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Abstract

The self-gravitational correction to a localized spherically symmetric static energy distribution is obtained

from an upgraded Newtonian model which is energetically self-consistent, and is also obtained from the

Birkhoff-theorem extension of the unique “Newtonian” form of the free-space Schwarzschild metric into

the interior region of its self-gravitationally corrected source. The two approaches yield identical results,

which include a strict prohibition on the gravitational redshift factor ever being other than finite, real and

positive. Consequently, the self-gravitationally corrected energy within a sphere of radius r is bounded by

r times the “Planck force”, namely the fourth power of c divided by G. That energy bound rules out any

physical singularity at the Schwarzschild radius, and it also cuts off the mass deviation of any interacting

quantum virtual particle at the Planck mass. Because quantum uncertainty makes the minimum energy

of a quantum field infinite, such a field’s self-gravitationally corrected energy essentially attains the Planck

force times that field’s boundary radius r. Roughly estimating r as c times the age of the universe yields

a “dark energy” density of 1.7 joules per cubic kilometer. But if r is put to the Planck length appropriate

to the birth of the universe, that energy density changes to the enormous Planck unit value, which could

quite conceivably drive primordial “inflation”. The density of “dark energy” decreases as the universe

expands, but more slowly than the density of ordinary matter decreases.

Self-gravitational correction of spherically symmetric localized static energy

A common tacit idealization made in non-gravitational theoretical physics is to ignore self-gravitational
corrections as being vastly too small to matter. The ratio of the electrostatic to the gravitational attraction
of electron to proton is a great many orders of magnitude, for example. But the uncertainty principle
of the quantum theory can manifest a disconcerting predilection to throw up infinite energies, and if we
understandably quail at abandoning so firmly established a principle, it behooves us to at least try to ponder
its self-gravitational implications. Even in gravity theory itself , well-known solutions for source-free regions,
such as that of Schwarzschild, exhibit troubling behavior near an idealized gravitational source which is
sufficiently strong and compact. That raises the question of whether we have adequately modeled how
self-gravitational corrections might modify so strong and compact an idealized gravitational source.

Here we essay a simplified inroad into self-gravitationally correcting localized energies that are obtained
or postulated under the tacit assumption that G = 0. To make exact calculation readily feasible, we re-
strict the localized energies actually treated to be spherically symmetric and static. Such models turn out
to be readily formally solvable in a Newtonian gravitational framework which has been upgraded through
incorporation of the concept that energy (not mass) is to be self-consistently regarded as gravity’s source,
notwithstanding the complication that gravity unavoidably alters this selfsame energy. The consequences of
this relatively straightforward energetically self-consistent Newtonian approach are presented in the remain-
der of this section. In the next section we show that a somewhat less straightforward metric-based general
relativistic approach yields identical results, albeit that latter approach manifests especially transparently,
due to its inherent metric nature, the fact that the Schwarzschild singularity isn’t physically realizable.

Starting from a given spherically symmetric static cumulative energy distribution EG=0(r) that is a feature
of a gravitationally bereft (i.e., G = 0) “world”, our goal is to calculate its self-gravitational modification

EG(r) that is intended to apply to a more “realistic” world where G > 0, but we don’t go so far as to permit
EG(r) to become nonstatic. In view of its cumulative nature, we assume that EG=0(r) vanishes at r = 0,
i.e.,

EG=0(r = 0) = 0, (1a)

and that it has nonnegative derivative,
E′

G=0(r) ≥ 0. (1b)

We shall also implicitly assume that EG=0(r) is a physically realistic localized cumulative energy distribution,
namely that it satisfies E′

G=0(r) = 0 for all r which are greater than some positive bounding radius R. We
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also note here that E′

G=0(r) is, of course, closely related to the nonnegative spherically symmetric energy

density TG=0(r) via,
E′

G=0(r) = 4πr2TG=0(r). (1c)

Now if it were the case that we actually had EG(r) in hand , we could calculate [EG(r + dr) − EG(r)],
namely the gravitationally-modified energy of the immediately enveloping infinitesimally-thick spherical shell,
by proceeding to discount from that shell’s original energy E′

