNFs withly 3 or 4 different literals. But the ClauseTaldan be
created for arbitrary large CNFs as well.

Here are some example ClauseTables:

2-SAT, DigitNumber = 3:

(00- & 0-0 & -00) |
(00- & 0-1 & -01) |
(01- & 0-0 & -10) |
(01- & 0-1 & -11) |
(10- & 1-0 & -00) |
(10- & 1-1 & -01) |
(11- & 1-0 & -10) |
(11- & 1-1 & -11)

2-SAT, DigitNumber = 4:

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00)
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01)
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10)
(00-- & 0-1- & 0--1 & -01- & -0-1 & --11)
(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)
(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)
(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)
(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)
(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)
(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)
(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)
(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)

(11-- & 1-0- & 1--0 & -10- & -1-0 & --00) |
(11-- & 1-0- & 1--1 & -10- & -1-1 & --01) |
(11-- & 1-1- & 1--0 & -11- & -1-0 & --10) |
(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

3-SAT, DigitNumber = 4:

(000- & 00-0 & 0-00 & -000)
(000- & 00-1 & 0-01 & -001)
(001- & 00-0 & 0-10 & -010)
(001- & 00-1 & 0-11 & -011)
(010- & 01-0 & 0-00 & -100)
(010- & 01-1 & 0-01 & -101)
(011- & 01-0 & 0-10 & -110)
(011- & 01-1 & 0-11 & -111)
(100- & 10-0 & 1-00 & -000)
(100- & 10-1 & 1-01 & -001)
(101- & 10-0 & 1-10 & -010)
(101- & 10-1 & 1-11 & -011)
(110- & 11-0 & 1-00 & -100)
(110- & 11-1 & 1-01 & -101)
(111- & 11-0 & 1-10 & -110)
(111- & 11-1 & 1-11 & -111)

As already told, you can imagine the clauses '000-0', etc. as Boolean variables that are repldy true if that
clause imot existing in the SAT CNF. Any clause in the ClausklE is replaced by false if that clause is exgstin
in the SAT CNF.

In the following | want to show a sample evaluatitira clause is still notated it shall be true dhdneans the
clause at the location of 'f' is false.

2-SAT, DigitNumber = 3:

(00- & 0-0 & -00) |
(00- & 0-1 & -01) |
(01- & 0-0 & -10) |
(01- & 0-1 & -11) |
(10- & 1-0 & -00) |
(10- & 1-1 & -01) |
(11- & 1-0 & -10) |
(11- & 1-1 & -11)

The following CNF:

00-
0-0
-11
1-0
11-
1-1

IS not satisfiable. You know this by replacing clas in the ClauseTable by false if they do appetra CNF:

(f &f & -00) |
(f & 0-1¢& -01) |
(01- & f & -10) |
(01- & 0-1 & f) |
(10- & f & -00) |
(10- & f & -01) |
(F &f & -10) |
f &f &f)

As each AND term contains at least once falsetli€)whole ClauseTable is false. So we know thetGNF is
unsatisfiable, there is no solution.

Now imagine the CNF is shrunken:

// 00- has been removed
-11
1-0
11-
1-1

the ClauseTable therefore:

(00- & f & -00) | <- ClauseTable 1line 1
(00- & 0-1 & -01) | <- ClauseTable 1line 2
(01- & f & -10) |

(01- & 0-1 & f) |

(10- & £ & -00) |

(10- & f & -01) |

(f &f & -10) |

(f &f &f)

We see that the second ClauseTable line does ntdindalse but only true. So the CNF is solvable.

As a last note | want to mention that ‘ClauseTablsbmetimes abbreviated with 'CT', mainly in soberce code.

3.3 Mathematic Notation of a ClauseTable

The following ClauseTable for 2-SATigbNumber = 4:

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00)
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01)
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10)
(00-- & 0-1- & 0--1 & -01- & -0-1 & --11)
(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)
(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)
(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)
(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)
(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)
(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)
(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)
(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)
(11-- & 1-0- & 1--0 & -10- & -1-0 & --00)
(11-- & 1-0- & 1--1 & -10- & -1-1 & --01)
(11-- & 1-1- & 1--0 & -11- & -1-0 & --10)
(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

would be notated mathematically as the ClauseTahIE:

(% 0%) 050 0%, 03 0 0
(b 0%)obe 0%)al x)l D)o, Ox,)0 b 1))

Remember: a clause is replaced by true if it issmgsin the SAT CNF. If the whole ClauseTable ialaated to
true, the SAT CNF has any solution. You do not needegard single literals, a clause in the Claakdd is
always replaced by true as a whole. For exampéeSthT CNF:

Sample _2_ SAT _CNF = (x, 0%,)0(x, 0%,)0(x, 0%,)

would replace the first three clauses in the Claabée DNF by false and the resting ones by trueabse the first
three clauses in the sample 2-SAT CNF appear lhtaiie ClauseTable DNF.

10
3.4 ClauseTable Line Clauses are not in Cdnflic

The ClauseTable has a special strectur

* |f a set of n many clauses are all not in conflith each other, it is guaranteed that there isaageTable line
that contains all those n many clauses.

