
The double-padlock problem: is secure classical information transmission possible
without key exchange?

James M. Chappell1, ∗ and Derek Abbott1

1School of Electrical and Electronic Engineering, University of Adelaide, SA 5005, Australia
(Dated: December 31, 2012)

The idealized Kish-Sethuraman (KS) cipher is theoretically known to offer perfect security through
a classical information channel. However, realization of the protocol is hitherto an open problem,
as the required mathematical operators have not been identified in the previous literature. A
mechanical analogy of this protocol can be seen as sending a message in a box using two padlocks;
one locked by the Sender and the other locked by the Receiver, so that theoretically the message
remains secure at all times. We seek a mathematical representation of this process, considering
that it would be very unusual if there was a physical process with no mathematical description and
indeed we find a solution within a four dimensional Clifford algebra. The significance of finding a
mathematical description that describes the protocol, is that it is a possible step toward a physical
realization having benefits in increased security with reduced complexity.
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Various schemes exist to maintain secure information
channels that exploit physical phenomena such as quan-
tum effects [1, 2] (eg. indeterminacy, entanglement) or
even classical chaos [2–4]. All existing schemes involve,
one way or another, the sharing or exchange of a crypto-
graphic key. The open question we address in this paper
is: can secure transmission be achieved without any form
of key exchange? And if so, which physical property of
nature can be exploited to achieve this?

The Kish-Sethuraman cipher (KS-cipher) is an ideal-
ized protocol that achieves the goal of avoiding key ex-
change [5–7]. However, this protocol has not yet been
realized, as the appropriate physical property, with a
supporting mathematical description, has not yet been
identified. In this paper we show that classical opera-
tions on a Clifford space remarkably possess the required
mathematical properties and we develop an appropriate
ansatz based on Clifford algebra.

First, let us briefly review how the Kish-Sethuraman
cipher protocol works, using a mechanical analogy. Sup-
pose Bob wishes to transmit a written message to Alice;
Bob hides the message in a box that he securely padlocks
before sending it to Alice. After receiving the box, Alice
adds a second padlock and sends the box back to Bob.
Then Bob unlocks his padlock, leaving the box still se-
cured by Alice’s lock, and sends it back to Alice who can
then remove her lock, open the box and read the message
as shown in Fig. 1.

This KS-cipher protocol is perfectly secure because
both Bob and Alice keep their keys undisclosed so that at
all times the box is locked by at least one padlock, thus
no information is leaked or shared [6]. Hence we can say
that in the physical world, a completely secure classical
protocol is conceptually possible. In practice, a physical
box can be broken, however, what is important to our
analysis is the security of the lock protocol. This phys-
ical example is clearly classical and so we would expect

FIG. 1: The double padlock protocol of Kish and Sethuraman.
Bob firstly locks the box and sends it to Alice. Then, once
received, Alice also padlocks the box with a second lock and
sends it back to Bob. Finally, Bob unlocks his padlock, and
sends the box back to Alice who can then remove her lock,
open the box, and read the message. The message appears
perfectly secure because at all times it has been secured by
at least one lock.

that there would be a mathematical model to describe
this process. That is, it would seem strange if there was
such a simple physical scenario for which there was no
counterpart in the mathematical world and so would run
counter to general trend of the success of mathematics
in describing the physical world. This then underlies the
motivation for expecting that a mathematical description
might indeed be feasible.

The significance of a mathematical protocol simulating
the double-padlock problem is that it would potentially
be the underpinnings of a relatively simple method of
avoiding key exchange for secure information transmis-
sion.

Firstly we note that the ordering of the padlocks com-
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mutes. That is Alice and Bob can take off or add their
padlock in any order, which is the primary aspect of the
protocol that permits it to work and hence we are looking
to find two mathematical operations that can be applied
by Alice and Bob that commute. We can immediately
identify an example of this in the case of two-dimensional
rotations.