G=0(r)dr the negative Newtonian gravitational

work −[GEG(r)/(c4r)]E′

G=0(r)dr which is required to assemble it at radius r in the presence of the attractive

gravitational field produced by EG(r). Assembly of that infinitesimally-thick shell at radius r also entails
negative Newtonian gravitational work done by the shell’s constituents on each other , but that work is of
second order in dr, and therefore can safely be ignored here. Thus we obtain,

EG(r + dr) − EG(r) = (1 − [GEG(r)/(c4r)])E′

G=0(r)dr. (2a)

In addition, the fact that EG=0(r = 0) vanishes eliminates any energy carry-through in the degenerate r = 0
special case, and leaves EG(r = 0) with no option but to vanish as well, i.e.,

EG(r = 0) = 0. (2b)

From Eq. (2a) we see that the physical core of the calculation is the dimensionless Newtonian gravita-

tional energy-reduction factor (1− [GEG(r)/(c4r)]) at radius r, which upon multiplication into the radius-r
infinitesimally-thick enveloping shell’s original energy E′

G=0(r)dr, yields that shell’s gravitationally-modified

energy [EG(r + dr) − EG(r)] = E′

G(r)dr.
In the limit dr → 0, Eq. (2a) becomes the linear inhomogeneous first-order differential equation,

E′

G(r) + (G/c4)(E′

G=0(r)/r)EG(r) = E′

G=0(r), (2c)

for EG(r), with Eq. (2b) as its single boundary condition. Eq. (2c) is readily reduced to quadrature after

multiplying it through by the integrating factor e
(G/c4)

∫ r

r0
(E′

G=0(r
′)/r′)dr′

, which, together with Eq. (2b),
yields,

EG(r)e
(G/c4)

∫ r

r0
(E′

G=0(r
′)/r′)dr′

=
∫ r

0
dr′ E′

G=0(r
′)e

(G/c4)
∫ r′

r0
(E′

G=0(r
′′)/r′′)dr′′

, (2d)

a result which is more simply written as,

EG(r) =
∫ r

0
dr′ E′

G=0(r
′)e

−(G/c4)
∫ r

r′
(E′

G=0(r
′′)/r′′)dr′′

. (2e)

In light of Eq. (1a) we obtain from Eq. (2e) that,

lim
G→0

EG(r) =
∫ r

0
dr′ E′

G=0(r
′) = EG=0(r), (2f)

and in light of both Eqs. (1b) and (1a), we obtain from Eq. (2e) that,

0 ≤ EG(r) ≤
∫ r

0
dr′ E′

G=0(r
′) = EG=0(r). (2g)

The results given by Eqs. (2f) and (2g) are entirely expected, but in addition to these there lies concealed
in the deceptively humdrum form for EG(r) which is given by Eq. (2e) a startling physical feature. To expose
that property of EG(r) to the light of day, we note that the integrand on the right-hand side of Eq. (2e)
comes remarkably close to being a perfect differential. Therefore EG(r) can be rewritten,

EG(r) = (c4/G)
∫ r

0
dr′ r′d

(
e
−(G/c4)

∫ r

r′
(E′

G=0(r
′′)/r′′)dr′′

)
/dr′, (3a)

which neatly lends itself to integration by parts, with the result,

EG(r) = (c4r/G)

[
1 − (1/r)

∫ r

0
dr′ e

−(G/c4)
∫ r

r′
(E′

G=0(r
′′)/r′′)dr′′

]
. (3b)

In conjunction with Eq. (1b), Eq. (3b) implies that,

0 ≤ EG(r) < (c4r/G), (3c)
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which can be combined with Eq. (2g) to yield,

0 ≤ EG(r) ≤ min
[
(c4r/G), EG=0(r)

]
. (3d)

We therefore have the fascinating result that regardless of how large the cumulative energy EG=0(r) may be
before it is self-gravitationally corrected, its self-gravitational modification EG(r) cannot attain the “Planck
force” (c4/G) times the radius r of the sphere which encloses it. With this we are at long last in possession
of a potent instrument with which to confront the pervasive energy infinities that have for so long been the
quantum theory’s dispiriting affront to physical understanding. Nor does the “Schwarzschild singularity”
seem so troubling in the soothing light of Eq. (3c), which makes it very clear that arbitrarily strong and
compact gravitational sources simply do not exist.