Example:

We want to regard the following ClauseTable of 84F CNF with DigitNumber = 4:

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00)
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01)
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10)
(00-- & 0-1- & 0--1 & -01- & -0-1 & --11)
(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)
(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)
(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)
(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)
(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)
(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)
(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)
(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)
(11-- & 1-0- & 1--0 & -10- & -1-0 & --00)
(11-- & 1-0- & 1--1 & -10- & -1-1 & --01)
(11-- & 1-1- & 1--0 & -11- & -1-0 & --10)
(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

Now let's invent a set of 6 clauses:

We begin with {00--}. Then we must add another skdhat is not in conflict with any of the claugkat are
already in the set. We cannot add for example dslthe first digit of 1-1- is in conflict with thaf 00--. But we
could add 0-1-. So we have: {00--, 0-1-}. Let'semd this set until we have for example {00--, 0&-1, -01-, -0-
1,--11}

This set of clauses is completely included in ttle@auseTable line:

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00)
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01)
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10)
(00-- & 0-1- & 0--1 & -01- & -0-1 & --11) <- ClauseTable Tine 4
(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)
(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)
(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)
(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)
(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)
(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)
(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)
(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)
(11-- & 1-0- & 1--0 & -10- & -1-0 & --00)
(11-- & 1-0- & 1--1 & -10- & -1-1 & --01)
(11-- & 1-1- & 1--0 & -11- & -1-0 & --10)
(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

When we want to describe exactly one ClauseTabéely a set of n many clauses then it is ingertioaisn is the
count of ClauseTable columns (n = 6 for the jusivainexample). | will later prove that any set oflauses that
are all not in conflict among each other debsays describe at least one ClauseTable line. Pleasethat all

clauses within the same ClauseTable column areyalivaconflict with each other, so we dot need to claim
that the n clauses are from n different ClauseTablamns, as this is the case anyway if n clausesat in

conflict.

10

11
3.5 Main Idea of Polynomial SAT Algorithm

As you were told in the last topicyaet of n clauses that are all not in conflict am@ach other are
guaranteed to describe a ClauseTable line, itineisount of ClauseTable columns.

If all of those n clauses are not existing in teTSCNF to solve, this would mean that we found anptete
ClauseTable line that contains only clauses thabhatcappear in the SAT CNF. This would mean that SIAT
CNF has a solution, as | explained in the previopsc 3.1.

3.6 Polynomial SAT Algorithm in Words

The actual task of my solver is tadfiout if there is a set of possible clauses thaaltnot appear in the
SAT CNF to solve and that 'build" at least one €#dable line. The solver does this by regardind) edause
triple’ built out of three possible clauses. Eatlhose triples is further dissected into 'tuplelgw the algorithm
does this is still to be explained and will be shawthe form of pseudo-code.

Remember the example set of possible clauses simotopic 3.4, this set was: {00--, 0-1-, 0--1, -0D-1, --11}.

The clauses {00--, 0-1-, 0--1, -01-, -0-1, --11}allnow all be absent from the SAT CNF to solve amnd all
within one ClauseTable line.

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00)
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01)
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10)
(00-- & 0-1- & 0--1 & -01- & -0-1 & --11) <- in this ClauseTable Tine there are
all clauses from the example set
(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)
(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)
(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)
(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)
(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)
(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)
(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)
(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)
(11-- & 1-0- & 1--0 & -10- & -1-0 & --00)
(11-- & 1-0- & 1--1 & -10- & -1-1 & --01)
(11-- & 1-1- & 1--0 & -11- & -1-0 & --10)
(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

We can find out if a set of clauses build at least ClauseTable line in the following way:

* There is a loop that loops through all possibleists. Let the possible clause that loop is poirtbrige named
X.

* There is a second loop that loops through all pdssilauses. Let the possible clause that loomiisting to
be named Y.

* There is a third loop that loops through all poesilauses. Let the possible clause that loop iistipg to be
named Z.

Although not required, it is ingenious to make sieeond loop start at the next possible clausectivaes after the
first loop's clause. The third loop can start onegible clause behind the second one. 'Behind' stean at the
next possible clause in the PossibleClauses|] ailrag order of the possible clauses in that arsayell-defined
and fixed. Please attend topic 2.5, which is exjhagj this.

* |If at least one clause, that means X, Y or/and &xisting in the SAT CNF to solve, skip the currpossible
clause triple and check the next possible claugketr

* |If at least two clauses from the possible clauggetrthat means X, Y and Z, are (partially) in fiimb with
each other, skip the current possible clause triple

» If all three possible clauses, that means X, Y Aiade absent from the CNF to solve, and the claasesot in
conflict pair-wise, then check the Boolean arrayilll®iBeChecked[][] and eventually set
StillToBeChecked_Newl[][]:

11

12

if (stillToBeChecked[X][Y] == true & StillToBeChecked[X][zZ] == true)
then set StillToBeChecked_New[Y][Z] = true;

| want to give a brief explanation what the arréaj ®BeChecked[][] is good for.

Let (Y & Z) mean:

* Y and Zis a clause tuple, built out of the lasb wlauses from the triple X, Y and Z,
* Y and Z do botmot appear in the SAT CNF to solve,

* Y and Z are not in conflict.

StillToBeChecked_New([Y][Z] is practically set taur if (X & Y) and (X & Z). This means that we chetk & Z)

only if (X & Y) and (X & Z) has been found as trudotice that StillToBeChecked[][] is, at beginniog the
solving procedure, initialized to true. When thause X is the first one of a new ClauseTable coldhan
initialize StillToBeChecked_New(][] to all false. Mén the clause X is the last one of a ClauseTaierm, then
combine StillToBeChecked[][] with StillToBeCheckadew[][] by AND-ing their corresponding Boolean vaki
This will be explained more detailed in the upcogniopic 3.10.

3.7 Polynomial SAT Algorithm in Pseudo Code

| allege that the following progranmosvn as C-like pseudo code, can determine if tieeed least one
ClauseTable line whose clauses do all not exishénpassed SAT CNF. If there is at least one Clealsle line
whose clauses do all not exist in the SAT CNF teesahen the SAT CNF has a solution.

Here is the code:

?001 Does_SAT_CNF_Have_A_Solution(argument CNF)

ClauseType PossibleClauses[]; // define (reserve memory)
CreatePossibleClauses(PossibleClauses([]); // fill with data (see topic 2.5!)
bool stillToBeChecked[][]; // define (reserve memory)
bool stillToBeChecked_New[][]; // define (reserve memory)

SstillToBeChecked[][] = initialize with all true;
foreach (PossibleClause X in PossibleClauses)

if (X is the first clause in a ClauseTable column)
SstillToBeChecked_New[][] = all false;

foreach (PossibleClause Y in PossibleClauses)

foreach (PossibleClause Z in PossibleClauses)

if (IsInConflict(X, Y) == false & // ('==' checks for equality)
IsInConflict(X, z) == false & // ('=' would assign a value)
IsInConflict(y, z) == false &
ISINCNF(X) == false &
ISINCNF(Y) == false &
ISINCNF(Z) == false &
StillToBeChecked[X][Y] == true &
‘ StillToBeChecked[X][z] == true)
}
3
}
}
if (there 1is any StillToBeChecked[A][B] == true with
B a PossibleClause from Tast ClauseTable column and
A a PossibleClause from the ClauseTable column before B)
] return CNF_Has_A_Solution;
else

return CNF_Has_No_Solution;

12

13

| colorized special parts of the algorithm to majla know which pseudo code lines corresponds tcchwhi
example run code line in the following topic.