For example, the message Bob wants to secretly send
could be the value θ. Bob ‘hides’ θ by adding a random
angle φ1 (his ‘key’) to it and sends it to Alice. Then Al-
ice adds another random angle φ2 (her ‘key’) and sends
it back to Bob. Then Bob undoes his secret rotation
φ1 and returns the message to Alice. Then Alice un-
does her rotation φ2 and recovers the original value of
θ. These operations are most elegantly analyzed in two-
dimensional geometric algebra, where we have a message
vector m = m1e1 +m2e2, using e1 and e2 as orthogonal
basis elements and producing the bivector iota ι = e1e2.
Acting on the message vector with a rotor R = eιφ/2

produces a rotated vector

m′ = RmR̃ = eιφ/2me−ιφ/2, (1)

where m′ = m′1e1 + m′2e2 and where we have defined
the reversion operation, which inverts the order of all
algebraic products, that is, R̃ = e−ιφ/2. Therefore φ in
this case represents the private key and rotates the vector
m by a clockwise angle φ. In two dimensions, we can
combine the two sides of the rotation operator because
ι anticommutes with both e1 and e2 within the vector
m, so that m′ = eιφm. Refer to the Appendix for a
brief summary of these operations that utilize geometric
algebra. Therefore, after the operations by Alice and Bob
we find

mfinal = R̃AR̃BRARBm = R̃ARAR̃BRBm = m, (2)

where because the rotation operators commute and
R̃ARA = R̃BRB = 1, we recover the initial message.
The message (the angle with the e1 axis say) can be re-
covered from cos θ = m · e1/|m|, where the vector length

|m| =
√
m2.

While this process indeed hides the message at each
stage, an eavesdropper, Eve, by comparing the succes-
sive intermediate transmissions, can deduce the inter-
mediate rotations and hence discover the two keys (φ1

and φ2) thereby unlocking the message. That is, inter-
cepting two consecutive transmissions, which consist of
two-dimensional vectors, Eve can easily calculate the ro-
tation angle between them from m2 = eιφm1, which can
be rearranged to give eιφ = m2m

−1
1 . The inverse of a

vector being easily calculated when it is represented in
geometric algebra, as shown in the Appendix.

In an attempt to circumvent the vulnerability of two-
dimensional rotations, we can consider more general op-
erators using two-dimensional multivectors

M = a+ v + ιb, (3)

where a and b are scalars, ι is the bivector and a pla-
nar vector v = v1e1 + v2e2. That is

∧
<2 is the exterior

algebra of <2 which produces the space of multivectors
<⊕<2⊕

∧2<2, a four-dimensional real vector space de-
noted by Cl2,0(<). We now have the encryption process

mfinal = M†AM
†
BMAMBmM†BM

†
AMBMA, (4)

where the † operation is an inverse operation, not nec-
essarily the reversion operation, such that M†AMA =

M†BMB = 1. The first message sent by Bob to Al-

ice is then m1 = MBmM†B , who then returns m2 =

MAMBmM†BM
†
A which Bob then sends back to Alice

as m3 = M†BMAMBmM†BM
†
AMB , who can then decode

the message as shown in Eq. (4).
So, seeking commuting operators MA and MB , that is

MAMB −MBMA = 0 we require

(a+ v + ιb) (c+ w + ιd)− (c+ w + ιd) (a+ v + ιb)

= 2v ∧w − 2ιdv + 2ιbw = 0. (5)

We therefore require v and w to be parallel, and so we
need to select a preferred direction for the protocol during
handshaking, say the direction e1. Hence Alice and Bob
can utilize multivectors

MA = a+ ve1 + ιv , MB = b+ we1 + ιw (6)

that when normalized can be written as MA = eve1+ιv

and MB = ewe1+ιw, and defining M†A = e−ve1−ιv and

M†B = e−we1−ιw, we have MAM
†
A = MBM

†
B = 1. The

one degree of freedom in the operator is insufficient to
ensure security of the two-dimensional message vector
and so we need to seek a solution in higher dimensions.

In three dimensions, we have a message vector m =
m1e1 +m2e2 +m3e3 and define the trivector i = e1e2e3

that commutes with all variables with i2 = (e1e2e3)2 =
−1.

We can write general three-dimensional multivector
operators for Alice and Bob as

MA = a+ v + ir + ib , MB = c+ w + is + id (7)

where v and r are three-vectors. This is the space of
multivectors <⊕<3⊕

∧2<3⊕
∧3<3, an eight-dimensional

real vector space denoted by Cl3,0(<). We now seek MA

and MB to be commuting in order to use the procedure
in Eq. (4), requiring

0 = MAMB −MBMA (8)

= 2(v ∧w − r ∧ s) + 2i(v ∧ s + r ∧w),

and to make this commutator vanish we can select w =
vι = vie3 and s = rι = rie3, with the vectors now
planar in order to anticommute with e3, so we define
v12 = v1e1 + v2e2. We could have selected a general
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direction, in place of the direction e3, however this di-
rection needs to be shared publicly, and so without loss
of generality we can select the e3 direction. That is, we
have the commuting operators

MA = (a+ v12 + e3v12 + ib) = eiφ1e(1+e3)x12 (9)

MB = (c+ w12 + e3w12 + id) = eiφ2e(1+e3)y12 ,

which we have written in an exponential form to guaran-
tee normalization with planar vectors x12 and y12, with
the encrypted message for Alice, for example, given by

m′ = MAmM†A. (10)

However, we can see that the leading phase term in the
operator commutes through the message vector m and so
leaves only two degrees of freedom available to encrypt
the message, insufficient to stop an eavesdropper.