Although the “Planck force times radius” localized-energy upper bound of Eq. (3c) may seem unfamiliar,
it is straightforward to recast it into an equivalent form to which which we can readily relate, namely,

1 ≥ (1 − [GEG(r)/(c4r)]) > 0, (3e)

i.e., the dimensionless Newtonian gravitational energy-reduction factor that appears in Eq. (2a) is always

real and positive. Also equivalently, the inverse of the Newtonian gravitational energy-reduction factor,
namely the dimensionless Newtonian gravitational redshift factor , is always finite, real and positive. Those
statements in fact transcend this particular calculation and are endowed with universal validity , having been
repeatedly robustly verified for the general relativistic gravitational redshift factor under the most extreme
conditions of gravitational collapse [1]. Therefore we will in the sections below be applying Eqs. (3c) and
(3b) with confidence in a broad-brush way to some of the self-gravitationally related issues that naturally
arise in gravity theory itself, quantum field theory and even cosmology.

Before doing so, however, we close this section with the technical development of the asymptotic expansion
of EG(r) when EG=0(r) greatly exceeds the “Planck force times radius” upper bound (c4r/G) for EG(r); that
asymptotic expansion will serve as a useful reminder of the basic logic which needs to be applied in dealing
with the energy infinities that can result from quantum theory considerations.

To develop this asymptotic expansion of EG(r) from Eq. (3b), it is clearly useful to define,

κ(r)
def
= (G/c4)E′

G=0(r)/r = 4π(G/c4)rTG=0(r), (4a)

where the second equality follows from Eq. (1c). Using κ(r), Eq. (3b) reads,

EG(r) = (c4r/G)

[
1 − (1/r)

∫ r

0
dr′ e

−

∫ r

r′
κ(r′′)dr′′

]
. (4b)

Since κ(r′′) ≥ 0, the exponential integrand of the integral over the variable r′ obviously has its maximum
value of unity at r′ = r. Our basic strategy will therefore be to expand the argument of that exponential
(which itself is an integral over the variable r′′) around that point r′ = r. To facilitate this, we change

variable from r′ to the dimensionless variable u
def
= (r − r′)κ(r), after which we can expand the argument of

that exponential in powers of u. The change of integration variable from r′ to u causes Eq. (4b) to read,

EG(r) = (c4r/G)

[
1 − (1/(rκ(r)))

∫ rκ(r)

0
du e

∫ r−(u/κ(r))

r
κ(r′′)dr′′

]
. (4c)

Expanding the argument of the exponential in powers of u formally produces,

∫ r−(u/κ(r))

r
κ(r′′)dr′′ = −u +

∞∑

j=2

(−1)j(u/κ(r))jκ(j−1)(r)/j! . (4d)

Putting this formal expansion result into the exponential produces,

e

∫ r−(u/κ(r))

r
κ(r′′)dr′′

= e−u e

∑
∞

j=2
(−1)j(u/κ(r))jκ(j−1)(r)/j!

, (4e)

and we now proceed to expand the second exponential on the right-hand side of Eq. (4e),

e

∑
∞

j=2
(−1)j(u/κ(r))jκ(j−1)(r)/j!