3.8 SAT Algorithm Example Run

Imagine we need to find out if theldating CNF is solvable:

This example CNF consists of 18 possible clausks.algorithm should find out that the CNF is soleals there
is a complete ClauseTable line whose clauses dmalppear in the CNF, as you can see here:

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00)
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01)
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10)
(00-- & 0-1- & 0--1 & -01- & -0-1 & --11) <- this ClauseTable Tine contains none
of the clauses of the example CNF!
(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)
(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)
(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)
(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)
(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)
(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)
(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)
(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)
(11-- & 1-0- & 1--0 & -10- & -1-0 & --00)
(11-- & 1-0- & 1--1 & -10- & -1-1 & --01)
(11-- & 1-1- & 1--0 & -11- & -1-0 & --10)
(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

USAGE OF THE TRIPLE DISSECTING ALGORITHM:

| want to list the most important steps the aldmitirom topic 3.7 does. In the following paragrapksY and Z

are exactly those pointers to possible clauses #nat used in the pseudo code. Also the two arrays
'StillToBeChecked' and 'StillToBeChecked New' ahe farrays mentioned in the pseudo code. For better
understanding, please compare the following steg®ecially their color, with the code listing fraapic 3.7.

Please notice that | did only list those X, Y anttigles that pass the stAll other triples will also
be checked by the pseudo code but | won't listehidples in the following code listing to keep theerview as far
as possible.

>>>

StillToBeChecked 1is initialized to all true.
StillToBeChecked_New 1is initialized to all false.

X = 00--
Y = 0-1-
z =0--1

13

X = 00--

Y = 0-1-

z = -01-

X, Y and Z are not in conflict. X, Y and z

Also: stillToBeChecked[00--][0-1-] == true
=> StillToBeChecked_New[0-1-][-01-]

X = 00--

Y = 0-1-

z = -0-1

X, Y and Z are not in conflict. X, Y and zZ

Also: stillToBeChecked[00--][0-1-] == true
=> StillToBeChecked_New[0-1-][-0-1]

X = 00--

Y = 0-1-

zZ = --11

X, Y and Z are not in conflict. X, Y and z

Also: stillToBeChecked[00--][0-1-] == true
=> StillToBeChecked_New[0-1-][--11]

R R Y moves on et

X = 00--

Y = 0--1

z = -01-

X, Y and Z are not in conflict. X, Y and zZ

Also: stillToBeChecked[00--][0--1] == true
=> StillToBeChecked_New[0--1][-01-]

X = 00--

Y = 0--1

Z = -0-1

X, Y and Z are not in conflict. X, Y and z

Also: stillToBeChecked[00--][0--1] == true

=> StillToBeChecked_New[0--1][-0-1]

X = 00--

Y = 0--1

zZ = --11

X, and are not in conflict. X, Y and z

A1s St111ToBeChecked[OO——][0——1] == true
=> StillToBeChecked_New[0--1][--11]

*%% Y moves on **%

X = 00--

Y = -01-

Zz = -0-1

X, and Z are not 1in conflict. X, Y and z

A1s : StillToBeChecked[00--][-01-] == true
=> StillToBeChecked_New[-01-][-0-1]

X = 00--

Y = -01-

zZ = --11

X, and are not in conflict. X, Y and z

A1s St111ToBeChecked[OO——][—01—] == true
=> StillToBeChecked_New[-01-][--11]

e Y moves on ek

X = 00--

Y = -0-1

zZ = --11

X, Y and Z are not in conflict. X, Y and z

Also: stillToBeChecked[00--]1[-0-1] == true

=> StillToBeChecked_New[-0-1][--11]

oo

X moves on *¥*%*

ek

14

do not appear in the SAT CNF.
& StillToBeChecked[00--][-01-]
:= true;

do not appear in the SAT CNF.
& stillToBeChecked[00--][-0-1]
:= true;

do not appear in the SAT CNF.
& StillToBeChecked[00--][--11]
:= true;

do not appear in the SAT CNF.
& stillToBeChecked[00--][-01-]
:= true;

do not appear in the SAT CNF.
& StillToBeChecked[00--][-0-1]
:= true;

do not appear in the SAT CNF.
& stillToBeChecked[00--][--11]
:= true;

do not appear in the SAT CNF.
& StillToBeChecked[00--][-0-1]
:= true;

do not appear in the SAT CNF.
& stillToBeChecked[00--][--11]
:= true;

do not appear in the SAT CNF.
& StillToBeChecked[00--][--11]
:= true;

and then sebtilIToBeChecked_New to all fals&o we get:

StillToBeChecked all false, EXCEPT:

stillToBeChecked[0-1-][0--1] == true
SstillToBeChecked[0-1-]1[-01-] == true
SstillToBeChecked[0-1-][-0-1] == true
StillToBeChecked[0-1-][--11] == true

14

true

true

true

true

true

true

true

true

true

15

stillToBeChecked[0--1][-01-] == true
SstillToBeChecked[0--1][-0-1] == true
stillToBeChecked[0--1][--11] == true
StillToBeChecked[-01-]1[-0-1] == true
stillToBeChecked[-01-][--11] == true
SstillToBeChecked[-0-1][--11] == true

ek vk

continue

N < X
o
o
I
I
[y

X, Y and Z are not in conflict. X, Y and Z do not appear in the SAT CNF.
Also: stillToBeChecked[0-1-]1[0--1] == true & StillToBeChecked[0-1-]1[-01-] == true
=> StillToBeChecked_New[0--1][-01-] := true;

(and so on.)