This can also be understood through the example of
general three dimensional rotations. In this case we ro-
tate a unit vector (with two degrees of freedom) through
an action by the rotor (consisting of a rotation axis with
two degrees of freedom) and a rotation angle giving a
total of three degrees of freedom. We can see that with
the knowledge of the start and final vectors, we can not
determine the full details of the rotor. However in three
dimensions rotations do not commute and so it appears
that we need to implement some form of rotation within
a higher four dimensional space.

Hence, we need to explore if the scheme can work in
four dimensions. In four dimensions we have the space of
multivectors <⊕<4⊕

∧2<4⊕
∧3<3⊕

∧4<4, a sixteen-
dimensional real vector space denoted by Cl4,0(<). We
select a message four-vector m = m1e1 +m2e2 +m3e3 +
m4e4 and we define the quadvector I = e1e2e3e4 that
anticommutes with all vectors and has a positive square.
Now, requiring MAMB = MBMA, after some algebra de-
tailed in the Appendix, we find four types of commuting
multivectors, and the type describing pure rotations in
four dimensions produce the commuting operators

MA = a+ e4(v − Iv) , MB = b+ e4(p + Ip), (11)

where v,p are four-vectors. We thus have four degrees
of freedom for the private keys for both Alice and Bob
respectively, as the values of a and b are fixed by the
requirement of normalization. In order to reveal more
clearly that these operators lie on the even subalgebra,
we can write the operator for Alice, for example, as

MA = (a+ v4) + e4~v + i~v + Iv4, (12)

where v = ~v + v4e4. Because the operators lie on the
even subalgebra we can encrypt the messages using the
reversion operation, with

m′ = MmM̃, (13)

which maps from unit four-vectors to unit four-vectors.
Hence Eve needs to discover the private key v with
four degrees of freedom, whereas m′ and m are the in-
tercepted intermediate message unit four-vectors having
three degrees of freedom. Hence we find a similar sit-
uation to that found for rotations in three dimensions
discussed earlier, where the rotation axis cannot be de-
termined given the initial and final vectors, but this time
in four dimensions with an unknown rotation plane.

In this paper, for the first time, we provide a
set of working mathematical operators for the Kish-
Sethuraman (KS) cipher that is a classically secure proto-
col. Our solution requires the use of the space of Clifford
multivectors, we find a viable solution in four dimensional
space, and future exploration in dimensions higher than
four may be of fundamental interest.

The encoding of these multidimensional operations
onto real signals remains an open question for further
study, and it is worth noting that various multidimen-
sional spaces are already exploited by engineers in stan-
dard communications theory, for example see [8].

Whilst it is of interest for future work to explore how
to physically encode higher dimensional rotations on a
wireless carrier signal, the scheme we have developed has
wider implications. For example, Klappenecker has con-
jectured a connection between a mathematical realization
of the KS-cipher protocol and the P versus NP problem
in computer science [7]. Thus it may be of interest to
explore implications of the KS operations developed in
this paper on the P versus NP problem.

If our mathematical protocol can be encoded on a wire-
less carrier or fiber optic signal, a benefit would be secure
communication without key exchange and the promise of
a relatively simple physical realization.

APPENDIX

Geometric algebra representation of vectors

In order to represent the three independent degrees of
freedom of space, Clifford defined an associative algebra
consisting of three elements e1, e2 and e3, with the prop-
erties

e2
1 = e2

2 = e2
3 = 1 (14)

but with each element anticommuting, that is ejek =
−ekej , for j 6= k. We also define the trivector i = e1e2e3,
which allows us to write e2e3 = ie1, e3e1 = ie2 and
e1e2 = ie3.