= 1 +
∞∑

n=1

(∑
∞

j=2(−1)j(u/κ(r))jκ(j−1)(r)/j!
)n

/n! . (4f)
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We now intend to substitute the right-hand side of Eq. (4f) into Eq. (4e), and then to substitute the
right-hand side of Eq. (4e) into Eq. (4c). At this point we recall that we are interested in the asymptotic form
of Eq. (4c) when EG=0(r) ≫ (c4r/G). That state of affairs can be expected to be coincident with the upper
integration limit rκ(r) of the dimensionless u-integration in Eq. (4c) being very much greater than unity.
Therefore, together with the substitutions mentioned in the first sentence of this paragraph, we shall as well
change the upper limit of the dimensionless u-integration in Eq. (4c) to ∞. That change, together with the
expansions given by Eqs. (4f) and (4e), enables us to analytically evaluate Eq. (4c) on a term-by-term basis
by simply applying the elementary formula,

∫
∞

0
du e−u uk = k! . (4g)

Therefore, the first few terms of the desired asymptotic expansion of EG(r) when rκ(r) ≫ 1 are given by,

EG(r) ∼ (c4r/G)
[
1 − (1/(rκ(r)))

(
1 + κ′(r)/(κ(r))2 − κ′′(r)/(κ(r))3 + 3(κ′(r))2/(κ(r))4 + · · ·

)]
. (4h)

In the case that the uncorrected initial energy density TG=0(r) happens to be constant in r, we have that,

κ′(r)/(κ(r))2 = 1/(rκ(r)) = 1/(4π(G/c4)r2TG=0), (4i)

and also that κ′′(r) = 0. Therefore in the case of constant uncorrected initial energy density TG=0 we have
that when rκ(r) ≫ 1,

EG(r) ∼ (c4r/G)
[
1 − (1/(rκ(r))) − (1/(rκ(r)))2 − 3(1/(rκ(r)))3 + · · ·

]
, (4j)

where,
rκ(r) = 4π(G/c4)r2TG=0 = 3(G/(c4r))EG=0(r). (4k)

Self-gravitational correction from a general relativistic metric

We have strongly emphasized that the physical core of the energetically self-consistent Newtonian self-
gravitational correction of spherically-symmetric static cumulative energy distributions lies with the dimen-
sionless Newtonian gravitational energy-reduction factor (1 − [GEG(r)/(c4r)]) of Eqs. (2a) and (3e). Now a
metric, which is in effect a system’s general relativistic gravitational potential, also provides a dimensionless
gravitational energy-reduction factor. For a spherically-symmetric static system that metric gravitational
energy-reduction factor is (g00(r))

1
2 , which is the inverse of the metric’s gravitational time-dilation or red-

shift factor (g00(r))
− 1

2 [2]. Such a spherically-symmetric static system is of course itself described by a
self-gravitationally corrected cumulative energy distribution,

EG(r) = 4π
∫ r

0
(r′)2TG(r′)dr′, (5a)

where TG(r) is its corresponding self-gravitationally corrected spherically-symmetric static energy density .
Now TG(r) would be expected to be the energy density of a localized system, i.e., TG(r) = 0 for all r > R,
where R is that localized system’s bounding radius. Thus if we denote EG(R) as simply EG, we see that
EG(r) = EG for all r ≥ R, and, in the free-space region, namely r > R, this system’s metric will be a free-

space Schwarzschild metric that has the self-gravitationally corrected energy constant EG. One well-known
representation of such a free-space Schwarzschild metric with self-gravitationally corrected energy constant
EG is its “isotropic” form [3],

(cdτ)2 =
(

1− 1
2
[GEG/(c4ρ)]

1+ 1
2
[GEG/(c4ρ)]

)2

(cdt)2 − (1+ 1
2
[GEG/(c4ρ)])

4
(
(dρ)2 + (ρdθ)2 + (ρ sin θdφ)2

)
. (5b)

Unfortunately, the gravitational energy-reduction factor (g00(ρ))
1
2 of this Eq. (5b) “isotropic” form of the

Schwarzschild metric with energy constant EG obviously fails to match the corresponding Newtonian grav-
itational energy-reduction factor (1 − [GEG/(c4ρ)]). It turns out, however, that the simple change of radial

coordinate variable r
def
= ρ + 1

2 [GEG/c4] in the Eq. (5b) “isotropic” form of the free-space Schwarzschild
metric produces the unique desired form of the free-space Schwarzschild metric, namely,
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(cdτ)2 = (1−[GEG/(c4r)])
2(cdt)2 − (1− 1