<

At the end of the algorithm, when X, Y and Z reathieeir 'right-most' location in the ClauseTable meed to
check if there is antillToBeChecked[A][B] == truewith B from the last ClauseTable column and A frtma
column before. In our example, there would ®&@lToBeChecked[-0-1][--11] == trudeft at the very end of the
algorithm execution. So the triple dissecting ailfpon did find out that there is at least one Cldisd#e line
satisfied, that means all its clauses are replhgddie as they are all missing in the SAT CNF.

3.9 How to evaluate exponential ClauseTablgoignomial Time

You might rightfully have noticed ththe ClauseTable has exponential size. The Claldehas as many
lines' (OR-ed AND-terms) as there are possiblaetsmis for the SAT CNF. As the number of possildkigons
grows exponentially with the SAT CNF's literal rang=DigitNumber), the ClauseTable's size grows
exponentially, too.

But why should the triple dissecting algorithm, si®wn in topic 3.7, used on the ClauseTable, etaltize
ClauseTable to true or false in polynomial time apdce?

The solution is the following: the triple dissegtialgorithm needs to process each triple X, Y amh@ only, no
matter how often a triple appears in the Claused alshich is only an imaginary construction, thatame it is
practically not really created in memory.

For example, have a look at the following Clausdd &t 2-SAT, DigitNumber = 4:

(00-- & 0-0- & 0--0 & -00- & -0-0 & --00) <- ClauseTable 1line 1
(00-- & 0-0- & 0--1 & -00- & -0-1 & --01) <- ClauseTable 1ine 2
(00-- & 0-1- & 0--0 & -01- & -0-0 & --10) <= ...

(00-- & 0-1- & 0--1 & -01- & -0-1 & --11)

(01-- & 0-0- & 0--0 & -10- & -1-0 & --00)

(01-- & 0-0- & 0--1 & -10- & -1-1 & --01)

(01-- & 0-1- & 0--0 & -11- & -1-0 & --10)

(01-- & 0-1- & 0--1 & -11- & -1-1 & --11)

(10-- & 1-0- & 1--0 & -00- & -0-0 & --00)

(10-- & 1-0- & 1--1 & -00- & -0-1 & --01)

(10-- & 1-1- & 1--0 & -01- & -0-0 & --10)

(10-- & 1-1- & 1--1 & -01- & -0-1 & --11)

(11-- & 1-0- & 1--0 & -10- & -1-0 & --00)

(11-- & 1-0- & 1--1 & -10- & -1-1 & --01)

(11-- & 1-1- & 1--0 & -11- & -1-0 & --10)

(11-- & 1-1- & 1--1 & -11- & -1-1 & --11)

You can see that the triple {00--, 0-0-, -00-} appetwice, once in ClauseTable line 1 and oncelaugeTable
line 2. But nevertheless, when you use the tripdsetting algorithm, as shown in topic 3.7, thgoathm will
regard the triple {00--, 0-0-, -00-} only onc€&he triple dissecting algorithm is designed in such a way that it
needsto regard each triple once only.

So the complexity of the polynomial solver is mgittie work that is to be done to process once &guk built
out of three possible clauses. This will be exawuhila¢er on in this document.

15

16

3.10 Failed Attempt of Simplification

We said that the triple dissectingoalipm works according to the scheme:

if (stillToBeChecked[X][Y] & StillToBeChecked[X][z] &
MissingInCNF(X) &
MissingInCNF(Y) &
MissingInCNF(Z) &
IsNotInConflict(X, Y) &
IsNotInConflict(X, Z) &
IsNotInConflict(y, Z))

StillToBeChecked_New[Y][Z] = true;
So we regard three clauses X, Y and Z at oncewBytdo we not process less, let's say two clausesce?

Could we do the following?

if (stillToBeChecked[A] &
MissingInCNF(A) &
MissingInCNF(B) &
IsNotInConflict(A, B))

StillToBeChecked_New[B] = true;

The following observation might give the answer:

if ((A'is not in conflict with B) &
(B is not in conflict with C))

...doesot have to mean that A, B and C are in the very S@laaseTable line.

I will show you an example for such a wrong conos Imagine we want to solve a 2-SAT CNF with
DigitNumber = 3. The related ClauseTable is:

(00- & 0-0 & -00) | <-
(00- & 0-1 & -01) |
(01- & 0-0 & -10) | <-
(01- & 0-1 & -11) |
(10- & 1-0 & -00) |
(10- & 1-1 & -01) |
(11- & 1-0 & -10) |
(11- & 1-1 & -11)

You can easily see that (00- is not in conflicthwd:0) and also (0-0 is not in conflict with -1@ebnot mean that
(00- is not in conflict with -10) is valid! So, IstinConflict(A, B) and IsNotinConflict(B, C) doewt need to
mean that IsNotInConflict(A, C). So weed to check:

IsNotInConflict(A, B) &
IsNotInConflict(A, C) &
IsNotInConflict(B, C)

Only if all of those three checks return true, va& ©e sure that A, B and C are in one and the €meseTable
line.

Please remind the definition from topic 3.6: Let&X) mean:

* X and Y do both not appear in the SAT CNF to solve,
e XandY are not in conflict.

16

17

In topic 3.6 the array StillToBeChecked[][] wasroduced. Now you might possibly understand betteatvthis
array is used for: the array StillToBeChecked[Jfagtically tells us if it 'makes sense' to stilbpess the third
tuple (B & C). (B & C) can only affect the solvitig some way if StillToBeChecked[B][C] is true, whatthe case
if (A & B) and (A & C) was found before.

3.11 SAT Algorithm needs Idea of ClauseTable

Maybe you noticed that the ClauseTé&tmeula, which is evaluated by the triple dissegtalgorithm, is a
DNF (disjunctive normal form, i.e. an OR-ing of ANBrms).