Now, given two vectors a = a1e1 + a2e2 + a3e3 and
b = b1e1 + b2e2 + b3e3, using the distributive law for
multiplication over addition [9], as assumed for an alge-
braic field, we find their product

ab = (a1e1 + a2e2 + a3e3)(b1e1 + b2e2 + b3e3) (15)
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= a1b1 + a2b2 + a3b3 + (a2b3 − a3b2)e2e3

+(a3b1 − a1b3)e3e1 + (a1b2 − a2b1)e1e2,

where we have used the elementary properties of e1, e2, e3

defined in Eq. (14). Recognizing the dot and wedge prod-
ucts, we can write

ab = a · b + a ∧ b. (16)

We can see from Eq. (15), that the square of a vector
a2 = a·a = a2

1+a2
2+a2

3, becomes a scalar quantity. Hence

the Pythagorean length of a vector is simply |a| =
√
a2,

and so we can find the inverse vector

a−1 =
a

a2
. (17)

These results can easily be adapted for a space of any
number of dimensions.

Derivation of commuting operators in 4D

We can write a general multivector in four dimensions
as

MA = v+Iw+e4 (x + Iy) = x4 +v+e4~x−i~y+Iw−y4I
(18)

thus forming the complete set of scalar, vector, bivector,
trivector and quadvector components, where ~x and ~y are
three-vectors and v, w, x, y are four vectors. We also
define similarly MB = p + Iq + e4 (r + Is).

For two four dimensional multivector operators MA

andMB we have the grade selected by brackets 〈〉g, where
g is the multivector grade. Defining the commutator as
C = MAMB −MBMA, we find

〈C〉0 = 0 (19)

〈C〉1 = −~xp4 + v4~r − i~v ∧ ~s− i~y ∧ ~p
+e4(~x · ~p− ~v · ~r + w4s4 − y4q4)

〈C〉2 = 2(v ∧ p−w ∧ q− ~x ∧ ~r − ~y ∧ ~s
+I(~x ∧ ~s+ ~y ∧ ~r))

〈C〉3 = I~vs4 − I~sv4 − i ~w · ~r + I~rw4 − e4 ~w ∧ ~s+ i~x · ~q
−I~xq4 + I~yp4 − I~py4 − e4~y ∧ ~q

〈C〉4 = 2I(w · p− v · q).

By inspection of the quadvector and bivector terms we
identify a solution v = ±w and p = ±q with the con-
dition −~x ∧ ~r − ~y ∧ ~s = 0 and I(~x ∧ ~s + ~y ∧ ~r) = 0

that implies ~x = ±~y and ~r = ∓~s. We then will find
that the vector and trivector conditions are satisfied as
well provided x = −v′ and r = p, where v′ = e4ve4 =
−v1e1−v2e2−v3e3 +v4e4. This then gives two commut-
ing multivectors

MA = a+ v + Iv − (v + Iv)e4 = a+ (v + Iv)(1− e4)

MB = c+ p + Ip + e4(p + Ip) = c+ (1 + e4)(p + Ip).
From the bivector condition, we could have selected the
alternative x = y = 0, that also leads to commuting
multivectors

MA = a+ v + Iv , MB = c+ p + Ip. (20)

A third type can be found as

MA = 1+(1+e4)(~v+sI) , MB = 1+(1+e4)(~w+tI). (21)

Alternatively selecting q = w = 0 from the quadvector
condition, we find the commuting operators

MA = b+ e4(x− Ix) , MB = d+ e4(r + Ir). (22)

These last set of operators are special in that they lie in
the even subalgebra and so describe pure rotations, that
is, will rotate a unit four-vector to a unit four-vector.

∗ Electronic address: james.m.chappell@adelaide.edu.au

[1] H. Buhrman, M. Christandl, and C. Schaffner, Phys. Rev.
Lett. 109, 160501 (2012).

[2] H. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503
(2012).

[3] R. Nguimdo, P. Colet, L. Larger, and L. Pesquera, Phys.
Rev. Lett. 107, 34103 (2011).

[4] I. Kanter, E. Kopelowitz, and W. Kinzel, Phys. Rev. Lett.
101, 84102 (2008).

[5] L. B. Kish and S. Sethuraman, Fluctuation and Noise Let-
ters 4, 1 (2004).

[6] L. B. Kish, S. Sethuraman, and P. Heszler, AIP Confer-
ence Proceedings 800, 193 (2005).

[7] A. Klappenecker, Fluctuation and Noise Letters 4, 25
(2004).

[8] M. El-Hajjar, O. Alamri, J. Wang, S. Zummo, and
L. Hanzo, IEEE Trans. Wireless Comm. 8, 3335 (2009).

[9] C. J. L. Doran and A. N. Lasenby, Geometric Algebra for
Physicists (Cambridge Univ Pr, Cambridge, 2003).