2
[GEG/(c4r)])

−4(dr)2 − (1− 1
2
[GEG/(c4r)])

−2
(
(rdθ)2 + (r sin θdφ)2

)
, (5c)

that actually satisfies (g00(r))
1
2 = (1− [GEG/(c4r)]). It is therefore appropriate to refer to the Eq. (5c) form

of the free-space Schwarzschild metric as its “Newtonian” form.
Next we wish to extend this “Newtonian” form of the free-space Schwarzschild metric into the interior

region r < R of its source, where it is no longer necessarily the case that EG(r) is equal to the constant

EG. The general relativistic instrument of choice for accomplishing this extension is the combination of the
Birkhoff theorem and its corollary for spherically-symmetric static systems [4].

If we focus on a particular radius value r0, the Birkhoff theorem’s corollary tells us that the part of
the spherically-symmetric static cumulative energy distribution EG(r) for which r > r0 makes no contri-

bution to the local r0 value of the metric, while the Birkhoff theorem itself tells us that the part of the
spherically-symmetric static self-gravitationally corrected cumulative energy distribution EG(r) for which
r ≤ r0 produces at r0 a local Schwarzschild metric whose energy constant EG has the value EG(r0).

The upshot of the Birkhoff theorem and its corollary is thus that the “Newtonian” free-space Schwarzschild
metric form of Eq. (5c) can be extended to the interior region of its self-gravitationally corrected spherically-
symmetric static source, which is described by the cumulative energy distribution EG(r), by the very simple
expedient of replacing the energy constant EG which appears in Eq. (5c) by that cumulative energy distribu-
tion EG(r). This yields the complete “Newtonian” metric for the self-gravitationally corrected spherically-
symmetric static cumulative energy distribution EG(r),

(cdτ)2 =(1−[GEG(r)/(c4r)])
2(cdt)2− (1− 1

2
[GEG(r)/(c4r)])

−4(dr)2− (1− 1
2
[GEG(r)/(c4r)])

−2
(
(rdθ)2+(r sin θdφ)2

)
,

(5d)
which exactly corresponds to the dimensionless Newtonian gravitational energy-reduction factor in Eq. (2a)
because,

(g00(r))
1
2 = (1 − [GEG(r)/(c4r)]). (5e)

Therefore if we multiply the gravitationally-modified energy E′

G(r)dr of an infinitesimally-thick spherical shell
at radius r by the inverse 1/(1 − [GEG(r)/(c4r)]) of the corresponding radius-r dimensionless gravitational
energy-reduction factor given by Eq. (5e), we undo the gravitational modification of the energy of that
infinitesimally-thick shell and arrive at what its energy would be if gravity were “switched off”, i.e., at what
its energy would be if G were put to zero,

E′

G=0(r)dr = E′

G(r)dr/(1 − [GEG(r)/(c4r)]). (5f)

Eq. (5f) implies the linear inhomogeneous first-order differential equation,

E′

G(r) + (G/c4)(E′

G=0(r)/r)EG(r) = E′

G=0(r), (5g)

which is exactly the same as the key Eq. (2c) result of the energetically self-consistent Newtonian approach
set out in the previous section. This differential equation is, of course, completely solved and exhaustively
discussed in that section, and is shown there to imply the crucial upper bound on the self-gravitationally
corrected cumulative energy EG(r) that is given by Eq. (3c), namely that,

0 ≤ EG(r) < (c4r/G). (5h)