An interesting question would be if the triple disBng algorithm is suitable to solve general DNist means
DNFs that do not have the special structure ofQlaiseTable. The special structure of the ClaudeTialihat if
three clauses A, B, C ar®t in conflict pair-wise, they are guaranteed to ih@me ClauseTable line, that means
the three clauses do all appear AND-ed in one @R-té the ClauseTable.

| examined if the triple dissecting works for anWNPB and came to the conclusion: No, the triple dissg
algorithm doe®nly work reliably when being used on the ClauseTabH&e a look at the following example of a
general DNF that does not have the special strectuithe ClauseTable:

NN
>>>m
Qo Qo Qo Ro
wwmw
Qo0 Qo Ro Qo
[aBuleXa!
Qo Qo Ro Qo
NN

'F' shall be the only Boolean variable that isdals, B, C and D shall be true. This means thatrwet treat them,
in the 'triple dissecting algorithm' from topic 3a& if they weraot in the SAT CNF.

The triple dissecting algorithm would do the foliogy:

stillToBeChecked is initialized to all true,
StillToBeChecked_New is initialized to all false.

X
Y

A

B

Z C

X, Y and Z are not in conflict. X, Y and Z do not appear in the SAT CNF.
Also: stillToBeChecked[A][B] == true and StillToBeChecked[A][C] == true
=> StillToBeChecked_New[B][C] := true;

A
B
D

, Y and Z are not in conflict. X, Y and Z do not appear in the SAT CNF.
1so: stillToBeChecked[A][B] == true and StillToBeChecked[A][D] == true
=> StillToBeChecked_New[B][D] := true;

X
Y
z
X
A

A
C
D
Y and Z are not in conflict. X, Y and Z do not appear in the SAT CNF.

iso: StillToBeChecked[A]l[C] == true and StillToBeChecked[A][D] == true
=> StillToBeChecked_New[C][D] := true;

X
Y
V4
X
A

SstillToBeChecked is AND-ed with StillToBeChecked_New.
So we get:

SstillToBeChecked[B][C] == true
StillToBeChecked[B] [D] == true
SstillToBeChecked[C][D] == true

B
C
D
Y and Z are not in conflict. X, Y and Z do not appear in the SAT CNF.

iso: StillToBeChecked[B][C] == true and StillToBeChecked[B][D] == true
=> StillToBeChecked_New[C][D] := true;

X
Y
V4
X
A

17

18

StillToBeChecked is AND-ed with StillToBeChecked_New.
So we get:

StillToBeChecked[C][D] == true
As X, Y and Z reached their right-most positionhiritthe ClauseTable and there is a StillToBeChe€kgid] ==
true with D from the last CT column (or corresparglhere: the last variable in the DNF) and C from ¢olumn

before, the triple dissecting algorithm says thatDNF is true. But this is wrong, the DNF is atljuact true as it
has, with the variable F, a 'false'asch AND-term.

| alleged the triple dissecting wouhdt fail if the DNF would have the structure of a Glaliable. But why should
this be the case?

The answer is the following: As we said in topid:3.

n

The ClauseTable has a special structure:

* if a set of n many clauses are all not in confliéth each other, it is guaranteed that there is a
ClauseTable line that contains all those n manysaa.

Watch carefully the DNF that made the triple disisgcalgorithm fail:

NN
>>>m
Qo Qo Qo Ro
wwmw
Qo0 Qo Ro Qo
NnNTNN
Qo0 Qo Ro Qo
NN

Within this DNF, there are the following clauselagpthat are not in conflict among each other:

(A & B), [from DNF Tine 3 and 4]
(A & C©), [from DNF Tine 2 and 4]
(A & D), [from DNF Tine 2 and 3]
(B & €), [from DNF Tine 1 and 4]
(B & D), [from DNF Tine 1 and 3]
(c & D). [from DNF Tine 1 and 2]

By finding all possible combinations of tuples waeghat there are n many clauses that are notifictcamong
each other, where n is the number of DNF ‘colun8ts'in any ClauseTable, thaweuld be a line that contains all
those variables A to D, and the triple dissectilgg@athm wouldnot fail.

Due to the special structure of the ClauseTable DINE triple dissecting algorithm, as | stronglyppase, does
always evaluate the ClauseTable DNF correctly.

3.12 Why my Algorithm might work while others Il

Why should my algorithm work while pllevious attempts from other people failed?

| suppose nobody had the idea of the ClauseTabitaebeAt least | didn't find anything similar whérbriefly
searched the internet using Google.de during Noeer?d13.

As | mentioned, my 'triple dissecting' algorithmn® only then when being used on a 'ClauseTables. TFiple
dissecting' algorithm might fail when being usedgemeral DNFs. In topic 3.11 | showed an exampie you can
'fool' the triple dissecting algorithm when usinigon a DNF that does not have the form of the G&able.
Probably other people already tried to solve gdr2ikd-s but no one handled 'ClauseTable' DNFs.

Even if anyone already implemented the ClauseTablaehow, the rest of his/her solver probably was no
implemented like mine.

Notice that | did not (knowingly) extend any weltdwn algorithm but started from the ground up. 8ssibly |
found an algorithm that has not been tested before.

18

19

4 Complexity
4.1 Three nested Loops

In topic 3.7 you were shown the psecaite of the solver implementation.

The most work is done by

n

foreach (PossibleClause X in PossibleClauses)

[...]
foreach (PossibleClause Y in PossibleClauses)
[...]
foreach (Possibleclause zZ in PossibleClauses)

[...]
}

what is practically implemented as three nestegdod’ou might have a look in the (C++) source ciodihe file
‘ActualSolver.h', function 'Does_CNF_Have_A_Solaf)d There you see:

e The i-loop that points to the possible clause X.

e The i-loop runs from 0 to PossibleClauseNumber - 1.
* The j-loop that points to the possible clause Y.

e The j-loop runs from i+1 to PossibleClauseNumbgr -
* The k-loop that points to the possible clause Z.

e The k-loop runs from j+1 to PossibleClauseNumbkr -

Please note that it would be possible to makehaiet loops, especially j and k, run the full 'rdngie0 to
PossibleClauseNumber-1. So we can, for simplificgtassume that each of the three loops, espegetigh k, do
theoretically all run PossibleClauseNumber manyattens. The practical C++ implementation doesn'ttlis
only to speed up the solving.