The Eq. (5h) upper bound on the self-gravitationally corrected cumulative energy EG(r) is easily verified to
imply that, despite one’s cursory initial impression, the complete “Newtonian” metric given by Eq. (5d) has

no singularities whatsoever .
Of course the complete “Newtonian” metric of Eq. (5d) is entirely consistent with the Eq. (5c) “New-

tonian” form of the free-space Schwarzschild metric that only applies in the r ≥ R free-space region where
the cumulative energy distribution EG(r) is equal to the energy constant EG. Therefore once again despite

one’s cursory initial impression, the Eq. (5c) “Newtonian” form of the free-space Schwarzschild metric has

no singularities whatsoever in its free-space region of validity . Therefore the ostensibly “threatening” sin-
gularity that occurs in the Eq. (5c) free-space Schwarzschild metric when r equals the Schwarzschild radius

rS
def
= GEG/c4 [5] is never physically realized , and this is also the case for the ostensibly pernicious singularity

that occurs in the Eq. (5c) free-space Schwarzschild metric when r = 1
2rS .
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Interacting quantum particles that have forbidden energy or mass

Because of its wave character, a quantum particle which interacts with a potential can penetrate a short
distance into a region where the potential’s value exceeds the particle’s energy—such penetration is forbid-
den to classical particles. In such a region the quantum particle’s kinetic energy and momentum squared
effectively assume negative values, and its penetration length λ into that energetically forbidden region can
be roughly described as,

λ ≈ h̄/(−p2
eff)

1
2 . (6a)

Since for a nonrelativistic interacting particle,

E = p2/(2m) + V, (6b)

we can rewrite Eq. (6a) as,
λ ≈ h̄/(2m(V − E))

1
2 , (6c)

and the energetically forbidden region corresponds to V > E. If V should vary significantly from the edge of
the forbidden region to the depth λ, Eq. (6c) will need to be regarded as an approximate implicit relationship

which actually needs to be solved for λ. That implicit relationship is set up by reexpressing V as a function

of the distance from the edge of the forbidden region, and the resulting new independent variable is then
identified as λ.

A highly energetic interacting quantum particle can similarly deviate from the natural rest mass which
it has when it is free, and thus enter a region of forbidden rest mass. Just as there is an effective length
limit for quantum particle penetration into a region of forbidden energy, so there is an effective proper time
limit, i.e., lifetime, for quantum particle penetration into a region of forbidden rest mass, namely,

τ ≈ h̄/(∆mc2), (7a)

where ∆m is the rest-mass deviation experienced by an energetic interacting quantum particle and τ is the
lifetime of that deviant-mass state. Given its limited lifetime, such a deviant-mass virtual particle is as well
limited in space to a spherical region of radius R ≈ cτ ,

R ≈ cτ ≈ h̄/(∆mc). (7b)

Given that radius R of Eq. (7b), Eq. (3c) then yields a self-gravitational approximate upper bound on the
total energy E of this deviant-mass particle,

E <̃ (c4R/G) ≈ c3h̄/(G∆m). (7c)

Since ∆mc2 cannot exceed the deviant-mass particle’s total energy E, it follows from Eq. (7c) that,

∆mc2 <̃ c3h̄/(G∆m). (7d)

Therefore,
(∆m)2 <̃ h̄c/G, (7e)

which implies that,
∆m <̃ (h̄c/G)

1
2 , (7f)

namely that ∆m is approximately bounded by the Planck mass (h̄c/G)
1
2 .

This approximate Planck-mass upper bound on the mass deviation of any interacting quantum virtual
particle universally cuts off the ultraviolet divergences which bedevil quantum particle scattering amplitude
calculations.

Self-gravitational correction of the infinite energies of quantum fields

A noninteracting field (e.g., the source-free electromagnetic field) always decomposes into an infinite number
of independent simple harmonic oscillators whose frequency spectrum has no upper bound. Upon quan-
tization, each such oscillator has a minimum positive energy (i.e., quantum ground state energy) which is
equal to its frequency times h̄/2: that minimum energy is quantum theoretically inviolable, being completely

mandated by the quantum uncertainty principle. The fact that there are an infinite number of such simple
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harmonic oscillators with an unbounded frequency spectrum implies that the corresponding quantum field
always has infinite energy . If the field is set up in a bounded region, then its quantum counterpart has not

only infinite energy, but necessarily infinite average energy density as well.
Therefore for quantum fields the uncertainty principle baldly confronts us with an unphysical nightmare,

yet without this selfsame uncertainty principle likewise mandating a definite minimum energy, Rutherford’s
nuclear atom can’t be sustained.