4.2 PossibleClauseNumber

PossibleClauseNumber is the countiféérént clauses that can appear in an exact 3-8AT formula
with DigitNumber possible literal indices.

As you can see in the code listing 2.5, the 3-S8lVes implementation uses 3 nested loops to craadestore the
possible clauses. The three nested loops defineavihehe current possible clause the 0/1 digies Burthermore
there are 8 0/1 combinations. This is why the egaant of possible clauses for 3-SAT is:

DigitNumber -2 DigitNumber -1 DigitNumber
PossibleClauseNumber _ Exact3SAT = > (> (>.8))

i=1 j=i+l k=j+1

For exact 2-SAT the solver uses two nested loopsrdate the possible clauses. There are 4 0/1 oatidis.
This is why the exact count of possible clausef8AT is:

DigitNumber -1 DigitNumber
PossibleClauseNumber _ Exact2SAT =(> (> 4))

i=1 j=i+l

19

20

4.3 Total Complexity

In my opinion it does not make muchsgeto find the formula to compute the very exaoplrun count of
the solver. The input has a big influence on thenlmer of loop runs. For example, if the first X daus absent,
the j and k loops are eventually run through. & finst clause X is existing, the j and k loops @ao€ run through at
all. This makes it very hard and probably very csidn to give a formula for the very exact compgxor every
possible SAT CNF.

Instead | want to specify an upper bound for tigerdhm's complexity.

As mentioned in topic 4.1 there are three nestepgdf which each iterates not more than PossibleseiNumber
times. Within the inner-most k loop, there are tealls to the function IsIinConflict(), which mighbdanother
DigitNumber loop iterations. Within the j-loop, tieeis one further call to the function IsinConf{jct

So in total there are never more than

O(PossibleClauseNumber ®* 3* DigitNumber)

- - 3
loop runs, whereby PossibleClauseNumber can bendeated aSO(DlgltNumber), what you can derive from
the formula 'PossibleClauseNumber_Exact3SAT shatvn in the previous topic 4.2.

Further calculated, the worst case complexity efgblynomial solver in O-notation is:
O(DigitNumber ™)

whereby DigitNumber is the count of different laérindices in the 3-SAT CNF to solve. Notice tha nhumber
of clauses in the SAT CNF does not have a sigmfioafluence on the total complexity as the itematcount of
the main loops i, j and k depends from the Digithemonly, not from the ClauseNumber. The same appd the
iteration count of the loop in IsInConflict().

4.4 Possible Speed-Up

Notice that there are improvementskbble that speed up the solver. For instance, ctiks to
IsinConflict() could be pre-computed:

for (int m = 0; m < PossibleClauseNumber; m ++)
for (int n = 0; n < PossibleClauseNumber; n ++)
InConflict[m] [n] = IsInConflict(
PossibleClauses[m],
PossibleClauses[n])

This code could be placed at beginning of the sagbwvecedure. As further permanent calls to IsinGotj are
avoided, we could decrease the total complexity to:

O(DigitNumber °) + O(Possi bleClauseNumber * DigitNumber)
The latter term is the pre-computing. We can sifipphe optimized total complexity to:

O(DigitNumber °) + O(PossibleClauseNumber > * DigitNumber) =
O(DigitNumber °) + O((DigitNumber *)* * DigitNumber) =
O(DigitNumber °) + O(DigitNumber)

20

21

5 Proofs
5.1 ClauseTable Evaluation tells SAT Solvapilit

The following proof shall show thatSAT CNF has at least one solution if, in the cquoesling
ClauseTable, there is at least one ClauseTablemimuse clauses do albt appear in the SAT CNF.

The first observation important for the proof i fiollowing:
It is impossible to satisfy any SAT CNF that conga# (2-SAT) or 8 (3-SAT) or 2*X (X-SAT) clausesnststing
of all 4 or 8 or X possible 0/1 combinations. A 21Sexample:

00--
01--
10--
11--

can not be satisfied, what you realize when youwtryall possible solutions. For none of those jbssolutions
you will manage to satisfy all clauses of the SANIFCat once. For 3-SAT the example would be simifath 8
instead of 4 clauses and 3 0/1 digits instead@fLAligits.

| want to show an example for an unsatisfiable ZFSINF. First | list the 4 clauses that the 2-SATFCN solve
consists of. After that | show one thinkable santafter another, whereby we realize that nonéage thinkable
solutions does really satiséyl clauses of the CNF.

1)

00-- <- satisfied
01-- <- satisfied
10-- <- satisfied
11-- <- not satisfied

00xx <- solution (xx shall mean not specified as unimportant)

2)

00-- <- satisfied
01-- <- satisfied
10-- <- not satisfied
11-- <- satisfied

01xx <- solution

00-- <- satisfied
01-- <- not satisfied
10-- <- satisfied
11-- <- satisfied

10xx <- solution

4)

00-- <- not satisfied
01-- <- satisfied
10-- <- satisfied
11-- <- satisfied

11xx <- solution

But: if there is a ClauseTable line whose clauseslé not existing in the CNF to solve, then those aausust

not be satisfied by the solution of the CNF. Thisams that there is0 set of 4 or 8 clauses that need all be

satisfied! There are maximal 3 or 7 or (2"X)-1 clesi that need to be satisfied, what is do-ableyncase, what
you could verify by trying out all possible solut®according to the scheme just shown. Finallyag#enotice that
all instances of one and the same clause aretat) seieor falseeverywhere within the ClauseTable, even if that
clause appears multiple times within the Claused.abl

21

22

Here is an example that shall visualize this:

IIOO__II’ II_OO_II’ ll__OOII, IIO_O_II’ II_O_OII, IIO__OII

|100__ll, "_OO_II, ll__olll’ llo_o_l', ”—0—1"’ "0——1"

IIOO__II’ ll_Ol_ll’ "——10", llo_l_ll’ II_O_OII, IIO__OII

|100__ll, "_Ol ll, ll__llll’ llo_l_l', ”—0—1"’ "0——1"

IIOl__ll’ ll_lO_ll’ ll__OOII, IIO_O_II’ ll_l_Oll, IIO__OII

|101__ll, "_10_", ll__olll’ llo_o_l', ll_l_l", "0——1"

IIOl__ll’ ll_ll_ll’ "——10", llo_l_ll’ ll_l_Oll, IIO__OII

|101__ll, "_11_", ll__llll’ llo_l_l', ll_l_l", "0——1"

IIlO__ll’ II_OO_II’ ll__OOII, lll_O_II’ II_O_OII, lll__Oll

"i0--", "-00-", "--O01", "1-0-", "-0-1", "1--1" <- imagine all these clauses of this
ClauseTable 1line do NOT need to be
satisfied by the CNF's solution!

"10__”, "_01_", "__10", "1_1_", "_O_O", ul__On

"10__", H_Ol u, "__11n’ "1_1_", "_0_1", ul__ln

"11__”, "_10_", "__00", "1_0_", "_1_0", ul__On

"11__", "_10_", "__01”, "1_0_", "_1_1", ul__ln

"11__”, n_ll n’ "__10", "1_1_", "_1_0", ul__On

"11__", n_ll u, "__11n’ "1_1_", "_1_1", ul__ln

This means that:

10-- does not need to be satisfied, so we canfysflls-, 01--, 11--
-00- does not need to be satisfied, so we carfgadis-, -10-, -11-
--01 does not need to be satisfied, so we carfgai®, --10, --11
1-0- does not need to be satisfied, so we canfsé@t8-, 0-1-, 1-1-
-0-1 does not need to be satisfied, so we carfgadi®, -1-0, -1-1
1--1 does not need to be satisfied, so we canfséti®, 0--1, 1--0

Possible solution: 0110 (the inverse of the sofutibthe marked CT line that it to be satisfied).

So we came to the conclusion that we can satigfi) €dauseTable column's clauses by at least ongicolif
there's at least one clause in each ClauseTahlenodhat needn't to be satisfied. If in each Claabée column,
there's at least one clause that needn't to b&fiedtithere's at least one ClauseTable line whizseses do all not
need to be satisfied, as all clauses of this Clealsie line do not appear in the SAT CNF.

5.2 Non-Conflict Clauses build a ClauseTableeLi

Imagine there are n clauses that dread in conflict with each other. | allege thdtere must be a
ClauseTable line that contains all those n clauses.

Proof:

* If the n clauses are all not in conflict with eaather, all literals of the three clauses are eitteggated or not,
but not both. In particular this applies to theiigls the n clauses might have in common.

* This means that there's at least one assignmensgdkiafies all n clauses at once. 'To satisfyllshaan the
assignment is not in conflict with the digits of alclauses. | call that assignment 'the solutiBat. instance,
"0011" is one solution for the ClauseTable line tegaring the clauses {00--, 0-1-, 0--1, -01-, -0-111}.
Mathematically "there's at least one solution" dBnexpressed by: It_Exists(Solution S) to satisig b
clauses.

* For each possible solution there is exactly oneis&d@able line whose contained clauses are alffisdtisy
that solution. Mathematically this can be expredsedt_Exists(ClauseTable line) for each Solutin

As, according to [2], (It_Exists(A) for all B) arftt_Exists(B) so that C) => (It_Exists(A) so tha), @e can say:
"It_Exists(ClauseTable line) for each Solution &4
"It_Exists(Solution S) to satisfy the n clauses."

=>
"It_Exists(ClauseTable line) to satisfy the n cles8

22

23
5.3 Algorithm detects ClauseTable Lines rejabl

Remember what we said in topic 3.4:

The ClauseTable has a special structure:

* |If a set of n many clauses are all not in confligth each other, it is guaranteed that there is a
ClauseTable line that contains all those n manysga.

If n clauses are not in conflict, this means tHitugles created out of those n clauses contaiy dauses that are
not in conflict pair-wise. Please attend also tdpicl.

| want to show that the algorithm reliably detei€there are enough tuples existing to build a €&lable line. |
want to do this in the form of an induction pro&ut for simplification, instead of handling clausitem a
ClauseTable, | will use Boolean variables from @&i¢D-term containing all those Boolean variables. t8e
algorithm shall detect that the tuples built outls# Boolean variables build the whole AND-terme(#aND-term
stands for one line from the ClauseTable).

First, we show that the algorithm works when reicgj\three tuples, then we add a further Boolearake so that
we get more tuples.

Induction Basisl et's start with a set of three Boolean varialfesB and C} from the AND-term (A & B & C).
Assume we have the tuples:

(A&B), (A&C)and (B & C).

The algorithm was described in topic 3.7 like this:

bool Does_SAT_CNF_Have_A_Solution(argument CNF)
{

ClauseType PossibleClauses[]; // define (reserve memory)
CreatePossibleClauses(PossibleClauses([]); // fill with data (see topic 2.5!)
bool stillToBeChecked[][]; // define (reserve memory)
bool stillToBeChecked_New[][]; // define (reserve memory)

StillToBeChecked[][] = initialize with all true;
foreach (PossibleClause X in PossibleClauses)

if (X is the first clause in a ClauseTable column)
SstillToBeChecked_New[][] = all false;

foreach (PossibleClause Y in PossibleClauses)

foreach (PossibleClause Z in PossibleClauses)

23

24

if (there 1is any StillToBeChecked[A][B] == true with
B a PossibleClause from Tast ClauseTable column and
A a PossibleClause from the ClauseTable column before B)
return CNF_Has_A_Solution;
else
return CNF_Has_No_Solution;

}

So let's use this algorithm on our three exampi@bbes:

X A
Y B
VA C

So we set to true.

The algorithm realized that ther&sllToBeChecked[B][C] == truavith C from the last ClauseTable column and
B from the ClauseTable column before (or, in thiaraple, the last variable in the AND-term, anddhe before).
So the algorithm rightfully says that the SAT CNi§-solvable, what does in the current case meanthieat
algorithm detected that all tuples creatable ouhefthree variables A, B and C do exist.

To prove the algorithm for correctness, | want tansfer the just shown algorithm run into a mathésah
notation. This shall be done as follows:

* Let (X & Y) mean that the Boolean variables X andppear as a tuple, i.e.
* Xand Y do both not appear in the SAT CNF,
e XandY are not in conflict,
* StillToBeChecked[X][Y] == true.
e Let(X&Y)& (X &Z) mean:
e (X &Y) appears as tuple (see point before) AND
* (X & Z) appears as tuple (see point before).

The just shown algorithm run with three tuples t®ndescribed mathematically like this: The algaonitfirst
checks if is true. In the current case, it is, as the erieof the tuples shall mean
that the contained variables are all true and notconflict with each other. So the algorithm sets

,Jwhat does practically lead to the algorithm'spautthat A, B and C appear as
tuples in any combination.

Induction HypothesisThe algorithm still detects reliably if all tuplegist when adding another Boolean variable.

Inductive Step:Now, let's assume we add a further variable, daldle So the algorithm has to process the
following tuples:

(A&B),(A&C),(A&D),(B&C), (B&D), (C&D)
from the AND-term (A & B & C & D). Now an importarguestion isyould the algorithm notice if at least one
of those tuples was missing? In the practical usage scenario, a tuple would Issing if at least one clause
represented by a variable within the tuple wouldtex the SAT CNF to solve. Will the algorithm det this?
When we start the algorithm again, it does theofeihg steps:

The algorithm checks if is true. This is the case. So the algorithm sets
to true.

24

25

Next, the algorithm checks if is true. Also this is the case. So the algoritlets s
to true.

Next, the algorithm checks if is true. Again, this is the case. So the algoritiets
to true.

Now, the pointer to the first variable, X=A moveaseccolumn further, that means X now points to B.

Next, the algorithm checks if is true.

At this point, an important thing happens:
* Remember that the notation (B & C) means:
* B and C do both not appear in the SAT CNF,
e Band C are not in conflict,
* StillToBeChecked[B][C] == true.
This means that the whole expressian ¢ ' canonly be true if
* StillToBeChecked[B][C] == true and
* StillToBeChecked[B][D] == true and
* StillToBeChecked[C][D] == true.
* For instance, this means that (B & C) is only farthrocessed if StillToBeChecked[B][C] == true.

We have set StillToBeChecked[B][C], StillToBeChegdlg][D], StillToBeChecked[C][D] when X has pointed
A, please see previous paragraphs. For instanild,o8eChecked[B][C] could only have become tru€Af & B)
&(A&C)&(B&C).

So we could deploy:

to:

(((A&B) & (A&C) & (B&QO) &) &
(((A&B) & (A&D) & (B &D)) &) &
(((A&QC) &(A&D) & (C&D)) &)

You can see that the algorithm checked all tuples
(A&B),(A&C),(A&D),(B&C), (B&D), (C&D),
as required.

Notice that all those tuples are AND-ed, that mea&msly one tuple wouldnot exist the whole formula becomes
false, as we expected.

When you would add further variables, e.g. E, Bn@ so on, nothing changes abth@way the algorithm checks

if sufficiently many tuples are existing to buildCdauseTable line. There would be more steps napgdsut the
algorithm still functions correctly.

25

26
6 Meaning of the Algorithm

If the polynomial SAT-solving algonthdescribed in this document should turn out todadly correct, it
would solve the P-NP-Problem (one of the 'MilleimiBroblems") by proving P = NP.

7 Acknowledgements

| thank the reader for his/her intéiasmy work. If you do not understand anything abmy algorithm,
feel free to mail me so that | can improve the doent(s) or source code. Unfortunately | could neg tihird
party beta testers' before publishing as thoselpaopuld possibly had stolen my ideas. It is froig interest for
me to make the reader understand my algorithmwsmuld really appreciate some feedback.

8 Summary

This document explained an algorithiait is supposed to decide in polynomial time aratepf an exact
2- or 3-SAT formula has a solution or not.

9 References
9.1 General Literature

* Michael R. Garey and David S. Johnson, Computeis$ iatractability: A guide to the theory of NP-
completeness, W. H. Freeman & Co., 1979.

* Christos H. Papadimitriou, Computational complexitgdison-Wesley, 1994.

* Uwe Schoning, Theoretische Informatik - kurz gefaBgbl. Institut Wissenschaftsverlag, 1992, ISBMARL-
15641-4.

* Ingo Wegener, Theoretische Informatik - eine alfponenorientierte Einfihrung (3. Auflage), B. G. beer
Verlag / GWV Fachverlage GmbH, Wiesbaden 2005, 1SB3851-0033-5.

* Volker Heun, Grundlegende Algorithmen (2. AuflagEjiedr. Vieweg & Sohn Verlag / GWV Fachverlage
GmbH, Wiesbaden 2003, ISBN 3-528-13140-3.

* Daniel Grieser, Mathematisches Problemlésen undeBsm, Springer Fachmedien Wiesbaden 2013, ISBN

978-3-8348-2459-2.
* Bronstein, Semendjajew, Musiol, Mihling, Tascherbder Mathematik, Verlag Harri Deutsch, Thun und
Frankfurt am Main 2000, ISBN 3-8171-2015-X.
* http://en.wikipedia.org/wiki/3-SAT (accessed 201B323).

9.2 Concrete References

e [1] http://www.ti.inf.ethz.ch/ew/courses/extremal@emy.pdf (accessed 2013-12-08).
* [2] http://de.wikipedia.org/wiki/Schlussfolgerungacessed 2013-12-08, English version also exissieg),
‘other languages' at left edge of webpage).

26