The last apparent hope for the beleaguered theorist in this harrowing circumstance resides with the self-
gravitational modification of an initially infinite energy density, e.g., Eqs. (4j) and (4k) in the limit that
the initial energy density TG=0 is infinite. A saving grace of this vertiginous maneuver is that its result is
particularly unambiguous and simple, namely,

EG(r) = (c4r/G), (8a)

where r is the bounding radius of the quantum field. Of course it makes no difference whatsoever how

many or what types of quantum fields reside within that bounding radius: any infinite initial energy density
produces the result of Eq. (8a).

The total self-gravitationally modified energy of quantum fields, which is what Eq. (8a) is supposed to
describe, isn’t directly measurable. However, by making use of the fields’ bounding radius r, we can obtain
from Eq. (8a) their self-gravitationally modified averaged energy density ρ̄,

ρ̄ = (3c4/(4πGr2)). (8b)

It now remains to puzzle out what conceivable “real world” physics could relate to the mathematical ab-
straction of the quantum fields’ bounding radius r. It is, of course, apparent that no material substance

can serve to bound the arbitrarily high frequencies which such fields are able to muster. The universe’ cos-

mological redshift , however, in principle ought to defang any frequency, and indeed appears to serve as the
“containment” for all that we can hope to survey. Therefore a not altogether implausible crude estimate of
the quantum fields’ “bounding radius” r ought to be given by the age of the universe [6] times the speed of
light, which comes to about 1.3× 1026 meters. Putting that value of r into Eq. (8b) yields about 1.7× 10−9

joules per cubic meter (i.e., 1.7×10−8 ergs per cubic centimeter or 1.7 joules per cubic kilometer) as a crude
estimate of the universe’ average “dark energy” density. This is in fact of the same order of magnitude as
what is yielded by observations [7, 8].

In addition to the ability of Eq. (8b) to yield a passable crude estimate of the current universe’ average
“dark energy” density, its systematics also seem fascinating. If we project it all the way back to the universe’
birth, when r was presumbably of the order of magnitude of the Planck length (Gh̄/c3)

1
2 , then ρ̄ approaches

of order unity in Planck units of energy density, which is roughly 120 orders of magnitude greater than its
value for the current universe.

Theorists who did not attempt to actually model the physics which produces self-gravitational energy

correction have favored this particular enormous value of “dark energy” density because of their adoption
of a physically-blinkered “universal fix” for infinite results, namely the replacement of any such infinity by
one Planck unit of the appropriate dimensions [8]. Neither physical modeling of self-gravitational energy
correction nor observations have much overlap with such undiscriminating replacement of the quantum
energy-density infinity by its Planck-unit value, but it is still fascinating to consider that enormous Planck
unit of “dark energy” density as being relevant to the early universe, as that would apparently provide an
automatic mechanism for the heretofore puzzling “inflation” of that early universe.

Finally, Eq. (8b) suggests that the average “dark energy” density ought to decrease toward zero as the
universe continues its expansion. This brings to mind the not infrequently expressed theorist preference for
exactly vanishing “dark energy” density over its observed value [8], which while immensely smaller than the
Planck unit of energy density, nonetheless absolutely fails to vanish. In fact, completely to the contrary , it
dominates the net average energy density of our universe [7]. We see that Eq. (8b) apparently caters for all

tastes in average “dark energy” density, whether those tastes gravitate toward the enormous Planck unit of
energy density, zero energy density, or anything in between, including a passable rendition of the observed
average “dark energy” density which actually obtains at the current stage of evolution of our universe. It is
to be cautioned, however, that while Eq. (8b) indeed has average “dark energy” density decreasing toward
zero as the universe continues to expand, the average density of normal matter would be expected to decrease
at a faster rate, so that “dark energy” relative dominance would continue to grow.
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Must self-gravitation be quantized to correct quantum energy infinities?

Gravity, like electromagnetism, is a gauge theory , and the issues surrounding its quantization formally parallel
those issues in electromagnetism. In both cases there are dynamical, nondynamical and redundant fields
present, and the dynamical fields in both cases are two in number and describe transverse radiation. Only

these two dynamical radiation fields are subject to quantization.

What remains after the two transverse dynamical radiation fields are accounted for splits evenly into
nondynamical and redundant fields, neither of which, of course, are subject to quantization. The four-
potential of electromagnetism yields one redundant field and one nondynamical field of Coulombic character.
The symmetric metric tensor of gravity yeilds four redundant fields and four nondynamical ones. One of the
nondynamical fields very roughly corresponds to Newtonian gravity with roughly an energy-density source,
while the other three merely round out a relativistic four-vector representation, and therefore have roughly
a momentum-flux source.

If we look back at the previous parts of this article, it is clear that the self-gravitational corrections which
are of overarching importance can all be profitably pondered in a quasi-static or outright static framework.
The basic ingredients for self-gravitational corrections tend to be Newtonian, albeit an energetically self-

consistent form of gravitational Newtonianism.
Gravitational radiation doesn’t physically enter into self-gravitational correction, so gravity quantization

cannot be an issue in such correction, any more than electromagnetic quantization can be an issue in elec-
trostatics. Gravitostatics is merely more subtle than electrostatics because of its energetic self-consistency.

Conclusion

We have constructed a simple spherically-symmetric and energetically self-consistent Newtonian gravitostatic
model which yields a simple and apparently very useful upper bound on the amount of self-gravitationally
corrected energy which can be contained in a spherical region. That bound is just the “Planck force” (c4/G)
times the radius r of the sphere, a relationship which, inter alia, implies that the Schwarzschild radius never

lies in free space, making the Schwarzschild singularity physically unrealizable. This same model can also be
obtained by using the Birkhoff theorem and its corollary to extend the “Newtonian” form of the free-space
Schwarzschild metric into the interior region of its self-gravitationally corrected spherically-symmetric static
source.

The “Planck force” times radius bound on a sphere’s contained energy also cuts off the mass deviation
of an interacting quantum virtual particle at approximately the Planck mass, which in principle does away
with the ultraviolet divergences that bedevil quantum particle scattering amplitude calculations.

The “Planck force” times radius bound on a sphere’s contained energy ought to be attained for contained
quantum fields, which have infinite energy before self-gravitational correction, due to the combination of their
unbounded frequency spectra and the quantum uncertainty principle. But only the universe itself , with its
cosmological redshift, is actually capable of “containing” the arbitrarily high frequencies of a quantum field.
Roughly estimating the radius of the universe as its age times the speed of light, and then dividing the
“Planck force” times this radius by the corresponding spherical volume that has this radius, yields a rough
averaged “dark energy” density estimate of about 1.7 joules per cubic kilometer, which is of the same order
of magnitude as observational data. The same formula suggests that the early universe might have had an
immensely greater “dark energy” density, perhaps as much as a Planck unit of energy density, which would
be roughly 120 orders of magnitude times its present value. It is interesting that this seems to provide
an automatic mechanism for the inflation of the early universe. The formula also suggests that the “dark
energy” density will be decreasing toward zero as the universe expands, but that it won’t decrease as rapidly
as the density of ordinary matter will, which will increase the relative dominance of dark energy.

Finally, there seems to be no particular reason why the “dark energy” density should not share the
small inhomogeneities which are so typical of the rest of the universe, such as the small peaks in the cosmic
microwave background, and the galaxies, groups, filaments and voids in the distribution of luminous matter.
If “dark energy” indeed has inhomogeneities, then might not those inhomogeneities themselves be the thing
we call “dark matter”? In spite of all the gravitational evidence for “dark matter”, there is apparently no
observationally-known non-gravitational signal whatsoever for it. It would be a relief if something so elusive
ultimately turned out to not have an independent existence.
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